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What is Network Coding?  
Butterfly Example  

 How to achieve multicast capacity? 
 Each link has unit capacity 

 Node 1, 2 want to deliver b1, b2 to 5 and 6 

 Take 5 seconds and center link used twice 
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What is Network Coding?  
Butterfly Example Contd. 

 Can we do better? 
 XOR at node 3 

 Center link used once 

 Finish transmission in 3 seconds 
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Wireless Network Coding & Multicast Advantage 

 How to explore multicast advantage? 
 Each wireless link is broadcasting with unit capacity 

 Node 1 and 3 want to exchange a bit 

 Node 1 and 3 can reach each other ONLY through node 2 
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Takes 4 Transmissions 
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Multicast Advantage Contd. 

 How to exploit multicast advantage? 
 XOR at node 2 

 3 transmissions – previously 4 
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 Every outgoing packet      is a coded packet 

    is a linear combination of source packets                    over 

 

 

 

 Every  wireless node performs the same coding operation 

 

Random Linear Network Coding 

 bsssc m21
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 Every outgoing packet      is a coded packet 
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 Coding coefficient vector     sent along with coded packet 

 Key quantity to track 
 Number of linearly independent coefficient vectors 

 Call it rank 

 Decodability 
     linearly independent coefficient vectors 

 Full rank 

Decoding: Random Linear Network Coding 
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Modeling: Hypergraph for Wireless Networks 
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 Hyperarc (i, K): sender → multiple receivers 

 Broadcast nature of wireless 

 Transmission range 

 Directional antenna (beamforming) 
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 A packet goes through the hyperarc (i, K) with probability Pi,K 

 Pi,K: received by at least one node in set K 

 Reception can be correlated                                    

e.g., channel correlation, joint detection 

 

For independent reception 

 

 

 

 Capacity of (i, K) 

Definition of Capacitated Hypergraph 
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Rank Evolution of RNC 
 Decoding relies on the rank of node 

 from which also define rank of an arbitrary set K 

)dim(at  rank,
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 Define Vi =E[Ni]  and VK =E[NK] 

 Fluid approximation Vi ≈ Ni and VK ≈ NK 

 How will Vi and VK evolve over time? 

 When will Vi reach m? 

 
13 



WINLAB 

Differential Equations for RNC 

 In Δt a packet is sent from node i in Kc with probability λiΔt 

 It is received by at least one node in K with probability Pi,K 

 This incoming packet increments VK with probability 

 

 

 

 

 To see this … 
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Differential Equations for RNC 
 On average, the packet increments VK by 

 

 
 

    A Differential Equation (DE) for rank evolution: 
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Differential Equations for RNC 

 A system of             DE’s, one for every nonempty K 

 Can be solved numerically with initial conditions 
 Good for performance evaluation of various RNC schemes 

 Can be analyzed 
 Good for theoretical insights too 

 Enables Crosslayer Design 
16 
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Illustration1: Boundary Conditions 
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Illustration 2: Boundary Conditions 

 Specific networking scenarios yield boundary condition 
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A Toy Example 
 A wireless network with independent receptions 

 Transmission of m packets start at t = 0, compute V4(t) 
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 Solve the DEs (with B.C.) for VK(t) 

 Throughput is the derivative of VK(t) 

 Throughput given by min cut! 
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What is Min Cut of a Hypergraph? 

Example: 

Cut T for ({1},{3}), T={3,4} 

1 

2 

3 4 

5 

 A cut for (S, K) is a set T  s.t.  

 

 Cut size 

 
 

 Min cut: smallest cut size 
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Example - Wireless P2P 
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Example – Multiple Sources 

VK = zi,K 1- q
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Example – Complex Networks 

100   ,10,,2,1   ,1  mii 
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Example – Correlated Reception 
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Effect of Number of Source Packets m? 
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Is there a Concentration Result? 
 Numerical examples suggest concentration property 

 As no. of source packets increase, DE solution becomes increasingly 
accurate 

 Rank processes concentrate to DE solution 

 Previous studies showed throughput given by 

 

 

is achieved asymptotically with no. of source packets 

 

 Can we prove this result with DE framework? 
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Yes We Can! 

Let node 1 be source, D the destination set, m packets to deliver 
and T the total Tx time 

 DE for the variance 

 

 

 Use it to bound variance 

 

 

 Use Chebyshev inequality to show throughput converges to 
min cut in probability 
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Innovative packet 
probability 

Can we use DE Framework for Cross-layer 
Resource Allocation in RNC? 
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 Model RNC as a dynamical system: 

 

 

 

 Hyperarc capacity of            
   

Tx rate at node i Reception probability  
(A pkt from i  can be 

recvd by at least 1 node 
in K ) 

MAC 

PHY 

DE framework closely 
models rank 

evolution of RNC  
in terms of  

PHY and MAC 
parameters 

Packet reception 
rate 
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How does Power Control Impact RNC? 

 In general, power control to achieve certain objective, 
e.g.: 
 Maintain certain SINR value 

 Minimize total power 

 With RNC, Tx powers influence network coding 
performance  
 Larger transmit power: 

30 

Good for its own 
transmission 

Increases interference 
for other transmissions 

in the same network 
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Motivation - Necessity of 
Power Control in RNC 
 Consider 

 6-node topology, RNC 

 Node 1 delivers pkts to {4,5,6} 

 Each node Tx at 1pkt/ms 

 t=0, every node’s Tx power set 
to 13dBm 

 Tx powers           ,           , 

     are increased sequentially 

 Observations 
 Incrementing power isn’t always 

good for throughput 

 Is there an optimal strategy? 

 
   
   31 
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Network Coding Aware Power Control 

 Find an optimal allocation of Tx powers such that 
multicast throughput can be maximized 

 

 

 

 

 Challenge: Need a good model of RNC performance 
in terms of Tx powers 
 DE framework! 
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Problem Setup -  
Max-min-throughput Power Control 

33 

 Formulate max-min throughput problem using DE: 

Objective: adjusting powers so that 
minimum throughput is maximized 

DE framework 
for RNC 

Size-N Tx power 
vector 

Min. throughput among the dests. set          
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Gradient-based Algorithm 
 Idea：  

 Suppose dest k has the minimum instantaneous throughput 

 Find the gradient of the throughput of k 

 Adapt powers towards the direction of the gradient 

 

 

 

 Power control feedback loop: 
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Positive constant serving 
as gain parameter 

Gradient of minimum 
throughput 
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Gradient-based Algorithm: 
Approximation of  the Gradient 

 

 Challenge: hard to directly evaluate        

 Recall   

 Why hard? 
 Underlying PHY schemes may change over time 

 Result in changed  

 The explicit expression for          may even be unknown in 
practice 
 Depends on PHY specifics like modulation, FEC, diversity ... 
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Gradient-based Algorithm: 
Approximation of the Gradient 

 Approach: Estimate in a centralized manner 
 For node i to adjust power 

 Increment i’s power, others remain the same. 

 Construct a power vector    

 

 

 Estimate the gradient:  
 

 

 Adjust the power in the direction of gradient 
  

36 

Power increment for  
node i 

Vector with i-th component 
being 1 and 0 elsewhere 
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Numerical Results 
 Simulation setup: 

 Use numerical DE solver to evaluate the algorithm 

 6-node topology, nodes perform RNC 

 Source: node 1, and dest. nodes {4,5,6} 

 src has 2000 packets to multicast to dests. 

 Assumption: 
 Certain MAC: each node transmits at 1pkt/ms 

 Certain PHY: BPSK signaling and Gaussian 
interference model 

 Tx power varies between 0dBm and 15dBm 
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Throughput Performance 
 Without Power Control (PC), 

throughput is a constant 

 With PC: instantaneous throughput 
is improved compared to no PC 

 With PC: throughput Converges 
around t=60ms 

 Each node Tx at 1pkt/ms, min cut 
between. src. and dst. is 1 pkt/ms 
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optimal throughput! 
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Transmit Powers  
 Tx power initially 

set to 13dBm 

 Powers are adjusted 
with an upper 
bound of 15dBm 

 Tends to converge 
around t=140ms 
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Motivation - Necessity of CSMA 
backoff control in RNC 

40 

 Consider 

 Node 1 delivers pkts to {4,5,6} 

 CSMA as the MAC protocol 

 Exp. backoff  if channel busy   

 At t=1000, 2000, 3000ms, mean 
backoff time of node 1, 4, 6 
reduced, by 30%, 40% and 50%, 
respectively 

Transmission aggressiveness (TA)         
increased  

 Observations 

 Increased TA: May improve neighbor 
throughput  
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3 

1 

Reduce node 1’s 
backoff time 

Reduce node 4’s 
backoff time 

Reduce node 6’s 
backoff time 

 May also be bad: reduced 
channel availability 
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CSMA backoff control - 
Throughput Performance 
 Without control: 

Mean backoff time of nodes is fixed 

 Without control: 
 throughputs remain at 0.06pkt/ms.  

 With control:  
 instantaneous throughput is improved 
compared with no control case 

 With control:  
throughput converges to 0.22 around 
t=4000ms 

 Throughput gain: >200%. 
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 Impact of PHY algorithms on network 
coding performance 

 Rate of Rank Evolution 
 Impact of MAC on network coding 

performance 

 Interference effects 
 Resource Allocation 

 Power Control, Scheduling 

Concluding Remarks 
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 Crosslayer Design problems  

 Solving systems differential of equations  

 Appropriate boundary conditions  

 

 Emulation/Software Utility under Development 

 Network Topologies 

 Radio Channels 

  PHY, MAC and Resource Allocation Algorithms 
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