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What is Network Coding?
Butterfly Example

O How to achieve multicast capacity!
m Each link has unit capacity
m Node 1, 2 want to deliver by, b, to 5 and 6

O Take 5 seconds and center link used twice

,_b1 bz ,_b1 bz bl
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What is Network Coding?
Butterfly Example Contd.

O Can we do better?
m XOR at node 3

m Center link used once

m Finish transmission in 3 seconds
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Wireless Network Coding & Multicast Advantage

O How to explore multicast advantage!

m Each wireless link is broadcasting with unit capacity
m Node 1 and 3 want to exchange a bit
m Node 1 and 3 can reach each other ONLY through node 2

4 [1 )@ . 2 2 BE
@ bl .;6 b @ Takes 4 Transmissions
b, 2 b,
e
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Multicast Advantage Contd.

O How to exploit multicast advantage!

m XOR at node 2

m 3 transmissions - previously 4
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Random Linear Network Coding

O Every outgoing packet ¢ is a coded packet
O c is a linear combination of source packets s,,s,,---,s,, Over GF(q)
Jo

c=ls, s, -
— A

coded packet  source packets coefficient vector
O Every wireless node performs the same coding operation
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Random Linear Network Coding
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Decoding: Random Linear Network Coding

O Coding coefficient vector b sent along with coded packet
O Key quantity to track

m Number of linearly independent coefficient vectors
m Call it rank
O Decodability

m Mlinearly independent coefficient vectors

m Full rank

10
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Modeling: Hypergraph for Wireless Networks
G=(N.E), E={(iK)|iecN, KcN}
2

1 o

LA

Hyperarc (1,{2,3})

O Hyperarc (i, K): sender — multiple receivers
m Broadcast nature of wireless
m Transmission range
m Directional antenna (beamforming)
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Definition of Capacitated Hypergraph

O A packet goes through the hyperarc (i, K) with probability P;

m P, received by at least one node in set K
m Reception can be correlated
e.g., channel correlation, joint detection

For independent reception 2

P =1-T10-P) A
jeK <z,
1 \21,3
O Capacity of (i, K) ﬁ.
Zx = AR« 3

Tx rate of
node i (MAC)
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Rank Evolution of RNC

O Decoding relies on the rank of node
m from which also define rank of an arbitrary set K

S, =span{b,,b,,---,b,}, N; =rankati=dim(S;)
S« =>_S;, Ny =rankat K =dim(Sy)

O Define V; =E[N;] and V, =E[N,]
m Fluid approximation V; = N; and V = N
o How will V; and V, evolve over time?
m When will V; reach m?

RUTGERS
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Differential Equations for RNC

O In At a packet is sent from node 1 in K¢ with probability At
O Itis received by at least one node in K with probability P;
O This incoming packet increments V, with probability

‘Si‘_‘si ﬂSK‘ - qdimsi _qdimSimSK } qvi _qvi+vK-v{i}UK

‘Si‘ q°mS - q"

—1— qVK —Vsizok

O To see this ...

RUTGERS spaccof k] spaceof ank Y, +¥; Vi space of rank ¥y
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Differential Equations for RNC

O On average, the packet increments V¢ by

V, (t+At)-V, (t)=At> AP ( VK‘V{M)

ieK®

—> A Differential Equation (DE) for rank evolution:

V. =V, (t+At)-V,(t))/At = Zz,K( Y VW)

ieK®
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Differential Equations for RNC

7 Vi Viirok
VK - Z Zi,K (1_ g
ieK®
Packet reception Innovative packet
rate probability
N
O A system of 2N —1 DE’s, one for every nonempty K

O Can be solved numerically with initial conditions

m Good for performance evaluation of various RNC schemes

O Can be analyzed

m Good for theoretical insights too

O Enables Crosslayer Design
RUTGERS
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[llustration1: Boundary Conditions

O Specific networking scenarios yield boundary condition

1 multicast
1 source
® m packets

m, leK,
0, o.w.

vK(0)={

El
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[llustration 2: Boundary Conditions

O Specific networking scenarios yield boundary condition

2 multicasts

® 2 image sources
m, packets

1 single source
m, packets

RUTGERS
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A Toy Example

O A wireless network with independent receptions
O Transmission of m packets start at t = 0, compute V,(t)

V4 — 22,4(1_qv )+ Zy 4( q )

Viss) = Zul= 0" )+ 24 .- N”4)
A (1 =)
VQM}:Aﬁ&M@_dhqu
Loy =hHPas T34 = AP, ﬂ’lp 2,4} = AR,
2y 13,4) :ﬂ’lpl,{BA} :ﬂ’lpl,?ﬂ Zy12,3,4) ﬂ,lP 2,3,4} ;Zil:)l,{2,3}
4 Pl{z 3} :1_(1_ Pl,ZX]'_ Pl3)

B.C. V (O) V{z 4}(0) :V{3,4}(O) :V{2,3,4}(O) =0
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Analytical Result: Multicast Throughput Using RNC

O Solve the DEs (with B.C.) for V(1)
O Throughput is the derivative of V(1)
O Throughput given by min cut!

1 multicast F =N, (12 oV T
® 1 source Vi ;‘Z”K (1 1 )
m packets ek
B.C. V,(0)= o,’ o !
leg K:
_ ({1}, K
2 VK (t): len ({1}’ K)t’ te [O’ m/len ({ }’ ))’
m’ t < [m/cmin ({1}’ K)’OO)
leK:

El
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What is Min Cut of a Hypergraph?

O A cutfor (S, K)isaset T s.t.

KcTcS¢

O Cut size 2

C(T): Zzi,T

ieT®

3

C.. (S K): min C(T) Example:
min ’ Tisa(S,K)cut _
Cut T for ({1}{3}), T={3,4}

C(T ) =LigntThangtina

O Min cut: smallest cut size
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Example - Wireless P2P

m =400

RUTGERS

1

2

A =1 1=1234 0O Peersdownload from server

O Peers transmit to each other to enhance throughput
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Example — Multiple Sources

A =1 i=123
® m, =200,

m, =300

VK = Zzz’,K (1 3 qVK_ o )
iek

B.C. V,(0)=+

-
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Example — Complex Networks

A =1 i=12---10, m=100

50
Time — Seconds

RUTGERS
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Example — Correlated Reception

____________________

P.=049, R,=049, PF,;=05
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Effect of Number of Source Packets m?
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Is there a Concentration Result?

O Numerical examples suggest concentration property

B As no. of source packets increase, DE solution becomes increasingly
accurate

m Rank processes concentrate to DE solution

O Previous studies showed throughput given by
C... (src, dst)

is achieved asymptotically with no. of source packets

O Can we prove this result with DE framework?

RUTGERS
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Yes We Can!

Let node 1 be source, D the destination set, m packets to deliver
and T the total Tx time

O DE for the variance
dvar[N,] dE[N]

+2% 7, cOV[N, 1—q ]

dt dt R
O Use it to bound variance
. var|N
lim sup tz[‘5 K]de forsomes, ,d, >0
t—w K

O Use Chebyshev inequality to show throughput converges to
min cut in probability

lim P(m/T >¢&c .. (1, D)) =1 VO0<e<l
RUTGERS 3




Can we use DE Framework for Cross-layer
Resource Allocation in RNC?

O Model RNC as a dynamical system:
Vic = Zzi,lc(l —¢"*Virur) VK C NV and K # ()

O Hyperarc capacity of (z, K)
m ik = NP

DE framework closely
models rank

evolution of RNC

in terms of

v PHY and MAC
parameters
MAC O
RUTGERS PHY WINLAB




How does Power Control Impact RNC?

O In general, power control to achieve certain objective,
e.g.:
m Maintain certain SINR value

m Minimize total power

O With RNC, Tx powers influence network coding
performance

B Larger transmit power:

Good for its own Increases interference

/

transmission for other transmissions | X

in the same network

30
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Motivation - Necessity of

Power Control in RNC 2

=
O Consider 1 2 G) M) (((‘
m 6-node topology, RNC D 7=
m Node 1 delivers pkts to {4,5,6} 3 '
m Each node Tx at 1pkt/ms 1 g ‘ o
m t=0, every node’s Tx power set — nade 8
to 13dBm > ™
m Tx powers Pry 1, Pry 3, Prx 4 ?i oal J | G~
are increased sequentially ;E L
Soav A~
O Observations £ —
m Incrementing power isn’t always 02 YV ‘\::jt
good for throughput —
m [s there an optimal strategy’ % 500 11000 1,500 2,000

Time (miiliseconds)

Set PTX,1=14dBm
Set P;, ,=14dBm
N.JTGERS Set PTx,3=14dBm SR ..I. ’é.lu,f




Network Coding Aware Power Control

O Find an optimal allocation of Tx powers such that
multicast throughput can be maximized

O Challenge: Need a good model of RNC performance
in terms of Tx powers

m DE framework!

RUTGERS
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Problem Setup -
Max-min-throughput Power Control

O Formulate max-min throughput problem using DE:

maximize g%%l V; Min. throughput among the dests. set D
subject to Vic = Z Zix - (1 — QV'C_V{i}U’C)
iEK DE framework
2k = AP (Proy) for RNC
0 X Prx X Pr”
variables Py

Objective: adjusting powers so that

Size-N Tx power minimum throughput is maximized
vector

33

RUTGERS




Gradient-based Algorithm

O Idea :

m Suppose dest k has the minimum instantaneous throughput
m Find the gradient of the throughput of k
m Adapt powers towards the direction of the gradient

PTX = CL/ . VVk (PTX) .

Positive constant serving Gradient of minimum
as gain parameter throughput

O Power control feedback loop:

Ve = 3™ rurc(l — g¥e—Vioron) [ a

i¢ K

o /
PTX ‘ / -dt a VPTX .

RUTGERS
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Gradient-based Algorithm:
Approximation of the Gradient

Pr, =d -VV, (Pry) .
O Challenge: hard to directly evaluate v,
O Recall Vi =) APic(1— g Voor)
O Why hard?

m Underlying PHY schemes may change over time
Result in changed P x
m The explicit expression for P; . may even be unknown in

practice
Depends on PHY specifics like modulation, FEC, diversity ...

35
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Gradient-based Algorithm:
Approximation of the Gradient

O Approach: Estimate in a centralized manner

m For node i to adjust power
Increment i’s power, others remain the same.

Construct a power vector

q; = Prx + Age;.

Power increment for Vector with i-th component
node i being 1 and 0 elsewhere

O Estimate the gradient:
Vi (Pry) 1 (

Vi —=Viiyu
OPre;  Ag Z(ij(qz) — 2 (Prx))(1 — ¢~ ¥18 fc)) .

j#k
O Adjust the power in the direction of gradient
RUTGERS
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Numerical Results

O Simulation setup:

Use numerical DE solver to evaluate the algorithm
6-node topology, nodes perform RNC

Source: node 1, and dest. nodes {4,5,6}

src has 2000 packets to multicast to dests.

Assumption:

Certain MAC: each node transmits at 1pkt/ms
Certain PHY: BPSK signaling and Gaussian

interference model

Tx power varies between OdBm and 15dBm

RUTGERS
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Throughput Performance <
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O Without Power Control (PC),

throughput is a constant

)

O With PC: instantaneous throughput
is improved compared to no PC

. 1.5 ‘ : :
O With PC: throughput Converges — with power control
around t=60ms 5 - ==w/0 power control
=
O Each node Tx at Ipkt/ms, min cut & 1
between. src. and dst. is 1 pkt/ms £
X
O
© N\ §
L= J O SN N Y S G Il
S Y
205 A
RNC with PC achieves 3 * Va
. c XV
optimal throughput! Y 51
Joo0 g grgn O D
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Transmit Powers . t’/\ (
) N) ((¢
o ) @ '@
O Tx power initially N
set to 13dBm ; ¥
O Powers are adjusted o
with an upper K
PP I use ol
bound of 15dBm I~
13 \\: e |un
S~ T
O Tends to converge £ \ VR A + P,
around t=140ms cl S * P
g 11 . —a | AP
210\, O Ps
7=\ ™ P
ol Q\ A o X O Ps
S—a
8H
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Motivation - Necessity of CSMA 2
backoff control in RNC N =

O Consider N //‘;
m Node 1 delivers pkts to {4,5,6} 3—\ ‘
m CSMA as the MAC protocol

m  Exp. backoff if channel busy

m

At t=1000, 2000, 3000ms, mean
backoff time of node 1, 4, 6
reduced, by 30%, 40% and 50%,

respectively

| A\ node 4
1 node 5 A
O node 6 (P——r

o
N

o
[N
oo

Transmission aggressiveness (TA)
increased

o

=
0
()

O Observations

hroughput (packets/ms)
o
( S (
S
EE

m Increased TA: May improve neighbor

Fo12h . , |
‘ backoff time

1000 2000 3000 4000
Reduce node 1's Time (milliseconds)

backoff time

®  May also be bad: reduced 0.1
channel availability 9

Reduce node 6's
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CSMA backoff control -

2
Throughput Performance S
S\ e (@
O Without control: ! —~
Mean backoff time of nodes is fixed '—\—\\ -
3 @

O Waithout control:
throughputs remain at 0.06pkt/ms.

: . 0.25 ‘
O With control: —with control
instantaneous throughput is improved - - -w/o control
' » 0.2f X
compared with no control case é AV
O With control: £ OV
$ 0.15f |
throughput converges to 0.22 around g * Vel
t=4000ms = 7
, N 2 o1t
O Throughput gain: >200%. )
S BB BB
i
~ 0.05f 1
0

0 2000 4000 6000 8000 10000

Time (milliseconds)
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Concluding Remarks

O Impact of PHY algorithms on network
coding performance I ( Vik “Viyok )
‘ VK ~ Z Zi,K 1- g
m Rate of Rank Evolution izK

O Impact of MAC on network coding
performance O Crosslayer Design problems

m Interference effects m Solving systems differential of equations

O Resource Allocation m Appropriate boundary conditions

m Power Control, Scheduling

O Emulation/Software Utility under Development
m Network Topologies
m Radio Channels

m PHY, MAC and Resource Allocation Algorithms
RUTGERS
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