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Analyzing Random Network Coding With
Differential Equations and Differential Inclusions

Dan Zhang and Narayan B. Mandayam, Fellow, IEEE

Abstract—We develop a framework based on differential equa-
tions (DE) and differential inclusions (DI) for analyzing Random
Network Coding (RNC) in an arbitrary wireless network. The
DEDI framework serves as a powerful numerical and analytical
tool to study RNC. For demonstration, we first build a system
of DE’s with this framework, under the fluid approximation, to
model the means of the rank evolution processes. By converting
this system to DI’s and explicitly solving them, we show that
the average multicast throughput is equal to the min-cut bound.
We then turn to the precise system of DE’s regarding the means
and variances of the rank evolution processes. By analyzing this
system, we show that the rank evolution processes asymptotically
concentrate to the solution of the DI’s obtained previously. From
this result, it immediately follows that the min-cut bound can
be achieved as the number of source packets becomes large. We
demonstrate the numerical accuracy and flexibility in perfor-
mance analysis enabled by the DEDI framework via illustrative
examples of networks with multiple multicast sessions, complex
topology and correlated reception. We also briefly discuss its
application in MAC and PHY adaptation and the extension to
Random Coupon Selection.

Index Terms—Capacity achievability, concentration, differential
equation, differential inclusion, dynamical system, random coupon
selection, random network coding.

I. INTRODUCTION

S INCE the pioneering work by Ahlswede et al. [1] that
established the benefits of coding in routers and provided

theoretical bounds on the capacity of such networks, the breadth
of areas that have been touched by network coding is vast and
includes not only the traditional disciplines of information
theory, coding theory and networking, but also topics such
as routing algorithms[2], distributed storage[3], [4], network
monitoring, content delivery[5], [6], and security[7]. Among
other variants, random network coding (RNC) [8], [9] has
received extensive interest in particular. By allowing routers
to perform random linear operations, RNC is shown to be
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capacity achieving and fault tolerant. In spite of all the excel-
lent progress previous studies have made in the area of RNC,
what is still missing is a simple framework that can be used
to describe the evolution of state in a wireless network where
RNC is employed. In this paper we present a framework called
DEDI based on differential equations (DE) and differential
inclusions (DI), which are a generalization of DE’s to allow for
discontinuous right-hand sides. The DEDI serves as a powerful
numerical and analytical tool to study RNC. We demonstrate
this by presenting theoretical analysis of information flows with
RNC as well as numerical examples. We will setup under the
fluid approximation a system of DI’s that approximately char-
acterizes the means of the rank evolution processes and solve
it explicitly. The solution shows that the average throughput
is given by the min-cut bound. Next we prove that the actual
rank evolution processes concentrate to the previously obtained
solution in probability, hence proving the well known result
that RNC achieves the min-cut bound, all in the context of
general lossy wireless networks. The flexibility of DEDI in per-
formance analysis will also be shown via illustrative examples
of networks with multiple multicast sessions, user cooperation
and arbitrary topologies.

Using the DEDI framework, we present results similar to
Ho et al. [10] which for the first time characterized the achiev-
able throughput of RNC by analyzing the codes algebraically;
and also to Lun et al. [9] which later studied the same problem
with a Jackson network approach, analyzing the achievable ca-
pacity by treating the propagation of innovative packets through
the network as concatenated queuing systems. While the coding
strategy considered in this paper is similar to [9], there are a
number of notable differences with the prior work. Unlike [10],
our work makes no assumption on the size of the underlying
field when proving achievability. Rather, we show that achiev-
ability is a direct consequence of the convergence of the fluid
model in this particular case, which does not hold in general. In
[9], the fluid approximation is also used to characterize a ficti-
tious queueing system whose throughput lower bounds the real
process of innovative packet propagation. However, our contri-
bution mainly focuses on a direct and compact description of
innovative packet propagation through an arbitrary lossy wire-
less network using differential equations. This framework has
several advantages:

1) It is easy to manipulate. Many problems related to RNC
which have been previously studied with a mixture of in-
formation theory and queueing theory now become prob-
lems of analyzing and solving systems of differential equa-
tions. Previous studies of RNC usually begin their anal-
ysis with acyclic networks, and then extend it to a general
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Fig. 1. Hypergraph model of a wireless network of four nodes and its arrow-dot
representation.

topology, because cycles often impose an obstacle which
must be circumvented this way. With our framework, this
obstacle never arises because the topological information
has been naturally embedded in the system of DE’s.

2) It is a powerful computational tool that can help network
designers evaluate their RNC schemes with dynamically
adjusted parameters. Algebraic, information and queueing
theoretic approaches often do not lend themselves directly
amenable to use for this purpose. We will highlight this
aspect in Section VII.

3) It can be generalized to other transmission schemes be-
sides RNC. We will demonstrate in Section VII its possible
extension to Random Coupon (RC) [11], an alternative to
RNC.

In what follows, Section II introduces the hypergraph model
for a wireless network first proposed in [9], concepts such as
cut sets, the min cut and connectivity for a hypergraph, and
the basic operations of RNC, the definition of rank evolution
for RNC; Section III presents the setup of the DEDI frame-
work for RNC using a fluid approximation as well as a sys-
tems of DE’s and DI’s that describe rank evolution of RNC.
In Section IV we solve the system of DI’s explicitly to obtain
the average throughput of RNC, which is given by the min-cut
bound. In Section V we further study the means and variances
to give an achievability proof of RNC that makes no assump-
tion on field size using the DEDI framework described here.
Section VI presents extensive numerical examples to illustrate
the application of DEDI to situations of DEDI to situations of
multiple multicast sessions, complex topology and joint recep-
tion. Section VII gives a brief discussion on the possible ap-
plication of the DEDI framework and its extension to Random
Coupon. We conclude in Section VIII.

II. REVIEW OF THE HYPERGRAPH MODEL AND RNC

A generic wireless network is modeled as a hypergraph
consisting of nodes and hyper-

arcs . Each hyperarc captures the
fact that, as any wireless transmission is inherently a broadcast,
a packet sent from node can be received by some or all the
nodes in a set . This idea is shown in Fig. 1 where the
hypergraph of a four-node network is shown. The transmission
from node 1 can be overheard by node 2 and 3, while the trans-
mission from node 3 can only be overheard by node 4, all with
a probability. This relationship between nodes can be conve-
niently represented with arrows. One should not, however, con-
fuse the arrow representation with the digraph of a wired net-
work. Assume some underlying MAC is operating in its steady

state such that each node is transmitting according to an in-
dependent Poisson process with the intensity of packets per
second. We say that a packet is successfully received by a set

of nodes if the packet is successfully received by at least one
node in , which happens with a probability . Note the def-
inition of is general and does not assume independent re-
ceptions among the nodes in . This generality allows channel
correlation or user cooperation (e.g., joint detection) to be ana-
lyzed in a unified framework. We define the effective transmis-
sion rate for (i.e., from to ) as

(1)

which is the intensity of the Poisson process of packets from
node successfully arriving/being received by . also can
be regarded as the extended concept of link capacity from node

to the set . When , we must have

(2)

because . Suppose and .
Define a cut for the pair as a set satisfying

. Let denote the collection of all cuts for . The
size of is defined as . A min cut for

, whose size is denoted as is a cut satisfying

(3)

We denote the collection of cuts for that satisfy (3) as
. Conventionally, we have

(4)

We say is connected if, for any , .
When RNC is employed in unicast/multicast sessions, a

group of nodes work together by sending out coded packets
that are generated from the received (coded) packets or the
packets they deliver as the sources. The operation of RNC is
different from that of the deterministic network coding [1] or
randomized network coding [12] in that a coding coefficient
vector is generated for each coded packet. Without loss of
generality, we also assume that every node in the network
executes RNC in a cooperative manner to carry an information
flow comprised of one or more multicast sessions, otherwise
we confine our discussion to the part of the network (and refer
to it as “the network”) in which every node participates in
RNC cooperatively. What follows will only be concerned with
a single information flow. Admittedly, we may have multiple
independent information flows separately coded with RNC,
which may traverse the same nodes. That means, if node is
such a node, it will linearly mix packets that belong to the same
flow, but never mix packets from different flows with RNC.
Consequently, will be divided among these flows and we can
safely confine our attention to each flow individually, taking
into consideration only the portion of that is allocated to the
flow.

With RNC, each packet is a row vector from where
is a given finite field of size and is a positive constant
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that denotes the length of the packet. Every node maintains a
reservoir consisting of all the packets the node holds as a source
plus all the packets received thus far during a coded session.
The reservoir is ever growing and purged only after the asso-
ciated information flow is completed. Whenever a node gets to
transmit, a coded packet is formed and sent out. Suppose at a
time instant node needs to form a coded packet from its reser-
voir , will have the form

, where are randomly
generated. Since the coding operation is entirely linear, we have

where are
the ensemble of source packets, possibly belong to multiple
source nodes and multiple sessions.
is called the global coefficient vector associated with . Each
node sends the global coefficient vector along with its associ-
ated coded packet in order to enable the receiving nodes to cal-
culate the global coefficient vectors for their own coded packets.
Let be the vector space spanned by the global coefficient vec-
tors associated with the packets in node ’s reservoir and define

, which we call the rank of node . and
are time dependent as the coded transmissions evolve and once

, decoding can be carried out with a linear inverse op-
eration. Further, for any set , define

(5)

and call the rank of . The question we are interested in
answering is how the rank or increases over time, i.e.,
how the ranks evolve.

III. DEDI FRAMEWORK FOR RNC

In this section we will develop the DEDI framework for
studying rank evolution of RNC and show its use via illustrative
examples[13].

A. Rank Evolution Modeled With DE

The DEDI framework begins with the following lemma that
describes the mean of :

Lemma 1:

(6)

Proof: Let denote the increment in the number of
innovative packets in , then

(7)

Notice that every node sends packets according to an indepen-
dent Poisson process with intensity , we can calculate
as

(8)

where is the number of innovative packets (either 0 or
1) sent from node in . Using the chain rule,
we have

(9)

A packet sent from is innovative to (i.e., ) if
and only if it comes from . Since

(10)

(11)

it follows that the probability that the received packet is innova-
tive is given by

(12)

Averaged over all possible values of , we have

(13)
Therefore, we have a precise differential equation for
as follows:

(14)

Let and . We want to build
a system of differential equations that (approximately) describe

and . Though Lemma 1 does not precisely provide
the equations we want (the right-hand sides are not functions of
the unknowns), we can turn them into such via a fluid approxi-
mation argument: when is large, the stochastic process
behaves on a macro scale like a deterministic function which is

. This leads us to make the following approximation

(15)

and consequently we have

(16)

The solution of (16) gives the expectation of the rank of a set
at any given time instant . It actually stands for a system of

equations, each for an nonempty . They col-
lectively give a complete description of rank evolution in the
system. Note is solely determined by . This
dependency can be explored to arrange (16) into a partial order
“ ” such that if and only if . This partial
order can be pictorially represented as a layered structure, for
which an example is shown in Fig. 2 for . To determine a
quantity on any particular layer, one only needs to know the the
quantities on the layer immediately above indicated by arrows.
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Fig. 2. Layered structure for the rank evolution of a 3-node network.

The layered structured will be exploited in Section IV to facili-
tate the proofs.

Theoretically, with appropriate boundary condition, (16) can
be solved. The instantaneous throughput is then obtained as
or . For example, assuming node 1 is the unique source with

packets to deliver, the boundary conditions (B.C.) for this
systems of DE’s are

(17)

If only part of the nodes, say , participate in carrying
the flow, (16) still holds, except that we should replace with

and the top layer in the layered structure consists of
alone.

In practice, is usually chosen to be an integral power of
2, not only because arithmetic in a field of characteristic is
then particularly amenable to machines, but also because they
are the natural granularity used in storage and communication,
e.g., bits, bytes, words, etc. With such choices of ,
could be equal to 0 to within the precision of standard numerical
software when is even moderately large. As
can never exceed , is nonpositive and in
this case we may approximate by

(18)

The approximation for different values of is shown in Fig. 3.
It is evident that, when the approximation is very close
for every nonpositive integer. Even when , the approxima-
tion is very good when or .
For other nonpositive integer values, the approximation has an
error bounded by 1. When , (18) becomes more accu-
rate. However, as will be shown in numerical examples, when
the total rank is large the approximation rarely fails even for

. Consequently we may rewrite (16) as

(19)

with the same boundary conditions as in (17). The binary oper-
ation is defined as

(20)

Though the simplified DE’s shown in (19) have discon-
tinuous right-hand sides due to the operation, they are
no longer subject to the same precision problem. Numerical

Fig. 3. Approximate �� � with � � � when � � � and
� � ���.

Fig. 4. Simplistic wireless P2P network.

solution of (19) can be obtained by any DE solvers fairly
efficiently. To demonstrate this, consider the following ex-
ample illustrating a simplistic wireless network that employs
RNC in a P2P-like transmission scheme, shown in Fig. 4.
Assume , and .
The labels attached to the arrows show reception probabilities,
which are independent to each other. This means, for example,

, but .
We assume that node 1 is the server which has 400 packets to
be downloaded to node 2, 3 and 4 with RNC. Like a typical
wired P2P network, node 2, 3 and 4 broadcast to each other to
enhance efficiency. Fig. 5 shows the rank evolution at the four
nodes, through both simulation and the solution to the corre-
sponding simplified DE’s. It is evident that the DE solution fits
the simulated curves nicely.

B. Rank Evolution Modeled With DI

While (19) can be numerically evaluated with any DE solver,
it is not amenable to analysis due to the discontinuous right-hand
sides. Besides, the approximation shown in(18) becomes most
inaccurate when . In fact, no matter what
is, if is sufficiently small, can take
on any value in . This discrepancy prompts us to modify
the right-hand side of (19) to incorporate semicontinuity [14],
which allows a range of values for to choose
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Fig. 5. Rank evolution of the simplistic wireless P2P network is obtained
through simulation as well as solution to the corresponding DE’s.

from when . Specifically, we define an upper
semicontinuous function

(21)

to replace the “ ” operation

(22)

Fig. 6 illustrates the conversion, where the function
shown in 6(b) has apparently re-acquired certain continuity
compared to the jump discontinuity shown in 6(a). The same
boundary condition in (17) still holds. To be compatible with
(19), when , we define the right-hand side of (22) to be

instead of . In mathematical literature, the system of inclu-
sions in (22) plus the same boundary condition in(17) is called
a system of differential inclusions (DI), first systematically
studied by A. F. Filippov [15] followed by many analysts. DI
is a generalization of the dynamical system described by DE’s,
allowing them, in particular, to have discontinuous right-hand
sides, which is exactly the case in (19). Such dynamical systems
with derivative discontinuities arise extensively in mechanics,
electronics and biology. For example, an initial value problem
on a time interval for DI takes the following form:

(23)

where is the state vector, is
a set-valued function and is the dimension of the dynamical
system. Its solution is defined to be an absolutely continuous
function such that and almost
everywhere in . In this article, however, owing to the par-
ticular form of the function, we will be dealing with a
special collection of DI’s such that the solutions only need to be
continuous functions satisfying the inclusion at all but finitely
many points in .It is clear that any solutions to (19) are
necessarily solutions to (22). It is possible that the reformula-
tion via DI’s could enlarge the set of solutions. However, as we

Fig. 6. (a) Plot of ��� as a function of ���. (b) Plot of ��� as a set-valued
function of � � �.

Fig. 7. Three node network with linear topology. Node 1 tries to deliver 100
packets to node 2 and node 3.

will see, for our specific problem, (22) turns out to have a unique
solution in our discussion.

The generalization from (19) to (22) not only paves the way
for easy analysis of RNC, but also furnishes a better interpreta-
tion to the solution of (19), which is illustrated by the example
shown in Fig. 7. Suppose we wish to use RNC in a network con-
sisting of three nodes 1, 2 and 3 to deliver packets from
node 1 to node 2 and 3. The network has a linear topology shown
in Fig. 7. Based on the underlying MAC, node 1 transmits at 0.5
packets/second to node 2 which transmits at 1 packets/second
to node 3, i.e., packet/ second,
packet/ second. We wish to know at what rates and
increase by solving the corresponding system of DE’s as given
in (19)

(24)

(25)

(26)

(27)

for which the solutions obtained by a numerical DE solver are
shown in Fig. 8. We are not particularly interested in per
se, but by comparing (24) and (26) we observe that they have the
same solutions, i.e., , . In fact, Fig. 8 shows

, and
, . However, if we plug the solution

back into (25), we get , . This dis-
crepancy arises due to the discontinuous right-hand sides of the
system of DE’s in (24)–(26). This can be explained if we recast
(24)–(26) into differential inclusions as follows:
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Fig. 8. Bottle neck phenomenon: rank at node 3 follows rank at node 2. Nu-
merical solver exhibits fluctuation of � around � .

By doing so, it is trivial to see that
is a solution for the system of differential inclusions for

.

IV. ANALYZING INFORMATION FLOWS WITH DEDI—THE

AVERAGE CASE

In this section, using the fluid approximation and the DEDI
framework described in Section III, we setup the system of DI’s
that describes the average behavior of RNC applied to multiple
concurrent multicast sessions. We derive the explicit DI solu-
tion as done in our earlier work [16]. We show from the solu-
tion that the average throughput of RNC is determined by the
min-cut bound. The concentration behavior is presented in the
next section.

For the average case, we begin by explicitly solving the deter-
ministic DE(22). We will directly deal with multiple multicast
sessions and the general topology. Then we will specialize the
results to show that the average throughput of a single multicast
session is determined by the min-cut bound. In general, suppose
we have a wireless network and independent
multicast sessions and session originates from a set of source
nodes

(28)

where each node in contains the same set of packets to
be delivered to the rest of the network or part of it. Note it is
possible that a node serves more than one multicast session and
it contains as many sets of packets. To identify the source for
any nonempty , define

(29)

For the coding scheme, we let each node generate a coded packet
by randomly linearly mixing all the packets it holds, regardless
which multicast sessions these packets belong to. Suppose all

the multicast sessions start synchronously from time 0 as an in-
tegral information flow. This scenario is captured by the fol-
lowing system of DI’s:

(30)

In what follows, Theorem 1 explicitly solves (30). Its proof also
shows the uniqueness of the solution.

Theorem 1: The solution to (30) is given recursively as

(31)

(32)

(33)

and

(34)

Besides, for each , there is a sequence

(35)

such that over , , is affine

(36)

where satisfies

(37)

We need a few preliminaries for the proof of Theorem 1.
We begin with Lemma 2 which gives a solution to (30) on an
interval.

Lemma 2: Suppose is known, (30) has a solution on
given as

(38)

if there is a set of nodes such that and
satisfying

1) , , ;
2) , , ;
3) .

Proof: Suppose this is not true, there is such
that
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Let

(39)

then exists, and
by definition. Because is continuous, it

is either

(40)

or

(41)

If (40) holds, by assumption 1, ,
, . So, with assumption 2

(42)

thus

(43)

which is a contradiction to (40). If (41) holds, by assumption 1
and 2

(44)

Then by assumption 3

(45)

which is a contradiction to (41).

Now we can give
Proof to Theorem 1: Since (33) and(32) are simply the re-

cursive forms of(31), they are equivalent; hence, it suffices to
prove (31). We prove this via induction on . When ,

, , . Equation (31)–(32) are

trivially true. Assume it is true when , we prove it
is also true for . Let

(46)

then is piecewise linear (since it is the minimum of a
finitely many affine functions) and there is a sequence

(47)

such that for each

(48)

for some . We claim (it is ap-
parent that ). Otherwise, let

but . By definition of min cut
for the hypergraph model, we have

(49)

Since , , so

(50)

Therefore,

(51)

which is a contradiction to (46).
We want to show that , , using

Lemma 2, which amounts to checking three conditions. Let
be as in (48). Let , . First
note

(52)

This is because, on one hand, by (46), while
on the other hand, by induction assumption

(53)

Meanwhile, by (46) we have

(54)

Because , . Be-
cause ,

(55)
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Thus, assumption 3 of Lemma 2 is checked for all . We then
check assumption 1 and 2 piecewise. Because for any

(56)

by (46) we have

(57)

From (52) and (57)

(58)

Hence, assumption 1 is checked for . From (54) and (57)

(59)

Hence, assumption 2 is checked for . Therefore,
, . But this in turn implies that

by continuity (cf. the definition of solution to DI in
Section III-B), which implies that assumption 1 and 2 are also
checked for (same argument as for ). Therefore,

, . Repeat this argument times,
we conclude that , . This shows the va-
lidity of (31) for .

Essentially, Theorem 1 (c.f (31)) states that is the min-
envelop of affine functions corresponding to so many sub-
sets of nodes that contain . The partial order “ ” illustrated
by the layered structure also implies the usual linear order “ ”,
i.e.,

(60)

Therefore, it is always true

(61)

A stronger statement than (61) can be made when is con-
nected, i.e.,

Corollary 1: If is connected, then

(62)

Proof: Because is connected, ,
. Therefore, when is sufficiently large

Hence, we have the conclusion from (31) of Theorem 1.

Corollary 2 implies that with the RNC scheme for multiple
flows as described here, a node may have to wait until its rank
reaches to start decoding. This time is denoted as

. Though there could be fairly large decoding delay for
nodes only interested in one or few sessions, the intersession
coding is optimal in the sense of min cut bound. Applying (36)
in Theorem 1 to , it is clear that is determined
by one of the min cut bounds that has to take into considera-
tion. The min cut that determines the finish time can be regarded
as the worst bottleneck for . More precisely, we have

Corollary 2: If is connected, then

(63)

Proof: Clearly . By Theorem 1, there is
such that

(64)

and by setting , we get

(65)

where the last inequality holds because ; hence,
. However, if there is , such that

(66)

let , then we have

(67)

because , and

(68)

which contradicts (60). So

(69)

Combine (65) with (69), we get (63).
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From Theorem 1 and Corollary 2 we can readily show that
the average throughput under the fluid approximation is given
by the min-cut bound, i.e., we have.

Theorem 2: If is connected and node 1 is the
single source of a multicast session, the solution to (22) with
B.C. Equation (17) that describes this scenario is given as:

1) and

(70)

2) and

.
(71)

Proof: By Theorem 1, the solution to (22) for each is
piecewise linear. If , for any that satisfy (36) and (37),
we must have and . This implies
is a constant. By Corollary 2, we have (70). If , there are
two possibilities:

1) and ;
2) and .

By Corollary 2, the second case applies to ; hence,
the first case applies to as we know . We,
therefore, have (71).

Theorem 2 states that the rank of increases until it reaches
at the rate allowed by the min cut that separates from the

source.

Corollary 3: For , , when .
Specializing Corollary 3 to an arbitrary destination node , we

obtain:

Corollary 4: For , .
Corollary 4 shows that if a unicast at average rate exists

for each destination separately, i.e., , then the
proposed coding scheme is capable to implement a multicast at
average rate .

V. CONCENTRATION BEHAVIOR OF DEDI SOLUTION—THE

ASYMPTOTIC CASE

Section IV presented an average analysis of RNC throughput
based on the fluid approximation. In this section we show that
this throughput can be achieved asymptotically with increasing
number of source packets . This asymptotic result was pre-
viously proven in [9] using a queueing approach and graph de-
composition. In our paper, we begin with (6) and solely work
with differential equations to show the same result. This per-
spective on RNC is new.

To motivate the achievability problem, we first prove a weak1

version of min-cut max-flow theorem for RNC.

Theorem 3: Assume node 1 is the only source in the network
and the transmission begins at . Let be the incre-
mental process of innovative packets at , then

(72)

1A stronger version would say ���� ������� � � �����.

Proof: Suppose . We have, from Lemma
1

(73)

(74)

Since , we have

(75)

Though Theorem 3 indicates that the time average throughput
of RNC is governed by the min-cut bound, we will show that the
min-cut bound can be asymptotically achieved. In this section,
we assume the hypergraph is connected and we give the asymp-
totic achievability proof of RNC within the DEDI framework.
For any , we let denote the time taken for

to increase from to . We will prove

(76)

In order to prove this, we will follow the strategy outlined as
below: We begin with Lemma 3 that is fundamental for the ar-
gument. Lemma 4 builds a system of DE’s for , from
which we will prove Theorem 4 with the help of Lemma 3 that
says the standard deviation of is upper bounded by a sub-
linear function. Then we scale to produce a new process

and show in Theorem 5 that converges in prob-
ability to . While the following Corollary 5 implies
that the throughput is given by for the entire course
of transmission except the last few packets, Proposition 2 and
Corollary 6 show that the last few packets take bounded time to
get transmitted. Theorem 6 combines Corollary 5 and Corollary
6 to complete the achievability proof.

Lemma 3: Let be an r.v. and let be a decreasing
function, then

(77)

In other words

(78)

Proof: Let be an independent copy of . Since is
decreasing, we have

(79)

so

(80)

Expanding (80) we have (77).

It should be pointed out that a more general statement of
Lemma 3 can be found in [17].
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Lemma 4: For any set of nodes, we have

(81)

Proof: The proof is manifest in the following computation.

(82)

so
(83)

We have

(84)
and

(85)

Therefore

(86)

where the last equality follows from Lemma 1. We also have

(87)

so

(88)

Theorem 4 bounds with a sublinear function
in time. Since we know

from Section IV, it later enables us to use Chebyshev inequality
to show concentration of .

Theorem 4: There exists constants and
for each independent of , , such that

(89)

Proof: We first make a trivial observation that, if we let

(90)

then

(91)

by Lemma 1. The rest of the proof is by induction using the
partial order. When , we have

(92)

Since is decreasing and concave in , by
Lemma 3, we know

(93)

so

(94)

by (91), as . Therefore, we can
assign and . Now suppose the statement is true

, , we prove it is also true for . First note

(95)

The first term on the right-hand side of (95) is nonpositive by
Lemma 3. By Cauchy–Schwarz inequality, the second term can
be upper bounded as

(96)
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so

(97)

By induction, we have

(98)

as . Therefore, we can pick

(99)

and

(100)

The next result is more conveniently discussed in terms of the
scaled process defined as

(101)

The scaled process contains essentially the same in-
formation as except its graph is scaled down with a fixed
aspect ratio. We list some obvious properties of .

Proposition 1: has the following properties:
1) is increasing from 0 to 1 for .
2) for . For , satisfies

(102)

3)

(103)

4) are uniformly Lipschitz continuous.
5) and independent of , such that

(104)

for fixed .
Proof: Property 1) is obvious. Property 2) follows from

Lemma 1. Property 3) follows from Theorem 3. Property 4) fol-
lows from

(105)

and

(106)

Property 5) follows from Lemma 4

(107)

Note that property 3) of Proposition 1 provides an upper
bound on , we will show that in fact
asymptotically concentrates to this upper bound, i.e.,

Theorem 5: Given , ,
as .

Proof: Due to property 4) of Proposition 1,
are Lipschitz continuous hence equicon-

tinuous. They are also uniformly bounded by constant 1.
By the Arzelà-Ascoli Theorem, , a subsequence

converges uniformly to some continuous
function over . In fact, we can pick
a single sequence that converges uniformly
to for all because there are only a finite number of

. So we make this assumption and in what follows we
prove by contradiction and via induction
on the partial order of .

When . Suppose at ,
. Because , by con-

tinuity, , such that
and

(108)

Let

(109)

From property 5) of Proposition 1, we know

(110)
Because on ,
such that

(111)

so

(112)

and in particular

(113)

(114)
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Let be the distribution function of and let be
the interval

(115)

then we may calculate

(116)

But

(117)

by Chebyshev inequality, which is true uniformly.
Using (108), (110) and noticing that , we
have

(118)

so

(119)

which is also true uniformly. Therefore, given

(120)

, such that

(121)

Therefore

(122)

which is a contradiction to (114). This shows
for when . Sup-

pose this statement is true , . We claim that
we still have . Otherwise, suppose at

we have

(123)

then similarly, we can find such that

(124)

and

(125)

Reuse the definition of such that (109) and(110) still
apply. Define in the similar way with respect to

and . Because and

on , such
that and

(126)

Let be the joint distribution function of

and . Let

(127)

Then we may calculate as follows:

(128)

But when , we have

(129)
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Using (125), (126) and the induction assumption
, we have

(130)

By Inclusion-Exclusion Principle, we have for any two events
and

(131)

So

(132)

by Chebyshev Inequality and (109).
Consequently

Therefore, given as defined in (120), , such that

(133)

from which we reach the same contradiction as in (122). This
shows that over .
Now we claim that, in fact, over

. For otherwise ,
and which is a subsequence of , such that

. Apply the previous set of in-
duction arguments to , we know that a subse-
quence of converges to uniformly
on , which is a contradiction.

Because ,
and, from Property 5) of Proposition 1, , the
conclusion follows from Chebyshev Inequality.

Since , we know that except for the
last few packets, the transmission happens at the rate arbitrarily
close to , i.e., we have

Corollary 5: Given , we have

(134)

Proof:

(135)

according to Theorem 5 with

(136)

However, the last few packets do not really affect the en-
semble transmission rate because we can put a bound on the
time it takes to transmit them. This bound is proportional to the
amount of “slow” packets at the end of transmission and can
be made negligible compared to the bulk of the transmission.
Specifically, we have

Proposition 2: Given and , for each node ,
such that

(137)

Proof: First consider the special case when and
we ignore packets received at from nodes other than 1. When

, any incoming packet is innovative with probability
of . So let

(138)

and apply Chebyshev inequality, we have

(139)
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If there is a path, say (WLOG), , such that
(This must be true since we assume

is connected), we focus on the transmission along this path and
ignore other transmissions. We use to denote the
time takes to increase from to , assuming during
that time . Let

(140)

then

(141)

where the first inequality follows from the fact that for
, reaches before reaches ; and the

limit follows from the inclusion-exclusion principle and (139).
The following corollary trivially extends the conclusion to an

arbitrary set .

Corollary 6: For any nonempty set , such
that

(142)

Proof: Assume node and apply Proposition 2.
Now we are in a position to finish the achievability proof by

combining Corollary 5 and Corollary 6.

Theorem 6: and

(143)

Proof: We note

(144)

Pick such that

(145)

then we have

(146)

By Corollary 6, we know

(147)
By Corollary 5

(148)

Pluging (147) and(148) back in(144) and taking the limit
, we get (143).

Theorem 6 is a little more general than the statements made
in [9] and [18] since it reveals that, not only the rank at a single
node, but also the rank at any subset increases at the
rate determined by the min-cut bound . It should also
be pointed out that in the proof to Theorem 6, typical difficul-
ties with cycles in the network topology do not arise due to the
layered structure of the DI’s that has encoded all topological
information.

VI. NUMERICAL RESULTS OF THE DEDI FRAMEWORK

In this section we present extensive numerical examples of
the DEDI framework for RNC. We use for all the RNC
examples to show that, even for the small field size, the DEDI
framework provides desirable accuracy. We give the simulation
results for different network topologies that are described using
the hypergraph model introduced in Section II (see Fig. 1). We
remind the readers that the dots represent the nodes whose trans-
missions are according to independent Poisson processes; the
arrows represent the reachability. We set the intensity of the
Poisson processes uniformly to 1 packet/second. If multiple ar-
rows emanate from the same node, it means when this node
transmits, all the nodes on the other end of the arrows have
a chance to receive this packet. In our simulation, unless in-
dicated otherwise, the receptions are independent. Their inde-
pendent reception probabilities are shown as the numbers at-
tached to the arrows. We use a discrete event simulation model
in which the transmission time instants at each node are deter-
mined by the associated independent Poisson process; the re-
ceptions are simulated with the assigned reception probabilities
and the ranks are updated in real time. Because the convergence
of the fluid approximation to is extremely fast, we
choose to show sample paths rather than the ensemble average
to demonstrate the accuracy and versatility of the DEDI frame-
work. We will demonstrate the ability of the DEDI framework
to handle multiple sessions, complex network topology and cor-
related receptions by comparing the rank evolution processes at
different nodes obtained from simulation with the DEDI solu-
tion. We assume all transmissions begin from .
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Fig. 9. Three node wireless network.

A. Two Multicast Sessions

Consider a three node wireless network shown in Fig. 9. As-
sume the information flow is comprised of two multicast ses-
sions originating from node 1 and node 3, respectively. Node 1
has 200 packets to deliver to node 2 and 3, while node 3 has 300
packets to deliver to node 1 and 2. We may write out the DI’s
that describe this scenario

(149)

with the B.C.

(150)

Fig. 10 shows the analytical solution to (149) as well as
the simulation results. The analysis matches the simulations
closely. Clearly the rank increase at node 1 should be sub-
ject to its min cut bound
and node 3 subject to .
Consequently, and

. For node 2, the flow from
node 1 cannot exceed ; the flow from node 3 cannot
exceed ; and the flow from the ensemble of node 1, 3
cannot exceed . Therefore

These calculations are readily verified in Fig. 10.

B. A Complex Topology

This example is intended to illustrate that the DEDI frame-
work is capable of handling complex networks. The wireless
network in Fig. 11 has 10 nodes and a fairly intricate connec-
tivity. While the unidirectional arrows have the same meaning
as in an arrow-dot representation of the hypergraph, the bidirec-
tional arrows simply represent two unidirectional arrows whose
reception probabilities are equal and as labeled. In this example
we again assume independent reception at each node and the
transmission rate , .
Node 1 is the only source node that has 100 packets to deliver.

Fig. 10. Two multicast sessions with two sources using RNC.

Fig. 11. A 10-node wireless network with node 1 being the unique source.

Fig. 12 shows the rank evolution at node and 10. For node
7, the min cut is shown to be .
For node 10, it is shown to be .
For the other nodes, the min cut is

. These facts are reflected by the slope of
the rank evolution curves on Fig. 12 where the simulated curves
match the analytical solutions well.

C. Correlated Reception

The DEDI framework allows the analysis of rank evolution
when receptions are not independent. The lack of independence
could be due to correlated channels or joint reception by design
and they are not uncommon in wireless communications. The
ability to analyze the case of correlated reception is an advan-
tage of the DEDI framework. Consider the four-node network
shown in Fig. 13 where as usual the point-to-point reception
probabilities are shown as labeled. Node 1 is the only source
node that has 400 packets to deliver. However, we assume the
receptions at node 2 and node 3 are not independent, i.e.,

(151)
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Fig. 12. Rank evolution for the network shown in Fig. 11.

Fig. 13. Modeling correlated reception with DEDI in a four node wireless
network.

This could happen when, for example, node 2 and 3 are in co-
operation or the channels from node 1 are correlated. The rank
evolution can still be accurately predicted by the DEDI frame-
work as shown in Fig. 14. In this case, and increase at the
same rate of
while increases at

As a contrast, the results for independent receptions are shown
in Fig. 15, where and increase at the same rate of

while
increases at

Fig. 14. Rank evolution if node 2 and 3 have correlated reception.

Fig. 15. Rank evolution if node 2 and 3 have independent reception.

VII. DISCUSSION

A. The Dynamical System Point of View for Cross-Layer
Design

The DEDI framework naturally presents a dynamical system
point of view of RNC. The equations require two parameters
to be specified, namely, the node transmission rate which
is largely determined by MAC, and reception probability
which is largely determined by PHY. In a practical RNC appli-
cation, both parameters are possibly subject to adaptive control
depending on or . This dependence could be character-
ized by functions or functionals synthesized via cross-layer opti-
mization. In this case, assuming the fluid model is applicable so
that , we have the following dynamical system:

(152)
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where is the collection of all variables of and . This
dynamical system can be numerically evaluated with a DE
solver, or optimized using variational methods. Therefore, the
DEDI framework presents a possible tool for cross-layer design
studies.

B. Extension to Random Coupon Selection

Random Coupon Selection (RC) [11] is another transmis-
sion scheme based on randomized operations. Instead of linear
combination, the outgoing packet is randomly selected from
the reservoir. With RC, an innovative packet is simply a dis-
tinct packet that has never been received. Let denote the
number of distinct packets node has received at . Let

, i.e., the number of distinct packets set has re-
ceived at . Then and describe the propagation of inno-
vative packets through the network with RC. Similar to Lemma
1, we have

Lemma 5:

(153)

Proof: The proof is almost verbatim as the proof to Lemma
1, except that the probability a packet from to being inno-
vative is given as

Assuming that the fluid approximation still applies, let
(resp. ), we have the following

system of differential equations that describes the approximate
average behavior of RC

(154)

This system of DE’s can be used in many ways to study trans-
mission schemes based on RC, in a lossy wireless network with
an arbitrary topology. We do not have a convergence proof for
it as we do for RNC. However, the convergence can be quickly
checked via simulation. We show in Fig. 16 the innovative
packets propagation process, as well as the solution to (154),
based on the network in Fig. 5 using RC, with varying . It
is evident from these simulations that the fluid approximation
based DEDI framework can be applied to RC and (154) models
its behavior well.

VIII. CONCLUDING REMARKS

We presented the DEDI framework, based on differential
equations and differential inclusions, for analyzing the rank
evolution of RNC in an arbitrary wireless network. We showed
that by adopting the fluid approximation, we can derive a
system of deterministic DI’s, the solution of which shows that
the average throughput is given by the min-cut bound. We next
showed that the rank evolution processes in fact concentrate to

Fig. 16. Convergence behavior of (154) shown through simulation (a) � �

��� (b)� � ��� (c)� � ��� (d)� � ���.

the DI solution in probability, by analyzing the exact system
of DE’s that characterizes the means and variances of the rank
evolution processes, which in turn showed that the min-cut
bound can be asymptotically achieved. We demonstrated the
versatility of the DEDI framework by using it to analyze
different networking scenarios including multiple multicast
sessions, complex topology and correlated reception. We also
discussed its advantages in practice as well as its possible
extension to Random Coupon Selection.
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