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ABSTRACT | Active consumer participation is seen as an

integral part of the emerging smart grid. Examples include

demand-side management programs, incorporation of

consumer-owned energy storage or renewable energy units,

and active energy trading. However, despite the foreseen

technological benefits of such consumer-centric grid features,

to date, their widespread adoption in practice remains mod-

est. To shed light on this challenge, this paper explores the

potential of prospect theory, a Nobel-prize winning theory, as

a decision-making framework that can help understand how

risk and uncertainty can impact the decisions of smart grid

consumers. After introducing the basic notions of prospect

theory, several examples drawn from a number of smart grid

applications are developed. These results show that a better

understanding of the role of human decision making within

the smart grid is paramount for optimizing its operation and

expediting the deployment of its various technologies.
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I . INTRODUCTION

The electric power grid has been undergoing unprece-

dented changes over the past few years. The traditional,

hierarchical, and centralized electric grid is being trans-
formed into a large-scale, decentralized, and “smart” grid

[1]–[4]. Such a smart grid is expected to encompass a

mix of devices, as shown in Fig. 1, that include distrib-

uted renewable energy sources, electric vehicles (EVs),

and storage units that can be actively controlled and op-

erated via a reliable, two-way communication infrastruc-

ture [1]. The effective operation of such a heterogeneous

and decentralized system is expected to change the way
in which energy is produced and delivered to consumers.

One key byproduct of the smart grid evolution is an

ability to deliver innovative energy management services

to consumers [1]–[4]. Here, energy management refers

to the processes using which energy is generated,

managed, and delivered to consumers in the grid. For

instance, demand-side management (DSM) and demand-

response mechanisms will be an integral part of the
smart grid. The primary goal of such programs is to dy-

namically shape and manage the supply and demand on

the grid in order to maintain a desirable load over vari-

ous time scales. Indeed, the design of optimized DSM

and demand-response protocols and associated pricing

schemes has led to significant research in this area in re-

cent years [5]–[37].

Moreover, in the smart grid, consumers will be able
to individually own energy production units, such as solar

panels, as well as storage devices in the form of EVs or

small batteries. This can potentially transform every
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smart grid consumer into an independent energy produc-

tion and storage source. Consequently, the possibility of

energy trading between such well-equipped consumers

will undoubtedly become a reality in the next few years.

Indeed, many recent works, such as in [8] and [38]–[66],

have investigated the various challenges of such large-

scale energy exchange, which include the development of
optimized market mechanisms, the management of the

grid operation, and the optimized exploitation of available

consumer-owned storage and energy production units.

Realizing this vision of a distributed, sustainable, and

consumer-centric smart grid will naturally face many

challenges. On the one hand, although DSM programs

(and related ideas) have been theoretically shown to

yield important technological benefits to the grid, their
wide-spread deployment still remains insipid [67]–[73].

On the other hand, the impact of energy trading on

smart grid operation and the realistic assumption that ev-

ery consumer can become a producer of energy is still

not well understood. In addition, how to maximize the

amount of energy that stems from renewable sources is

yet another important challenge. Last but not least, the

design of efficient dynamic pricing mechanisms that go
hand in hand with DSM and energy trading schemes is

seen as a critical enabler for most of the foreseen smart

grid features.

To widely deploy such grid features, one important

challenge, among many others, is to properly incentivize

consumers to actively participate in emerging grid fea-

tures. For example, without effective adoption of DSM

schemes by consumers, power companies will not be

able to reap the technological benefits of such load-

shaping mechanisms. Similarly, the willingness of con-

sumers to own and actively utilize EVs, storage units, or

even renewable sources, is an essential milestone for the

deployment of a truly sustainable, consumer-centric

smart grid. For example, the statistics in [71] show that
installed solar generating capacity has increased from

about 1000 MW in 2010 to more than 6000 MW in 2014.

However, residential capacity has only increased from

about 200 MW in 2010 to about 1000 MW in 2014. The

reasons for this small growth are touched upon in [72]—

the upfront cost of $21 000–$25 000 is more than most

homeowners have to risk on what is still an uncertain

venture. Clearly, coupled with a properly designed and
cost-effective ICT infrastructure, active consumer partici-

pation plays an instrumental role in facilitating the adop-

tion of some of the smart grid technologies and features.

However, somewhat remarkably, most of the existing

research in this area is still based on formal mathemati-

cal constructs, such as game theory or classical optimiza-

tion, which presume that consumers are objective,

rational entities who are uninfluenced by real-world be-
havioral considerations. While such an assumption will

hold in a highly centralized, traditional power system, it

will remain an important barrier that has prevented the

widespread adoption of the smart grid.

The primary goal of this paper is to shed light on the

role of consumer participation in the grid, while expos-

ing the role of the Nobel-Prize-winning framework of

Fig. 1. A future smart grid with a heterogeneous mix of storage units, EVs, renewable sources, and other consumer-owned equipment.
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prospect theory, in providing a mathematical basis within
which to better understand how consumer behavior and

realistic smart grid considerations impact the operation

and efficiency of smart energy management mechanisms

such as DSM, energy trading, and storage management.

To this end, we first provide an overview of energy

management services in which consumer participation

plays an important role. For each such service, we ex-

pose the state of the art and discuss the key assumptions
and limitations. Then, we present the basics of prospect

theory and discuss the motivation for applying this

framework in a smart grid environment. We illustrate

the benefits of prospect theory via two simple examples

pertaining to energy storage management and DSM. We

conclude by providing a future roadmap on how behav-

ioral studies can play an instrumental role in future

smart grid designs.
The rest of this paper is organized as follows.

Section II presents an overview of existing energy

management literature. In Section III, we provide a

tutorial on the framework of prospect theory and its

motivation. Then, in Section IV, we discuss two smart

grid examples. Finally, Section V draws some conclu-

sions and discusses future work in this area.

II . ENERGY MANAGEMENT IN THE
SMART GRID: A REVIEW

Owing to the deployment of a smart communication in-

frastructure and to the presence of new devices, such as

storage units, smart meters, and renewable sources, the

smart grid presents numerous new opportunities for en-

ergy production and distribution that were not possible
in a traditional grid. For instance, the possibility of de-

ploying smart meters at consumer premises, opens the

door for enabling consumers to actively manage their en-

ergy. In addition, the ability of a smart meter to commu-

nicate in real time with a power company’s control

center, provides the latter with various opportunities to

actively control and monitor energy usage. Such new ca-

pabilities undoubtedly change the way in which energy is
generated and distributed to consumers. Clearly, smart

energy management protocols and mechanisms are

needed to exploit the opportunities brought forward by

this new smart grid infrastructure.

Deploying efficient energy management mechanisms

in future smart grid systems faces many challenges. The

first such challenge is to actively utilize smart metering

and consumer-based energy management systems to
shape the overall grid load over time. Such load shaping

is essential for an efficient operation of a large-scale

smart grid. Enabling such DSM requires both increased

automation and active participation by the grid con-

sumers. Another important challenge is to properly inte-

grate and exploit storage devices in the grid. For

instance, on the one hand, a power company can make

use of EVs to store energy reserves so as to regulate the
grid operation. In this example, the power company will

be submitting an offer for ancillary services to an inde-

pendent system operator (ISO). On the other hand, a

consumer-based storage unit can be used as a means to

store or even sell energy back to the power company

(rather than an ISO). Last but not least, an important en-

ergy management challenge is to properly decide on how

to integrate and utilize consumer-based power sources,
such as solar panels, within an operating smart grid

system.

In summary, energy management in the smart grid

involves the planning and operation of energy-related

production and consumption units, particularly when

such units are consumer owned. Next, we summarize

some of the main research topics related to energy man-

agement in the smart grid.

A. Demand-Side Management
DSM and demand-response programs are arguably the

most important form of energy management in the smart

grid. DSM can entail a broad range of programs. These

programs range from classical direct consumer load con-

trol to peak shaving programs and ancillary service provi-

sions. Naturally, each such DSM program has its own
challenges. Here, we will summarize some of these pro-

grams, while emphasizing the role of consumers. For ex-

ample, in peak shaving or direct load control programs,

DSM schemes typically aim at encouraging consumers to

change their energy consumption habits during peak

hours. In particular, such load control DSM schemes aim

at providing consumers with incentives to shift their

unnecessary grid load to various times during the day, so
as to shape the peak hour load on the grid. For example,

a simple DSM scheme can provide monetary benefits to

consumers if they use delay-tolerant equipment, such as

dish washers or washing machines, during the night, in-

stead of peak hours [5]–[37]. Even if the individual appli-

ance consumption can be small, the participation of

consumers at scale, such as within a neighborhood or

city, will significantly impact the smart grid. Moreover,
DSM will also extend to other types of consumer-owned

devices, such as storage units or renewable energy

sources whose consumption and usage might be more

significant than standard appliances [5]–[37]. Last but

not least, consumers of DSM need not only be home

users, but they can extend to industry and even small, lo-

cal energy providers that work hand-in-hand with the

power company. In such cases, significant gains for both
consumers and power companies can be achieved if

DSM is properly implemented [73].

1) Challenges: The key challenge in DSM is to design

realistic incentive mechanisms that can be used by power

companies and consumers alike to manage their power

consumption over time. The essence of DSM revolves
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around modeling the interactions and decision-making
processes of various grid players whose goals and actions

are largely interdependent. For example, a change in the

load of a certain consumer can lead to a change in the

pricing scheme used by the power company which, in

turn, can lead to a change in the behavior of other con-

sumers. This large coupling in the behavior and goals of

the grid consumers has led to an abundant literature that

applies the mathematical framework of game theory [74]
to analyze and design efficient DSM schemes.

Game theory is a mathematical framework that en-

ables one to model the decision-making processes of a

number of players whose objectives are largely interde-

pendent. The merits of a game-theoretic approach for

DSM include: 1) ability to capture the heterogeneity of the

devices in the grid; 2) effective integration of consumer-

based decisions; 3) synergy between game-theoretic
designs and the design of incentive mechanisms; and

4) low-complexity learning mechanisms that can charac-

terize the outcome of a game and that can be practically

implemented in a real-world smart grid.

2) State of the Art: There has been a surge in research

activities related to DSM in recent years [5]–[37]. As al-

ready mentioned, the majority of these works adopts a
game-theoretic approach to DSM.

One of the earliest works in this area is [5] which

presents a DSM model in which the users are able to de-

cide on how to schedule their appliances over a given

time horizon. The basic idea is simple: each consumer

selects a certain schedule for her appliances, in such a

way so as to minimize her overall cost, given a fixed, yet

well-designed pricing scheme from the company. Using a
game-theoretic model, Mohsenian-Rad et al. [5] charac-

terize the eventual operating system of the grid and

show that, under the assumption that users are rational

and will act strategically, significant reductions in the

overall grid load can be foreseen using such a DSM

scheme.

The recent work in [6] extends the model of [5] by

including the power company as a player in the system.
In this regard, following a grid model similar to [5], the

authors enable the power company to strategically decide

on its pricing depending on the total power. The objec-

tive is to reduce the peak-to-average ratio (PAR) of the

load demand. Using numerical simulations, the authors

establish the merits of such a DSM scheme and show

that noticeable reduction in the PAR can be harnessed

via dynamic pricing that adapts to the users’ behavior.
Another key contribution on DSM is presented in

[7]. In this work, the goal is not to reduce peak hour

consumption, but rather to match the supply and de-

mand. Depending on whether there is a deficit or excess

of energy, the proposed game-theoretic market model in-

centivizes the consumers to either increase or shed their

load so as to match the supply and maintain normal grid

operation. Thus, this work highlights an interesting use
of DSM for regulating the overall grid operation, rather

than just for reducing or shifting load over time.

The work in [8] studies, using a game-theoretic and

optimization framework, the ability of consumers to coor-

dinate the way in which they defer their grid load, based

on the power company’s pricing scheme. In particular,

the authors observe that, when DSM protocols leave the

smart meters to react independently, in an uncoordinated
manner, to pricing fluctuations, new peak hours may be

created thus defeating the main purpose of a DSM

scheme. To this end, the authors propose a coordination

mechanism between a large population of smart grid con-

sumers. In this mechanism, instead of directly reacting to

the pricing change, smart meters, acting on behalf of

users, aim to adapt the deferment of loads to the changes

in the price. One of the key contributions of this work is
to consider such a coordination over a large number of

consumers. The results, based on realistic, empirical mar-

ket models from the United Kingdom, show that such a

coordinated DSM approach can reduce peak hour de-

mand while also reducing carbon emissions.

In [9], an interesting game-theoretic framework was

developed to answer an important question: What is the

value of DSM and demand-response mechanisms in the
smart grid? Essentially, the system is viewed as a nonco-

operative, hierarchical game between a number of gener-

ation companies and the consumers. On the one hand,

the generation companies are controlled by the utility

operator who can determine their production levels. On

the other hand, the consumers are aggregated into one

collective decision maker, who responds to a pricing sig-

nal sent out by the operator, to determine the overall
consumption level. Using this model, it has been shown

that the use of a demand-response mechanism can, in

some cases, be more beneficial to generation companies

than to consumers. This benefit is largely dependent on

how consumers respond to the pricing scheme. There-

fore, this work has yet again shown that the way in

which consumers behave must be properly modeled if

one is to reap the benefits of a technology such as DSM.
Building on those key contributions, a number of

equally interesting DSM schemes have emerged more re-

cently [10]–[37] expanding on the aforementioned works

by developing more advanced models such as those that

integrate additional players or other energy efficiency

metrics.

3) Summary and Remarks: Clearly, existing research
has established the technological benefits of DSM. In-

deed, most of the existing works such as in [5], [6], and

[8]–[37] have shown that under fairly realistic scenarios,

DSM can yield significant reduction in peak hour load

and can provide an important means for regulating the

overall operation of the grid. The nexus of these existing

works remains a game-theoretic model in which various
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interactive scenarios between the users and one or more
utility providers are modeled. The outcomes include a

broad range of pricing mechanisms and load-shifting

scheduling algorithms that can be implemented to opti-

mize various energy efficiency metrics, such as peak

hour load, PAR, and load regulation metrics. Undoubt-

edly, DSM and related ideas are likely to become an im-

portant component of the smart grid.

Alas, despite these established gains of DSM, the
real-world implementation of such programs (and re-

lated ideas) has remained below expectations [67]–[73].

One of the underlying reasons is that, in real life, con-

sumers are not behaving the way they are supposed to,

as assumed by many existing mathematical models. In

this regard, most of these existing models rely on the

assumption that players are rational and will act objec-

tively when faced with a DSM decision. In other words,
these models presume that, in the real world, consumer

behavior will follow strictly objective measures of bene-

fits and losses, when deciding on whether to subscribe

to a DSM scheme or when choosing how to schedule

appliance usage. However, realistically, consumers may

deviate from the rational behavior due to various fac-

tors. For example, on a cold winter day, consumers may

be reluctant to shift their heating consumption to a
later time of the day, even if such a shift can be benefi-

cial to the grid or can bring some economic benefit to

the consumers.

Clearly, within the context of DSM, there is an ur-

gent need to capture such “behavioral” factors when de-

signing the demand-response mechanisms of the future.

Without a careful accounting for the behavioral side, the

real-world adoption of DSM mechanisms will not live up
to expectations.

B. Integration of Storage Units and
Consumer-Owned Renewable Sources

Beyond DSM and demand-response mechanisms, en-

ergy management in the smart grid must account for the

presence of a variety of new devices that are expected to

be deployed in the near future. Such devices include
EVs, storage units, and renewable energy sources. While

renewable energy sources may be owned by energy pro-

viders or consumers, the majority of EVs and storage

units are expected to be consumer owned. The presence

of such new components in the power grid presents an

interesting opportunity for deploying evolved energy

trading mechanisms [41], [57]–[63].

In particular, the ability of consumers to store energy
or possibly feed energy back into the grid, via either

their storage units or their owned renewable sources,

will pave the way toward a large-scale exchange of en-

ergy within the grid. For example, on the one hand, con-

sumers with a surplus of energy may decide to send this

energy back into the grid, to improve grid regulation and

reap some possible monetary benefits. On the other

hand, the power company may utilize EVs or other stor-
age units as a means to store energy reserves or to regu-

late the grid frequency [43]–[45], [52]–[56]. Indeed, if

properly managed, the charging and discharging behavior

of EVs and storage units can yield significant technologi-

cal and economic benefits for power companies and con-

sumers alike [8], [38]–[66].

In a nutshell, the effective integration and exploita-

tion of storage units and consumer-owned renewable
sources will be an essential property of the future smart

grid. How to efficiently exploit such devices to improve

the delivery, production, and management of smart grid

energy is thus an important problem that must be

addressed.

1) Challenges: The challenges of integrating energy

storage and renewable sources are numerous. From a
power system point of view, the intermittent nature of

renewable sources will require fundamentally new ways

to operate energy production and generation in the grid.

How to develop stochastic optimization algorithms that

can adapt to this intermittency is thus a key challenge.

In addition, the foreseen large-scale deployment of EVs

will present an unprecedented increase in the load on

the grid. Here, effective DSM mechanisms, such as those
discussed in the previous section, which can manage the

EVs load will be needed. Nonetheless, storage units and

EVs also provide an opportunity for the power grid to

store any excess or mismatch in the generation and de-

mand, so as to regulate the overall grid operation.

More relevant to this paper are the challenges per-

taining to the use of storage units and consumer-owned

renewables within energy trading markets. In particular,
it is foreseen that local markets in which consumers may

directly exchange energy with one another or with the

grid can be set up in the future smart grid. Such markets

are enabled by the presence of storage units, EVs, and

consumer-owned generation sources. Important chal-

lenges here include: 1) devising economic mechanisms

that incentivize consumers, power companies, and en-

ergy providers to set up such markets; 2) analyzing the
impact of such localized markets on grid operation; and

3) integrating such energy trading within existing DSM

mechanisms.

2) State of the Art: Integrating storage units and re-

newable energy sources has been a topic of significant

interest to the smart grid community in recent years [8],

[38]–[66], [75]–[84]. Beyond the works that focus pri-
marily on the power system operation side [75]–[84],

there have been a number of interesting works that in-

vestigate the usage of storage, EVs, and renewables, to

shape the overall grid load and to establish energy trad-

ing markets [8], [38]–[66].

The earliest work in this area is in [38] in which a

game-theoretic framework is developed to analyze how
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consumers equipped with storage units can smartly de-
cide on when to buy or store energy, in a local smart

grid area. The presented scheme is essentially a modi-

fied DSM protocol that explicitly factors in the presence

of storage units. The market price is assumed to be

predetermined using an auction mechanism and, thus,

the work does not account for dynamic pricing. Simula-

tion results presented in [8] show that, based on empir-

ical data from the U.K. market, the use of storage at
consumer premises along with a game-theoretic DSM

protocol can help in reducing the peak demand, which

also leads to reduced costs and carbon emissions. The

results also analyze the benefits of storage and how it

impacts the social welfare of the system, thus highlight-

ing the possible practical impact of storage unit

integration.

One of the most interesting works that follows in
this direction is presented in [39]. In this contribution,

Atzeni et al. study a DSM-like scheme in which users

can be endowed with storage units and renewable

sources. In contrast to traditional DSM schemes in

which users only decide whether to purchase energy

from the grid, the model in [39] enables the users to

decide on whether to purchase, produce, or store energy

in their batteries. By expanding the decision space of
the users, it is shown, using a game-theoretic approach,

that a smart exploration of the storage and energy pro-

duction options can reduce the overall aggregate load

on the grid while also providing monetary savings to

end users, under the assumption of rational decision

making. Such a study thus motivates the penetration of

consumer-owned storage and energy production units.

The effective integration of EVs into a smart grid sys-
tem is studied in [40] using a game-theoretic framework

that models the interactions between the grid operator

and the EVs. The primary goal is to analyze how EVs can

provide ancillary services to the grid, once a proper mar-

ket model between EVs and the grid is established. The

basic idea is to use a smart pricing policy to exploit the

EVs for regulating the grid frequency. The idea is to

study how EVs (and their owners) can decide on
whether to charge, discharge, or remain idle, in a way to

optimize the grid frequency regulation while benefiting

both consumers and the grid operator. On the one hand,

using such a scheme consumers can obtain additional in-

come while, on the other hand, the grid can achieve the

required frequency regulation command signal.

The impact of energy trading between owners of

EVs is further analyzed in our earlier work in [41]. In
this work, a local market in which EV owners can de-

cide on whether to sell a portion of their stored energy

to the smart grid is studied. Using an auction and a

game-theoretic model, we have shown that, when EV

owners act strategically, they are able to reap signifi-

cant benefits from selling their surplus of stored en-

ergy to potential buyers in the smart grid. These

benefits are reflected in terms of revenues that can be
viewed as either direct monetary gains or as coupons

or other offers provided from the grid owner to active

participants.

The impact of distributed renewable energy sources

on local energy trading markets is analyzed in [42].

Cecati et al. essentially propose the use of an aggregator

of distributed energy resources allowing the smart grid

to engage in an open energy exchange market. The de-
veloped mechanism tightly integrates classical DSM ideas

with the use of an active management scheme at the end

user side to allow a better utilization of the renewable

energy sources. Overall, the results show that a smart ex-

ploration of possibly consumer-owned energy sources

can lead to a sustainable source of energy and a reduc-

tion in the consumers’ energy consumption cost.

Beyond the aforementioned contributions, the exploi-
tation of storage and renewable sources at consumer pre-

mises has been studied in a broad range of literature

[43]–[66]. These works mainly develop variants of the

discussed energy trading mechanisms and establish

clearly that the use of mathematical optimization frame-

works such as game theory to manage the way in which

storage devices, EVs, and consumer-owned energy

sources are integrated into the smart grid can bring in
substantial technological, economic, and environmental

benefits to the smart grid participants.

3) Summary and Remarks: The use of energy trading

between consumer-owned devices will indisputably be

an important feature of the smart grid. As demonstrated

in the abundant literature, the associated gains, both

from a technical (energy reduction, sustainable genera-
tion) and an economic (reduced costs on consumers

and providers) point of view, are substantial. Yet, de-

spite these established results, beyond some small de-

ployments of EVs and renewable energy sources in

Europe and some areas of the United States [85]–[92],

the large-scale introduction of such consumer-owned de-

vices remains modest.

Similar to the DSM case, one of the primary limita-
tions of existing models is that they often do not explic-

itly factor in realistic risk considerations of both

consumers and power companies. For instance, even

though an open, energy trading market can yield eco-

nomic and technological benefits, power companies may

remain risk averse and continue to rely on traditional,

largely controlled markets. Similarly, despite the prospec-

tive economic savings and environmental benefits of own-
ing renewable sources or EVs, consumers may still be

reluctant to change from their current, effective

technologies.

Therefore, when analyzing energy trading, one must

explicitly factor in such risk considerations and their im-

pact on the overall operation of smart energy manage-

ment mechanisms.
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III . PROSPECT THEORY FOR THE
SMART GRID

A. Introduction and Motivation
As demonstrated in Section II, the existing literature

on smart energy management in the smart grid has es-

tablished significant technological, economic, and envi-

ronmental benefits for features such as DSM and energy

trading. Yet, the real-world deployment of such mecha-
nisms remains largely below expectations. One of the

hurdles facing the real-world implementation of the de-

veloped DSM and energy management mechanisms is

the lack of a mathematical and empirical framework that

can capture the realistic behavioral patterns of con-

sumers and power companies.

Indeed, most existing works [5]–[66], [75]–[84] still

assume that consumers and power companies are ratio-
nal and will abide by the objective decision-making

rules that are derived via frameworks such as game the-

ory or optimization. However, in practice, empirical

studies have shown that, in uncertain and risky situa-

tions, human players may not act in accordance with

the rational behavior established by decision-making

frameworks such as game theory [93]–[97]. Given that

most foreseen smart grid features are consumer centric,
the “human” factor will undoubtedly play an instrumen-

tal role in the success or failure of advanced smart grid

features. Thus, uncertainty and risk factors must be

properly modeled in any DSM or energy management

scheme. Examples of risk in the smart grid include the

continuous reliance of operators on traditional markets

and the interdependence of the decisions between con-

sumers. In terms of uncertainty, when dealing with an
energy management scheme, consumers are faced with

uncertain outcomes due to a lack of transparency in ex-

plaining the rules of dynamic pricing or due to the pres-

ence of stochastic elements such as stochastic

generation or uncertain presence or absence of EVs and

energy storage units.

Thus, expediting smart grid adoption requires

new approaches for analyzing the often irrational and
nonconforming nature of the energy management deci-

sions of human players under such risk and uncertainty.

Such decision-making factors that deviate from the objec-

tive, rational behavior assumed in existing works [5], [6],

[8]–[66], [75]–[84] can be analyzed within the frame-

work of prospect theory (PT) [93]–[95], [98]. Originally

conceived for modeling decisions during monetary trans-

actions such as lottery outcomes, PT has made its way
into many applications [93]–[100], due to the universal

applicability of its concepts. In essence, PT provides one

with mathematical tools to understand how decision

making, in real life, can deviate from the tenets of

expected utility theory (EUT), a conventional game-

theoretic notion which is guided strictly by objective

notions of gains and losses, player rationality, and

conformity to pre-determined decision-making rules that
are unaffected by real-life perceptions of benefits and risk.

Illustrative Example: Essentially, PT notions have

been developed to understand how consumers, when

faced with uncertainty of outcome and risky decisions,

will behave in real life. Suppose that an efficient energy

management system is constructed for individual home

owners to both buy and sell power on the grid and a dy-

namic pricing DSM mechanism is available to shift con-
sumption to nonpeak periods. Furthermore, suppose that

it has been proven that under PT as well as conventional

game theory, stable prices can be found, so that the

smart grid could ultimately result in more efficient

power consumption. Under rational analysis, one might

believe that when these conditions were satisfied, offer-

ing the opportunity to buy and sell power to the public

would result in widespread participation and an optimal
pricing equilibrium would soon be reached. However, an

important implication of PT is that these conditions are

insufficient to guarantee such a beneficial result.

A key principle of PT is that the preferred choice

between a pair of uncertain alternatives is not only

determined by the values of the two alternatives but also

by how the choice is stated. Consider the following

example, which is unnatural only in that the alternatives
are designed to have equal value, so that a preference is

clearly determined by the statement of the choice. A

power company wishes to entice its consumers to aban-

don buying power at a fixed rate and instead join a sys-

tem where they buy and sell power at variable rates.

Here are two ways the alternatives may be presented in

a letter to a consumer.

1) The gain scenario: Your average monthly utility
bill is now $450 a month. Under our new smart

system, your bill will show a debit of $500 a

month. In addition you may choose between:

a) a 50% chance of a credit of $100 if you

join the smart DSM scheme; or

b) a 100% chance of a credit of $50 that will

keep your bill the same.

2) The loss scenario: Your average monthly utility
bill is now $450 a month. Under our new smart

system, your bill will show a credit of $400 a

month. In addition, you may choose between:

c) a 50% chance of a bill for $100 if you join

the smart DSM scheme; or

d) a 100% chance of a bill for $50 that will

keep your bill the same.

In fact, the gain and loss scenarios describe the identi-
cal alternatives in different words. Alternatives a) and c)

are identical and alternatives b) and d) are identical. Nev-

ertheless, based on theoretical and empirical foundations,

PT predicts that more people will prefer alternative b) to

alternative a) because a certain gain is preferred to a 50%

chance at a double-gains but will also prefer alternative

c) to alternative d) because a 50% chance of a loss is
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preferred to a certain, albeit smaller, loss. This prediction
has been confirmed in [93] and [101].

The point of this example is not just that the level of

participation in smart grid services depends on how it is

presented to the public. The point is that important be-

havioral factors outside of the technical specifications of

the smart grid will determine the choices of participants

and giving them the opportunity to perform optimally

does not guarantee that they will. In other words, people
cannot be counted on to always choose optimally among

alternatives if merely stating the alternatives differently

influences their choices. This holds true even if such al-

ternatives, as discussed in Section II, have immense tech-

nological and environmental benefits. Indeed, in [102],

Kahneman suggests that people behave nonoptimally

when buying and selling stocks, selling rising stocks too

soon to lock in gains and hanging on to losing stocks too
long to resist locking in a loss. If people behave nonopti-

mally in the purchase and sale of securities, the default

assumption is that they will perform in the same nonop-

timal manner in the purchase and sale of power and

commodities, especially when people are already familiar

with the incumbent pricing and energy management

mechanism.

The obvious solution to the problem of human behav-
ior is to use prospect-theoretic notions to refine existing

game-theoretic mechanisms and guide the way in which

optimal strategic decisions are derived as well as to im-

prove the presentation of information to buyers and

sellers in the grid to encourage optimal behavior in DSM

and energy trading. To provide further insights into the

mathematical machinery underlying PT, in Section III-B,

we provide an introduction to the basics of the
framework.

B. Basics of Prospect Theory
Prospect theory encompasses a broad range of

techniques and tools to account for realistic consumer

behavior during decision-making processes [94]–[98],

[101], [102]. The basic underlying idea is that decision

makers, in real life, will have subjective perceptions
of losses, gains, and their competitive environment.

For example, instead of viewing each others’ actions (e.g.,

load shifting schedules) objectively as in classical game

theory, players could have different subjective assess-

ments about each other’s behavior, which, in turn can

lead to unexpected, irrational decisions. For example, in

DSM, even though rational behavior dictates that con-

sumers follow the load shifting mechanisms of the power
company, some consumers may turn on certain appli-

ances at unexpected times, since they are unsure about

whether participation level is high enough to obtain eco-

nomic benefits, which will hinder the performance of the

DSM scheme. The large spread of such unconventional

actions can thus be disruptive to any energy management

scheme. In such situations, PT provides solid analytical

tools that directly address how these choices are framed
and evaluated, given the subjective observation of players

in the decision-making process.

1) Subjective Actions—The Weighting Effect: The first

important PT notion is the so-called weighting effect. In

particular, in PT [93]–[98], it is observed that in real-life

decision making, people tend to subjectively weight un-

certain outcomes. In particular, in energy management
mechanisms, the frequency with which a consumer

chooses a certain strategy, say a certain schedule of ap-

pliances or a certain storage pattern, depends on how

other consumers make their own choices. The depen-

dence stems from many factors. For example, in dynamic

pricing schemes, the actual price announced by a power

company depends on the entire load of the consumers.

Therefore, the decision of a consumer, will subsequently
depend on the decision of others. Indeed, when faced

with a given smart grid scenario, consumers may act dif-

ferently over time due to the interdependence of their

actions and its unpredictability, and, thus, a probabilistic

model for decision making is suitable to capture this un-

certainty. Such uncertainty can stem not only from the

individual decisions of consumers but also from other

smart grid factors (e.g., uncertainty of renewable
energy).

In classical game-theoretic smart grid schemes [5],

[6], [8]–[66], [75]–[84], consumer interdependence is

captured via the notions of expected utility theory in

which a consumer computes an expected value of her

achieved gains or losses, under the observation of an ob-

jective probability of choice by other consumers. In con-

trast, using the weighting effect, PT allows one to
capture each consumer’s subjective evaluation on the

probabilistic strategies of her opponents. Thus, under PT,

instead of objectively observing the information given by

the other players and computing a classical expected

value for the utility, each consumer perceives a weighted

version of her observation on the other actions. The

weighting is used to express a “distorted” view that a

given consumer or player can have on the actions of
others. PT studies have shown that most people over-

weight low probability outcomes and underweight high

probability outcomes.

To illustrate the weighting effect, in Fig. 2, we show

an example of a weighting function, known as the Prelec

function [103], which maps an objective utility into a

subjective utility. The mapping is controlled by a param-

eter � which quantifies the level of subjectivity in the
observation. For � ¼ 1, we have the fully rational case,

while for � close to 0 we get the fully irrational case.

Within a smart grid setting, such a weighting can have a

cascading effect on the way in which an energy manage-

ment scheme works. For example, in a DSM context, a

highly irrational consumer will have a largely distorted

view of how other consumers behave. In turn, this
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consumer will become more risk averse or more risk

seeking, depending on how the opponents’ actions im-

pact the dynamic pricing mechanism. As a result, this
consumer will not follow the actions recommended by

classical, rational mechanisms, but, instead will take an

unexpected action which, in turn, will yield unexpected

DSM results.

Indeed, how to model such a weighting effect and how

to integrate it into realistic energy management mecha-

nisms is an important topic for research. In addition, how

to design weighting functions that are tailored towards the
smart grid and that can work in realistic power system

settings is a key challenge. In Section IV, we will discuss

with specific examples how weighting modifies the results

of energy trading and management protocols.

2) Subjective Perceptions of Utility Functions—The Fram-
ing Effect: Another important idea brought forward by PT

is the notion of utility framing. In engineering designs,
one often defines mathematically rigorous objective (util-

ity) functions that are used to optimize a certain metric

of the system. For example, when dealing with an opti-

mal energy generation problem, a smart grid system

must find the maximum energy output that can meet or

match the demand. In such a case, it is sound to assume

that the function that must be optimized is based on an

objective metric, the energy in this case.
However, when dealing with smart energy manage-

ment mechanisms having human participants, the idea of

an objective metric for evaluating utility functions might

not be a reasonable assumption. For instance, each indi-

vidual has a different perception of the economic gains

from a certain DSM scheme. For example, a saving of

$10 per month may not seem like a significant gain for a

relatively wealthy consumer. Instead, a poor consumer
might view this amount as a highly significant reduction.

Clearly, the objective measure of $10 can be viewed dif-

ferently by different consumers.

In PT, such subjective perceptions of utility functions

are captured via the idea of framing or reference points.

In essence, each individual frames her gains or losses

with respect to a possibly different reference point. Back

to the aforementioned example, the wealthy consumer
will frame the $10 with respect to her initial wealth

which could be close to millions and, thus, this con-

sumer views the $10 as insignificant. In contrast, the

poor consumer might have a wealth close to 0 and, thus,

when framing the $10 with respect to this reference

point, the gains are viewed as significant. One popular

way to capture such framing effects is by observing that

losses loom larger than gains, and, thus, PT provides one
transformation that maps objective utility functions into

so-called subjective value functions—concave in gains,

convex in losses—over the possible outcomes. These

gains and losses are measured with respect to a reference

point that need not be zero and that may be different be-

tween players. An illustrative example is shown in Fig. 3

for one typical PT value function from [93] assuming a

zero reference point for gains/losses.
Naturally, as consumers change the way in which

they compute their utilities, their overall decision-

making processes will deviate from conventional,

rational thought. Indeed, when applying PT ideas to

game-theoretic settings such as in [98], it is shown that

the objective results do not hold. For example, in some

Fig. 3. Illustration of the prospect-theoretic framing effect: how

objective utilities are viewed subjectively by human participants.

The utility function value changes depending on a certain

reference point that highlights the individual perceptions of

gains and losses.

Fig. 2. Illustration of the prospect-theoretic weighting effect: how

objective probabilities are viewed subjectively by human

participants. The parameter � determines how far the behavior is

from the fully rational case.
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cases, it is shown that the choice of a reference point
can impact whether a certain game has an equilibrium

solution or not. Clearly, when one decision maker

changes the way in which she evaluates her objective

function, the overall operation of any optimization mech-

anisms will be significantly affected.

In the smart grid, we can envision many situations in

which to incorporate the framing effects. These situa-

tions need not be purely economical. For example, dur-
ing winter, consumers may perceive less prospective gain

from turning off high-capacity loads (such as heaters) at

night than during day time. How this “frame of refer-

ence” transforms the utility will fundamentally change

the outcome of an energy management mechanism that

is based on classical objective notions. Moreover, in the

smart grid, such reference points and framing effects

may change over time, space, and even demographics.
Clearly, properly designing and developing framing no-

tions in smart grid DSMs is an important direction that

must be investigated to better understand its impact on

energy management and trading mechanisms.

Having defined the two key effects of PT, in Section IV,

we discuss, in detail, two energy management scenarios

to highlight, as an example, the impact of weighting on

smart grid protocols.

IV. PROSPECT-THEORETIC SMART
GRID APPLICATIONS

A. Example 1: Charging and Discharging of
Consumer-Owned Energy Storage

To show the impact of prospect-theoretic consider-
ations in smart grid design, we first study a model in

which consumers are equipped with storage units and

must decide on how to manage the charging and dischar-

ging of their storage units, depending on the network

state and the pricing incentives. This model is based on

our recent work in [104].

In particular, we consider a grid consisting of multi-

ple consumers who own storage units. For illustration
purposes, we assume the case in which only two con-

sumers are “active participants” while all other con-

sumers constitute a passive load on the grid. Each

consumer has a storage unit which holds a certain initial

amount of energy stored. The power company offers

these active consumers the option to either charge their

storage units and, thus, act as a load on the grid, or, in-

stead to actively feed back and sell energy to the grid.
Note that, any action taken by either of the two con-

sumers affects both the power system as it impacts the

overall needed generation as well as the prices set by the

utility company. The choices of both consumers are also

coupled, since the choice of acting as a load or source,

will impact the overall generation and distribution of en-

ergy in the grid.

In this setting, we assume that the consumers need
to make a choice between charging or discharging while

optimizing a utility function that captures two proper-

ties: 1) the economic and technical benefits of storing or

selling energy; and 2) the power system regulatory penal-

ties. Indeed, although the power company allows the two

active consumers to individually manage their storage

units, it still requires the generation to remain within de-

sired operating conditions which are measured based on
an initial point.

We formulate and investigate this setting using a PT-

based, classical noncooperative game and we study the

equilibrium solution of the game. The equilibrium is es-

sentially a point of the system at which neither of the

two consumers can improve her utility by changing the

frequency with which it chooses to charge or discharge

her storage unit. We analyze the results under both classi-
cal EUT and PT considerations. For PT, we first consider

the weighting effect: each consumer views a subjective

observation of the charging/discharging behavior of her

opponent in accordance with a Prelec weighting function

such as in Fig. 2.

We use a numerical example to show the impact of PT

considerations on the operation of the system. We consider

a standard four-bus power system with two active con-
sumers. The loads and surpluses of active consumer 1 are,

respectively, 20 and 10 kWh, while those of consumer 2

are, respectively, 15 and 5 kWh. Fig. 4 shows the impact of

the unit selling price b that is used by the two consumers

when discharging energy to the grid. This price is assumed

to be equal for both consumers. Clearly, as b increases,

both consumers have more incentive to sell than to buy, as

the gains start outweighing the regulation penalty. More
interestingly, Fig. 4 shows that, for both consumers, PT

behavior significantly differs from the rational EUT case.

For consumer 2, below 0.07$ per kWh, the probability

Fig. 4. Impact of the weighting effect on consumer behavior in a

two-player charginge/discharging setting.
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of buying energy at the PT equilibrium is much higher

than under EUT. This implies that for low gains and

high risks, the consumer follows a conservative, risk-

averse strategy under PT and is less interested in reaping

the gains of selling energy compared to EUT. However,
as the unit selling price crosses the threshold, the proba-

bility that consumer 2 acts as a load under PT becomes

much smaller than under EUT. Thus, once the selling

benefits are significant (risks decrease), PT predicts that

consumer 2 will start selling more aggressively than in

EUT. Analogous behavior is seen for consumer 1 with

threshold 0.045$ per kWh.

Fig. 5 shows the total power company revenues, col-
lected from the two consumers when they charge their

storage unit, as the unit selling price increases. Fig. 5

shows that, as b increases, the total revenues decrease, as

the consumers begin to sell more and buy less. Note

that, here, the power company’s revenues pertain to only

those revenues that are collected from the two con-

sumers. This does not include any additional sources of

revenues that the power company might collect (e.g.,
taking a percentage on the profits of the consumers).

Clearly, deviations from EUT can have major impact on

energy management in a smart grid setting. Consider the

case in which the Prelec rationality factor is set to

� ¼ 0:25. When b is below 0.06$ per kWh, under PT,

the total revenue is much higher than predicted by

EUT. In contrast, if consumers set prices greater than

0.06$ per kWh, PT predicts that the revenues will be
much smaller than in EUT. It is thus more beneficial for

the company to regulate the consumers’ unit selling price

to be below 0.06$ per kWh. Fig. 5 also shows that when

the company adopts EUT to regulate the consumers’ sell-

ing price, it can lose revenues due to real-life consumer

behavior. Fig. 5 also shows that, as � increases, the con-

sumers behave more in line with EUT. However, even

for a relatively high value, � ¼ 0:65, the company reve-

nues resulting from PT still yield nonnegligible devia-

tions from EUT.
We further analyze how consumer behavior impacts

grid operation by showing the average expected load on

the grid in Fig. 6, as the company varies its minimum

price.1 Fig. 6 shows that the expected load on the system

will significantly change between PT and EUT. For PT,

when the unit price is small, consumers are less inter-

ested in selling their stored energy. However, as the

price crosses a threshold, the consumers will start selling
more aggressively, rendering the average load smaller

than expected. Fig. 6 provides guidelines for realistic

DSM with storage. For example, assume the company

wants to increase its price to drive consumers to sell

more and reduce their load to about 10 kWh. Based on

classical EUT-based schemes, the company has to increase

the price to 0.078$ per kWh. In real life, because con-

sumers behave subjectively under risk, the power com-
pany can increase its unit price to only 0.06$ per kWh

and obtain the desired load reduction. Also, if the power

company wants to reduce its price to sustain a load of

23 kWh from the two consumers, based on EUT, it

must offer a price of 0.035$ per kWh. In contrast, PT

shows that 0.047$ per kWh will achieve the same impact

yet yield more profits.

Next, we consider the same example in the presence
of framing effects, based on our work in [105]. Here, we

assume that both consumers frame their utilities with re-

spect to a given reference point that reflects how these

consumers evaluate the economic gains or losses from

Fig. 5. Impact of the weighting effect on the revenues of the

power company. Fig. 6. Expected grid load when the consumers actively

participate with their storage devices under rational EUT and

irrational PT behavior.

1This pertains to the rates that the power company will use to di-
rectly charge its consumers.
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charging or discharging their storage units. For incorpo-

rating framing, we adopted the classical model of [98] in

which, under framing, the utility function becomes con-

cave in gains and convex in losses, as losses loom larger

than gains. To assess the impact of framing, in simula-

tions, the reference point is chosen to coincide with the

case in which consumers discharge/sell energy at the
same price that is announced by the power company. In

Fig. 7, we show the total expected utility (sum for both

consumers) under both EUT and PT, as the reference

point varies. In this figure, we choose the same reference

point for both consumers and we use typical values for �
which is a parameter that represents the loss aversion,

i.e., how a consumer values her losses versus her gains.

First, we can see that the expected PT utility will de-
crease when the reference point value increases. In es-

sence, the reference point is subtracted from the EUT

utility to determine the exact values of gains and losses.

For a high reference point (i.e., electricity price), PT

consumers will value their stored energy more than in

cases in which the reference point is smaller. Thus, using

a same selling/discharging price under EUT and PT, the

payoff obtained by consumers under PT is smaller than
under EUT, due to the fact that, in PT, the reference

point reduces the gains from selling energy. Second, this

figure also shows that, the framing aversion parameter,

i.e., �, would have different impact on the PT utility.

In particular, when � increases from 1 to 2, the losses

viewed by PT consumers will increase. Thus, with an in-

creasing �, a PT consumer will start valuing her gains

less than in the EUT case, which leads to increasing
her conservative, charging strategy. Additional results on

framing can be found in [105].

In summary, ignoring consumer behavior in storage-

based energy management can lead to unexpected results

as shown here for a basic setting. These results can be

undesirable from both an economic and technological

perspective. Therefore, building on the presented model,

one can design more elaborate and realistic storage man-
agement mechanisms that account for PT-based notions

of subjective perceptions. In addition, the power com-

pany can utilize these results to properly shape its pric-

ing schemes.

B. Example 2: DSM Under Prospect-Theoretic
Considerations

Another important application for PT is classical

DSM models. Here, we consider a grid in which con-
sumers are given the opportunity to decide on whether

to participate in DSM. The DSM scheme considered is

one in which the participating consumer would shift her

load over time, in order to reduce the overall peak hour

load. The actual DSM process is in line with classical

game-theoretic settings such as those in [5].

However, in our model, it is assumed that consumers

have also a choice of not participating in the DSM at all.
In addition, consumers can choose the time at which

they will begin their participation. The decisions of the

consumers are driven by the goal of minimizing the over-

all electricity bill while maintaining their desired load to

operate their required appliances.2 One important fea-

ture of the considered model is that every load shift by a

given consumer will automatically impact the way in

which prices are set by the power company. Thus,
this interdependence in decision making will naturally

warrant a game-theoretic approach to modeling the

decision making.

In essence, we have a model in which every con-

sumer can decide on the time at which she starts to par-

ticipate in DSM. Alternatively, the consumer may decide

not to participate at all. We can then analyze the fre-

quency with which a consumer will participate or not
and we analyze the impact of this participation on the

grid by deriving equilibrium conditions [106]. This analy-

sis is done for both the rational and irrational cases. For

PT, we consider mainly a weighting effect.

To gain greater insight into the impact of weighting on

DSM participation, we consider a numerical validation

using a realistic load profile in [107] which represents

consumers’ initial demands during Spring 2013, from the
Miami International Airport. In these numerical exam-

ples, each consumer can choose a starting time to partici-

pate in DSM from the time period between 18:00:00

and 20:00:00. Alternatively, the consumer can decide

not to participate.

In Fig. 8, we show the expected nonparticipating

load profile using different values for the Prelec rational-

ity parameters �. In this example, each consumer has a
different subjective perception of other consumers and,

thus, has a different rationality parameter. In particular,

we choose � ¼ ½0:5 0:5 0:2 0:1 0:1 0:1� for the six

Fig. 7. Total utility under both EUT and PT as the reference point

u0 varies.

2The reader interested in the mathematical formulation is referred
to our work in [106].

876 Proceedings of the IEEE | Vol. 104, No. 4, April 2016

Saad et al.: Toward a Consumer-Centric Grid: A Behavioral Perspective



considered consumers. This implies that consumers 1–2

are more rational than consumers 3–6 while consumers

4–6 are the least rational. In this figure, we can see that,
when some consumers have a very irrational observation

of their opponents, the PT nonparticipating load between

21:00:00 and 23:00:00 will be higher for PT than EUT.

This implies that, in reality, if some consumers deviate

significantly from their rational strategies (for example, a

consumer decides not to assist the power company in

load shifting despite the economic benefit), the power

company will not be able to shift the total load predicted
by the rational, objective model. Thus, this simple, yet

insightful example shows that one must better under-

stand how consumers behave (here reflected by the ratio-

nality parameter) to better design the dynamic pricing

and DSM scheme.

We further analyze the impact of the consumer ratio-

nality on DSM by showing, in Fig. 9, the expected non-

participating load at a chosen time of the day which is
here selected to be 19:00:00 for illustrative purposes.

Here, it is assumed that all consumers have a similar

level of rationality. In Fig. 9, we observe that, under

EUT, the expected nonparticipating load is 65.7% of the

total load. In contrast, under PT, the nonparticipating

load is less than EUT when � 9 0:56, i.e., when con-

sumers are fairly rational. Thus, the power company can

shift more load in practice, compared to an EUT scheme,
if the consumers are all of equal rationality level when

� 9 0:56. Clearly, there exists a rationality threshold,

such that, if � is greater (smaller) than the threshold, PT

consumers will have lower (higher) nonparticipating

loads than EUT cases. A large value of �, which maps to

a small deviation from EUT, yields an increased compe-

tition thus raising the costs to the consumers.

Consequently, the consumers will become risk seeking

and more apt to shift their loads and decrease their pay-

ments. Thus, the increasing PT costs will force the ma-
jority to shift more loads, compared to EUT. In contrast,

a relatively small rationality parameter or a large devia-

tion from EUT, will lead to highly irrational behavior

from the consumers which will lead to increasingly high

competition and decreasing participation, as consumers

become extremely risk averse and unwilling to partici-

pate in the DSM process.

From Fig. 9, we can infer that one of the reasons for
which DSM schemes might have not been adopted

widely in practice is due to a severely irrational behavior

observed from the consumers. Indeed, as per Fig. 9, one

can see that a small deviation from EUT (slight irratio-

nality) may in fact be beneficial for the power company

as it increases consumers’ participation. In contrast, a

significant deviation from EUT will inevitably lead to

highly risk averse behavior which will prevent most con-
sumers from participating, thus yielding detrimental re-

sults for the grid and preventing the power company

from reaping the benefits of DSM.

Through this simple, yet realistic DSM example, we

are able to see that by only considering the weighting

effect of PT, the results of DSM can significantly change.

This is due to the fact that the PT model better captures

the way in which consumers behave in practice. Conse-
quently, this motivates a deeper investigation of the

role of human decision making in practical DSM

mechanisms.

C. Choice of PT Parameters
In this section, we have brought forward several key

results that show how realistic consumer behavior can

Fig. 9. Impact of the rationality parameter � on the expected

nonparticipating load of all consumers at 19:00:00.

Fig. 8. Expected nonparticipating load for the six consumer game

under both EUT and PT over 24 h, when consumers have

different values of �.
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impact smart grid energy management. However, in
these models for assessing the rationality (e.g., the pa-

rameter �) or risk aversion of the consumers, we have

adopted PT models of risk that were conceived in the

economics literature such as in [93]–[98] and [103]. Nat-

urally, to understand whether those models map directly

into the smart grid, there is a need to run analogous be-

havioral experiments, with real-world smart grid con-

sumers, to generate new empirical models for PT that
can be used to further enhance the results of this sec-

tion. Such experiments can be based on both qualitative

surveys and on real-world simulations in which grid con-

sumers (e.g., homeowners or factories) are solicited to

participate in simulated experiments on grid scenarios

that pertain to DSM, storage, or other consumer-centric

features. Such experiments can mimic the gain and loss

scenarios presented in Section III-A. Using such behav-
ioral experiments, we can refine the choice of the vari-

ous PT parameters and we can generate more advanced

models and results.

V. CONCLUSION AND FUTURE
OUTLOOK

Realizing the vision of a smart, consumer-centric grid is
without any doubt strongly dependent on gathering a

better understanding of the impact and role of consumer

behavior in energy management processes such as DSM,

demand response, or energy trading. In this article, we

have shown that the use of prospect theory, a powerful

framework from operations research and psychology, can

provide the first step toward better understanding the

impact of consumer behavior on smart grid operation.
Indeed, our preliminary investigations have shown that

consumer-related deviations from conventional, rational

game-theoretic energy management mechanisms can be

one of the primary reasons behind the modest adoption

of such mechanisms in practical smart grid systems.

Nonetheless, in this paper, we have only scratched

the surface of this emerging area in smart grid research.

Indeed, the study of consumer behavior in the smart grid
requires significant advances in frameworks such as PT.

Many future directions can be envisioned. For example,

our results so far have solely relied on the analysis of the

weighting effect. However, we anticipate that the use of

both framing and weighting can provide deeper insights

into how DSM and energy management can operate in

the smart grid. Indeed, the fact that smart grid con-

sumers will have time-dependent reference points while
measuring their utility functions provides a very interest-

ing and promising research direction.

In addition, our study thus far has focused primarily

on economic-oriented models, in which the impact on

the power system is restricted to load management. In-

stead, one can envision the use of PT-based behavioral

models to better understand how the overall regulation

of the power system operation can be modified due to
the uncertainty and risk introduced by consumer-based

decision making. Such studies can also be extended

to explicitly account for communication and security

considerations, both of which can involve end-user

decisions.

Another important direction for future work is to ex-

plicitly account for renewable energy sources. In fact, re-

newable sources will introduce two types of uncertainty:
1) uncertainty due to consumer decisions, as captured in

the models of this paper; and 2) uncertainty due to na-

ture and other environmental factors that affect renew-

able generation. Here, it is of interest to apply PT

models to capture both types of uncertainty. Some early

works on PT such as in [98] have shown that when both

weighting effects and utility uncertainty are considered,

one can expect significant deviation from conventional
rational results. How such deviations can be applied in a

smart grid context remains an open problem.

Moreover, the recent surge in the application of big

data analytics in various smart grid scenarios will provide

an important avenue to explore the differences between

EUT and PT. These data that are being constantly col-

lected can, in the future, provide an important source for

corroborating the intuition provided by PT while also
providing important information to derive more realistic

PT models.

Last but not least, as mentioned previously, one im-

portant challenge is the lack of any large-scale data on

how buyers and sellers will in reality behave in the still

speculative smart grid market. Though PT provides broad

hints about the factors that may affect choices, the tests

of it have been so far restricted to basic models such as
those presented here, which are still somewhat distant

from the context of a large-scale practical smart grid to

be determinative. In other areas, the experiments con-

firming PT have overwhelmingly been single session ex-

periments in which naive participants make choices in

speculative scenarios of no consequence to themselves.

This is different from regular participation in a smart

grid in which their choices have direct financial conse-
quences on themselves. People have the ability to learn

from experience and this is known to affect their choices

in some contexts. For example, the endowment effect is

that amateur collectors will not sell an item they already

own for the price they would be willing to pay for it

[108]. However, professional merchants do not show an

endowment effect [109]. Fortunately, current Internet

technology makes it possible to simulate the smart grid
and systematically evaluate consumer behavior in it un-

der different conditions. Conducting such simulations

will be an important area for future work as the results

of such studies should make it possible to design transac-

tion rules and human interfaces that constrain behavior

into optimal pathways. Such results will also help corrob-

orate and improve upon PT models.
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In a nutshell, the deployment of smart energy
management mechanisms is an integral and essential

part of the smart grid. However, in order to expedite

the introduction of such features, it has become cru-

cial to properly develop behavioral models that can
factor in explicitly the impact of human behavior on

the overall operation of the future, consumer-centric

smart grid. h
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