

When Users Interfere with Protocols

Prospect Theory in Wireless Networks

Narayan B. Mandayam (joint work with Tianming Li)

Motivation: Engineered System Design

- Current radio technologies and associated communication protocols are still mostly agnostic to the decision-making of end-users
 - "Engineered System Design" where underlying algorithms/protocols designed based on precepts of Expected Utility Theory (EUT)
 - Radio resource management algorithms and protocols are the result of optimization strategies under the framework of EUT

Expected Utility Theory (EUT)

- Alternatives with uncertainty are valued as their mathematical expectation
- However, violations to it are constantly observed in real-life

Wireless: Increased End-User Influence

- End-users can influence system performance
- Cognitive radio, smart phone applications and user interfaces
 - □ Allow end users (people) greater degree of freedom to control devices
 - Impact underlying algorithms design and system performance
 - □ Example: user modifying radio cards and underlying protocols
 - □ Example: devices with flexible user interfaces
 - □ Example: end-user actions in response to link conditions, pricing

WINLAB

Prospect Theory: An Alternative to Expected Utility Theory

• Prospect *L*: a contract yields *M* outcomes, e.g., $\{o_{1,\dots,}o_M\}$, each occurring with probability p_i

□ How to valuate a prospect?

Expected Utility Theory (EUT)

- Proposed by Bernoulli, developed by Von Neumann, Morgenstern, others
- Game Theory heavily depends on it
 - E.g. game theoretic models in radio resource management
- Value of a prospect is estimated as the mathematical expectation of values of possible outcomes
- However, violations to EUT have constantly been observed in real-life decision-making

Prospect Theory (PT)

- Proposed by Kahneman and Tversky
- A better theory in describing people's real life decisions facing alternatives with risk
- Able to successfully explain the observed violations to EUT
- People use subjective probability to weigh values of outcomes
- People valuate outcomes in terms of relative gains or losses rather than final asset position

Prospect Theory: An Alternative to Expected Utility Theory

- Framing Effect
 - People evaluate outcomes in terms of relative gains and losses regarding a reference point rather than the final asset position
 - People's value function of outcomes is concave in gains and convex in losses
 - □ Losses usually "loom larger" than gains

Prospect Theory: An Alternative to Expected Utility Theory

- Probability Weighting Effect
 - People "nonlinearly transform" objective probabilities to subjective probabilities

RUTGERS

WINI AB

Prospect Theory: Valuation of a Prospect

• Expected Utility Theory (EUT)

$$u^{EUT}(L) = \sum_{i=1,\dots,M} p_i v^{EUT}(o_i)$$

Expectation of values of all possible outcomes

When EUT Fails, PT Explains

• A variation of Allais' paradox

AN EXAMPLE OF EUT VIOLATION

Prospect	A	В
1	 \$2500 with probability 0.33 \$2400 with probability 0.66 \$0 with probability 0.01 	\$2400 with certainty
2	\$2500 with probability 0.33 \$0 with probability 0.67	\$2400 with probability 0.34 \$0 with probability 0.66

61% respondents choose 1B and 2A
 Paradox
 Under EUT,

□ 1B implies $0.34v^{EUT}(2400) > 0.33v^{EUT}(2500)$

□ 2A implies $0.34v^{EUT}(2400) < 0.33v^{EUT}(2500)$

□ Under PT with $\alpha = 0.5$ and linear value function with zero as the reference point, the two choices established simultaneously

Toy Problem: Wireless Random Access

- A set of *N* selfish players accessing the same base station
- A time-slotted and synchronous system
- Each player has a saturated queue of packets

• In a time slot, a player can either transmit or wait, $a_i \in A_i = \{t, nt\}$

 $\Box t = transmit \quad nt = NOT \ transmit$

- Pure strategy profile: $\boldsymbol{a} = \{a_1, a_2, \dots, a_N\}$
- Collection of pure strategy profiles:

$$\square A = A_1 \times A_2 \times \cdots \times A_N$$

A Wireless Random Access Game

- If a player transmits
 - □ A successful transmission: obtains a unit throughput reward c_i and incurs a unit energy cost e_i
 - □ A failed transmission: incurs a unit delay penalty d_i and a unit energy cost e_i
- If a player waits: incurs a unit delay penalty d_i

• For both PT and EUT, we assume players use same value function

□ linear in unit throughput reward, delay penalty and energy cost with reference point zero

• Fix a pure strategy profile $a = \{a_1, ..., a_N\}$, a player evaluates the possible outcomes as

$$v_{i|\mathbf{a}} = \begin{cases} p_{i|\mathcal{J}(\mathbf{a})}(c_i - e_i) + (1 - p_{i|\mathcal{J}(\mathbf{a})})(-e_i - d_i) & \text{if } a_i = t \\ -d_i & \text{if } a_i = nt \end{cases}$$

$$\mathbf{CF} \text{ Packet Reception Probability} \qquad \text{10 Set of players who transmit} \textbf{LAB}$$

A Wireless Random Access Game: Utility Functions

• Under Expected Utility Theory $u_i^{EUT}(\mathbf{p}) = \sum_{\mathbf{a} \in \mathbf{A}} \left(\prod_{j \in \mathcal{J}(\mathbf{a})} p_j \prod_{k \notin \mathcal{J}(\mathbf{a})} (1 - p_k) v_{i|\mathbf{a}} \right)$

j – th player's transmission probability

NOT transmit

• Under Prospect Theory Strategy profile where the player transmits

$$u_i^{PT}(\mathbf{p}) = \sum_{\mathbf{a}_1 \in \mathbf{A}, a_{1i}=t} SP(\mathbf{a}_1) v_{i|\mathbf{a}_1} + \sum_{\mathbf{a}_2 \in \mathbf{A}, a_{2i}=nt} SP(\mathbf{a}_2) v_{i|\mathbf{a}_2}$$

 Values of all possible pure strategy profiles are weighed by subjective probabilities
 Subjective transmission probability of player j

$$SP(\mathbf{a}_{1}) = p_{i} \prod_{j \in \mathcal{J}(\mathbf{a}_{1}) \setminus \{i\}} w_{i}(p_{j}) \prod_{k \in \mathcal{J}^{c}(\mathbf{a}_{1})} w_{i}(1 - p_{k})$$

$$SP(\mathbf{a}_{2}) = (1 - p_{i}) \prod_{j \in \mathcal{J}(\mathbf{a}_{2})} w_{i}(p_{j}) \prod_{k \in \mathcal{J}^{c}(\mathbf{a}_{2}) \setminus \{i\}} w_{i}(1 - p_{k})$$

$$GERS$$

$$WINLAB$$

Consequence of Deviation from EUT?

- 2-Player Heterogeneous Game
 One PT player and one EUT player
- What impact does the PT player have compared to a 2player homogeneous EUT game?
 - Performance change of the EUT player
 - Performance difference between PT and EUT player
 - Overall system performance
- Metrics Studied
 - Average Energy
 - Average Throughput
 - Average Delay

Utility Functions and Performance Metrics (Linear)

Utility Functions i = 1,2
 PT player:

 $u_i^{PT}(\mathbf{p}) = p_i w_i(p_j) v_{i|\{t,t\}} + p_i w_i (1 - p_j) v_{i|\{t,nt\}} + (1 - p_i)(-d_i)$

□ EUT player:

$$u_i^{EUT}(\mathbf{p}) = p_i p_j v_{i|\{t,t\}} + p_i (1 - p_j) v_{i|\{t,nt\}} + (1 - p_i)(-d_i)$$

• Communication Performance Measures i = 1, 2 $T_i(\mathbf{p}) = c_i \left(p_i p_j p_{i|\{i,j\}} + p_i (1 - p_j) p_{i|\{i\}} \right)$ Throughput rewards $E_i(\mathbf{p}) = p_i e_i$ Energy Costs $D_i(\mathbf{p}) = d_i \left(p_i p_j (1 - p_{i|\{i,j\}}) + p_i (1 - p_j) (1 - p_{i|\{i\}}) \right) + (1 - p_i) d_i$, for i = 1, 2WINLAB

Existence and Uniqueness of Mixed NE

There exists a unique mixed NE for the Heterogeneous game if

$$v_{i|\{t,nt\}} > 0$$

The value of a collision free transmission is "positive"

$$v_{i|\{t,t\}} < -d_i$$

A "negative" value results when there is a collision (simultaneous user transmission)

 \Box The negative value is smaller than $-d_i$

•
$$d_i$$
 is the unit delay cost

WINLAB

Consequence of Deviation from EUT

Proven under mild conditions

- Consequence 1: The PT player causes the EUT player

 To gain higher average throughput
 To experience lesser average delay
 To incur higher average energy costs

 Consequence 2: The PT player

 Achieves lesser average throughput
 Experiences greater average delay

 Consequence 3: System level performance degraded
 - Lower total average throughput
 - Greater total average delay
 - Higher total average energy costs
- All the trends are exaggerated with lower a

Transmission Probability at Mixed NE (d=0)

EUT player if forced to transmit more aggressively

□ If PT behavior is increasingly exaggerated, EUT player needs to be more aggressive

Individual Throughput Comparison (d=0)

- Introduction of PT player makes EUT player gain more throughput rewards
- EUT player obtains more than PT player
- A more deviated PT player exaggerates the two trends RUTGERS
 ¹⁷

Sum Throughput Comparison (d=0)

Total system throughput is degraded

A more deviated PT player results in more severe degradation
 RUTGERS
 18
 WIN

Energy Costs Comparison (d=0)

□ Introduction of PT player causes EUT player to incur higher energy costs

- Introduction of PT player incurs higher system sum energy costs
- A more deviated PT player exaggerate the two trends

Homogeneous Game: Consequence of Deviation from EUT

- 2-Player Homogeneous Game
 Two players are either both PT or both EUT
- Consequence 4: System level performance degraded
 - Lower total average throughput
 - □ Greater total average delay
 - □ Higher total average energy costs
- Consequence 5: The PT player deviating less from EUT
 - Achieves more average throughput
 - Suffers less average delay
 - But incurs more average energy cost

Transmission Probability at the mixed NE (d = 0)

PT players in PT game transmit more aggressively than the players of EUT game
 Within PT game, PT player deviates less from EUT transmits more aggressively

2-Player PT Game: Individual Average Throughput

□ The PT player that deviates less from EUT obtains more average throughput

PT vs. EUT Game: Sum Average Throughput

□ Players in homogeneous PT game achieve less sum average throughput in the EUT game

PT vs. EUT Game: Energy Costs

□ Players in PT game incur higher energy costs than players in EUT game

N-Player Homogeneous Game

- Symmetric: All players have identical utility functions and experience the same channel conditions
- Reflects a scenario where every player has a collective view of the set of players
 - "Collective" view of interference
 - Analyzing each of the other N-1 player's utilities and actions is beyond a single user's feasibility
- There exists a unique mixed NE for a symmetric Nplayer homogeneous game under mild conditions

3-Player Homogeneous Game: Average Throughput

Fixed unit energy cost and unit delay penalty
 Degradation of average throughput

Prospect Theory: Wireless Applications

- Differentiated Pricing of Data Services for Network
 Congestion
 - User preferences, biases and perceived values
- □ SoNs "organization/action" of people?
- **D** Jamming in Wireless Networks
 - Biases and perceptions
- **D** Robust Mechanisms for mitigating "user interference"
- **D** Psychophysics experiments of wireless users
 - Design appropriate weighting and framing effects based on "wireless" experience

References

- T. Li and N. B. Mandayam, "Prospects in a Wireless Random Access Game" Proceedings of CISS'2012, Princeton NJ, March 2012
- T. Li and N. B. Mandayam, "When Users Interfere with Protocols: Prospect Theory in Wireless Networks using Random Access as an Example" under revision in IEEE Transactions in Wireless Communications, 2013

