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Abstract—The 5G band allocated in the 26 GHz spectrum
referred to as 3GPP band n258, has generated a lot of anxiety
and concern in the meteorological data forecasting community
including the National Oceanic and Atmospheric Administration
(NOAA). Unlike traditional spectrum coexistence problems, the
issue here stems from the leakage of n258 band transmissions
impacting the observations of passive sensors (e.g. AMSU-A)
operating at 23.8 GHz on weather satellites used to detect the
amount of water vapor in the atmosphere, which in turn affects
weather forecasting and predictions. In this paper, we study
the impact of 5G leakage on the accuracy of data assimilation
based weather prediction algorithms by using a first order
propagation model to characterize the effect of the leakage signal
on the brightness temperature (atmospheric radiance) and the
induced noise temperature at the receiving antenna of the passive
sensor (radiometer) on the weather observation satellite. We then
characterize the resulting inaccuracies when using the Weather
Research and Forecasting Data Assimilation model (WRFDA) to
predict temperature and rainfall. For example, the impact of 5G
leakage of -20dBW to -15dBW on the well-known Super Tuesday
Tornado Outbreak data set, affects the meteorological forecasting
up to 0.9 mm in precipitation and 1.3 °C in 2m-temperature.
We outline future directions for both improved modeling of 5G
leakage effects as well as mitigation using cross-layer antenna
techniques coupled with resource allocation.

Index Terms—5G, mmWave, weather prediction, leakage, n258
band, radiance.

I. INTRODUCTION

Due to the shortage of available spectrum in sub-6 GHz
frequency bands for cellular communications, mmWave fre-
quency bands with large spectrum availability are considered
in 5G to enable cellular service providers to cope with the
increasing demand for higher data rates and ultra low latency
services [1]. The major 5G mmWave bands are 26 GHz (n258
band), 28 GHz (n257 band), 39 GHz (n260 band), and 47
GHz [2]. Of specific interest is the 3GPP band n258 band
(see Fig. 1), which is adjacent to 23.8 GHz where the passive
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sensors (e.g. Advanced Microwave Sounding Unit (AMSU)-A
sensors [3]) embedded in weather prediction satellites operate
to dynamically monitor and measure the atmospheric radiance
which is used to predict the density of water vapor in the
atmosphere, that is then further used in weather forecasting.
The adjacency of the 23.8 GHz frequency, used by National
Oceanic and Atmospheric Administration (NOAA) weather
prediction satellites, to the n258 band used by 5G equipment
results in inter channel interference which could negatively im-
pact the precision of the underlying weather forecast models.
In fact, the leakage of energy from the 5G bands into the 23.8
GHz band perturbs the radiance (equivalently brightness tem-
perature) of atmospheric thermal emissions that is observed
and measured by the passive sensors on the weather satellites,
thereby lowering the validity and precision of weather forecast
models.

Such coexistence and interdependence issues between 5G
mmWave networks and weather prediction satellites raise
concern and speculation over the potential negative impact of
5G services and radio transmissions on weather forecasting.
In fact, the potential use of the n258 band has generated a lot
of anxiety and concern in the meteorological data forecasting
community including the National Oceanic and Atmospheric
Administration (NOAA) [4]–[7]. Hence, such 5G leakage
needs to be precisely characterized and addressed in order to
maintain the accuracy of the satellite based weather forecasts
[8]. In fact, recent versions of the 3GPP’s 5G NR specifica-
tion specifically have a carveout to protect satellite weather
services, by reducing the emission levels of neighboring 5G
signals between 24.25 and 27.5 GHz [9]. But NOAA is arguing
the current emission requirements aren’t enough — it’ll lose
that critical data required for precise forecasting unless such
5G emissions are clamped down even further. Understanding
and characterizing the effect of such “spectrum coexistence”
calls for an interdisciplinary approach to first understand the
impact of 5G transmissions on weather data measurements



and prediction, and second, design mitigation strategies as
needed to enable seamless coexistence between 5G services
and weather prediction.

Fig. 1: 5G Spectrum Allocations in 26 GHz and 28 GHz

In this paper, we study the impact of 5G leakage on
the precision of data assimilation based numerical weather
prediction (NWP) models [10], [11]. We begin by considering
a first order propagation model to characterize the effect of
the leakage signal on the brightness temperature (atmospheric
radiance) and the induced noise temperature at the receiving
antenna of the passive sensor (radiometer) on the weather
observation satellite. We then characterize the effects of errors
and inaccuracies in measured radiance/noise temperatures, as a
result of 5G leakage, on the temperature and rainfall forecasts
of NWP models. Finally, we provide simulation results based
on the proposed model to show that the leakage from 5G
transmissions could negatively impact the accuracy of ultimate
temperature and rainfall predictions of NWP models, and
motivate the need for further research in this area.

The rest of this paper is organized as follows. Section II
explains how 5G leakage could impact weather prediction.
Section III introduces data assimilation based NWP models, in
which the atmospheric radiance measurement is one of the ma-
jor inputs for prediction. In section IV, we provide simulation
results to show how radiance measurement error/perturbation
as a result of 5G leakage could negatively impact the precision
of weather forecast models. We then discuss several future
directions for both improved modeling of 5G leakage effects
as well as mitigating its negative impact on weather prediction
in section V, and conclude in section VI.

II. IMPACT OF 5G LEAKAGE ON THE RADIANCE
MEASUREMENTS OF PASSIVE SENSORS ON SATELLITES

The 5G transmissions will involve many frequencies, but
the key one under discussion is the n258 band because of
its proximity to the 23.8 GHz spectrum. The reason why the
23.8 GHz band plays a critical role in weather prediction is
because of its importance in water vapor measurements in
the atmosphere. Specifically, the absorption of electromagnetic
signals in this band due to water vapor is much higher than
other bands, and also the sensitivity of this band to other
atmospheric factors is less than its sensitivity to vapor density
(see Fig. 2), which makes this band an ideal band for water
vapor measurements [8].

Hence, when 5G devices are transmitting signals in bands
near the 23.8 GHz frequency (such as the n258 band), a
passive sensor on a weather satellite measuring water va-
por might be affected, resulting in erroneous data which in
turn could degrade weather predictions that rely on accurate

Fig. 2: Absorption of EM Spectrum [8].

Fig. 3: 5G Interference on Passive Sensors on Weather Obser-
vation Satellites.

measurements of water vapor content in the atmosphere. The
debate about what is considered as acceptable leakage from
5G transmissions ranges from a low of −55 dBW to a high
of −20 dBW [5].

There are several sources of radiance in any given geograph-
ical area that contribute to the aggregate radiance measured
by passive radiometers, operating in the 23.8 GHz band, on
satellites located at a given altitude from the ground level.
However, the radiance originating from the 5G transmissions
in the adjacent n258 band are not currently considered and
recognized as a major source of radiance in radiance models
used for weather forecasting. Hence, the 5G leakage signal
in the 23.8 GHz band will be likely perceived by the NWP
models as an extra radiance originated from other sources like
atmospheric emissions, and hence it will result in errors in
measuring the water vapor density of the atmosphere in a given
geographical area, which could in turn affect the underlying
regional weather forecasts that rely on such measurements.

In fact, as illustrated in Fig. 3, the leakage of energy from
the 5G bands into the 23.8 GHz band perturbs the radiance
(equivalently brightness temperature) of atmospheric thermal
emissions that is observed and measured by the passive sensors
on the weather satellites, thereby lowering the validity and
precision of weather forecast models. As we can see in Fig. 3,
the unintended 5G leakage signals will pass through the



clouds and atmosphere layer, before reaching the radiometers
at satellite sensors, during which parts of their energy will
be absorbed by the particles in this layer, and the rest of
their energy will be radiated out from this layer upward
toward the observing weather satellites. The intensity of the
aggregate leakage signal resulted from 5G transmissions in
the n258 band in a particular geographical area into the 23.8
GHz band, and accordingly its received power on the passive
sensors of weather satellites, depends on a variety of factors
such as the spatial density of 5G transmitters, elevation and
directionality of transmissions, transmit power levels, specific
sub-bands occupied, transmit modulation schemes chosen, the
nonlinearity distortion of power amplifiers, and absorption
and transmittance coefficients associated to the clouds and
atmosphere layer in which 5G signals are passing through.

To characterize the aggregate 5G leakage power, we use a
preliminary first order analytical approach using an Adjacent
Channel Interference (ACI) model [12] along with a simplified
pathloss model as follows. As illustrated in Fig. 4, the ACI
seen by the AMSU signal of bandwidth D is characterized by
the generated out-of-band spectrum regrowth/leakage of an ad-
jacent 5G channel U , falling into the in-band region (between
lower frequency fL and higher frequency fH ) of the desired
channel D. For the AMSU-A passive sensors, the operating

Fig. 4: Illustration of 5G ACI on AMSU-A band.

channel bandwidth D is 270 MHz [3], and the interference
power from the 5G is the area colored yellow in the figure.
Since the NOAA weather satellites instrumented with AMSU-
A are on average between 700-900 km above the earth, we
assume a nominal distance of 800 km and use a free space
pathloss model to characterize the induced noise temperature
due to 5G leakage at the receiving antenna of the passive
sensor (radiometer) on the weather observation satellite. Note
that the antenna noise temperature Ta at the radiometers and
the atmosphere brightness temperature (radiance) Tb measured
at the radiometers are linearly related to each other as

Ta =
Tb
L

+
L− 1

L
Tp = ηradTb + (1− ηrad)Tp, (1)

where L is the loss factor, Tp is the thermal noise tem-
perature generated by the antenna, and ηrad is the antenna
radiation efficiency [13]. The additional noise temperature
of radiometers induced by 5G signals will also affect the
underlying brightness temperature measured by them. Using
the expression PN

B = KBT , where PN is the induced noise
power at the radiometer (in Watts), B is the channel bandwidth
(in Hertz) over which the noise power is measured, KB is the
Boltzmann constant (1.381 × 1023 J/K, Joules per Kelvin),
and T is the noise temperature (in Kelvin), we show in
Fig. 5 the 5G induced noise temperature at the radiometers
as a function of different 5G leakage powers from terrestrial
emissions of 5G equipment. In the figure, we have made an
idealized assumption of negligible blockage and scattering of
the leakage signal through the atmosphere and set the total
pathloss to be 130 dB after appropriate antenna and system
gains. In reality, the 5G leakage signals will likely pass through
a layer of clouds and atmosphere before reaching the satellite
sensors and parts of their energy will be absorbed by this
layer [11], hence, this absorption effect should be captured in
improved propagation models as suggested in the section V.
Using the first order analysis above, we next show the impact
of 5G leakage on weather forecasts.

Fig. 5: 5G Induced Noise Temperature Associated with Dif-
ferent 5G Leakage Powers.

III. OVERVIEW OF DATA ASSIMILATION MODELS USED FOR
WEATHER PREDICTION

Many NWP models implement data assimilation (DA) al-
gorithms, in which they use realtime observations obtained
from sensors and monitoring instruments to update their state
and boundary conditions to reduce the prediction error [10].
In radiometry, radiance is defined as the flux density of
radiant energy per unit solid angle of propagation and per unit
projected area of radiating surface [14]. Radiance observation
data obtained from satellites are among the most important
observation types that affect the performance of NWP models,
and usually are assimilated in variational DA algorithms used
in such models to improve the reliability and precision of
forecasts [10]. Passive sensors (radiometers) operating in the



23.8 GHz band and housed on NOAA satellites located at
altitudes ranging from around 700-900 km above the earth’s
surface measure the radiance of the earth’s atmosphere. Such
radiance is sensitive to the earth’s atmospheric characteristics
and atmospheric variables such as water vapor, concentration
of trace gases, among many others.

Radiance observations are prone to systematic errors (i.e.,
biases) that must be corrected before they are assimilated in
NWP models. The radiance bias is often expressed by a linear
combination of predictors, which leads to the definition of a
modified forward operator Ĥ given by

Ĥ(xr, β) = H(x) + β0 +

Np∑
i=1

βi ∗ pi, (2)

where H(x) is the original forward operator, x is the model
state vector, β0 is the constant bias coefficient, pi is the
value of the i-th predictor out of Np predictors, and βi is
the bias correction coefficient associated to the i-th predictor
[10]. Predictors can be classified as those that are related
to the model state, such as surface temperature and layer
thickness, and those that are related to the measurement, such
as measured radiations, or position of scan.

The bias-correction coefficients in vector β are updated iter-
atively within a variational minimization process. A common
algorithm called 3DVar can be realized with the cost function
j(β) for the minimization

j(β) = 1/2(β − β
b
)
T
Bβ(β − β

b
)+

1/2[y − Ĥ(xr, β)]
TR−1[y − Ĥ(xr, β)],

(3)

where β is the constant bias correction coefficients vector
(generated for a week), β

b
is the background bias correc-

tion coefficient vector, Bβ is the associated error covariance
matrix for background bias correction coefficient vector, y is
the observations, and R is the observation error covariance
matrix [10]. The objective of the 3DVar method is to min-
imize this cost function iteratively to increase the precision
of the weather forecasts, and knowing the potential noises
in measurements like radiance measurements could facilitate
this process greatly by choosing the proper bias correcting
coefficient for each predictor parameter used in this error
function. In the next section, we present numerical results
showing how 5G leakage from the n258 band could lead
to perturbations in radiance measurements in the 23.8 GHz
band, and hence impact the underlying temperature and rainfall
forecasts that rely on such measurements.

IV. NUMERICAL RESULTS: IMPACT OF 5G ON
PRECIPITATION AND TEMPERATURE FORECASTS

A preliminary study was conducted to test the key hy-
pothesis of this paper that the operation of 5G systems will
affect the weather forecasting accuracy. For this case study, we
chose a 12 hour forecasting period beginning at 12:00 UTC
on Feb 05, 2008 covering the contiguous United States, due
to readily available data with which to test the model. This
simulation was designed to reproduce the incident of the Super

Tuesday Tornado Outbreak [15]. On that day, 87 tornadoes
were observed with a report of 57 casualties and $1.2 billion
loss, which was the second deadliest disaster in February in
the US history [16].

We adopted the Weather Research and Forecasting Data
Assimilation model (WRFDA), a data assimilation system
built within the WRF software framework and used for
application in both research and operational forecasting, to
evaluate possible impacts that errors in the satellite radiance
data from 5G may have on a widely used NWP model [17],
[18]. The radiance data was collected from the Advanced
Microwave Sounding Unit (AMSU) service. The first AMSU
instrument was sent on the NOAA-15 satellite on 13 May
1998, which was joined by eight other satellites later. The
service consists of 18 channels (15 with AMSU-A and 3
with AMSU-B) including the concerned 23.8 GHz band,
which has a bandwidth of 270 MHz. The NOAA KLM series
of satellites are flying in sunsynchronous polar orbits with
constant altitudes ranging from 705 to 870 km and scanning
a swath of 3.3° (48 km at nadir) to cover the earth’s surface
twice a day [3], [19]. The initial condition was provided by the
testing data set of WRFDA [20]. A baseline case was created
by assimilating the AMSU data at 12:00 UTC on Feb 5th,
2008 to update the initial and boundary conditions. WRF was
employed to run with the assimilated starting point to proceed
with the forecasting.

To estimate the impact of 5G transmissions, we picked
two levels of 5G leakage obtained from Fig. 5: -20 dBW
and -15 dBW. To assess the first-order magnitude of impact,
we assumed that the leakage from 5G system was uniformly
distributed over the earth’s surface, i.e., the brightness temper-
ature of the radiance data is increased by a constant level in the
23.8 GHz band (Channel 1). The two perturbed radiance data
sets were then used to create two perturbed initial conditions.
Boundary conditions were adjusted to match the perturbed
assimilation. We ran WRF forecasting for 12 hours for each
perturbed case respectively. Fig. 6 shows the difference that
5G leakage causes to both the precipitation forecasts and the
2m-temperature (temperature at 2m above the earth’s surface)
forecasts compared to the baseline case. From the figure,
it is noticeably clear that 5G can affect the meteorological
forecasting up to 0.9 mm in precipitation and 1.3 °C in 2m-
temperature. This significant amount of impact motivates the
need for a deeper investigation of the impact of 5G operation
on weather forecasting and means to mitigate it. Therefore,
it is imperative to develop refined models to improve our
understanding of this impact and mechanisms to support the
development of innovative schemes to allow co-existence of
the two competing uses of the spectrum resource.

V. FUTURE DIRECTIONS: MODELING AND MITIGATION

In this section, we discuss further directions for both mod-
eling the impact of 5G on weather forecasting as well as
mitigation.

Improved Propagation Models for 5G Leakage and
Induced Radiance: To better estimate the induced radiance



Fig. 6: The impact of 5G on precipitation and temperature
forecasting.

due to the leakage of 5G signals at the passive radiometers on
weather satellites, we need to use more detailed propagation
models, in which the absorption loss of 5G signals as they
pass through the atmosphere is considered. Knowing the
absorption and transmittance coefficients of the atmosphere
in any given geographical area, we can estimate the received
power of 5G signals at the satellite sensors that are monitoring
the atmosphere’s radiance. Note that both absorption and
transmittance of any medium like the atmosphere are also a
function of the passing signals’ wavelengths and frequencies.
In general, if we denote the absorption rate of the atmosphere
for the signals with the wavelength of λ with αλ, and its
transmittance coefficient for such signals with τλ, we always
have αλ + τλ = 1, which implies that the leaked 5G signal’s
energy will be either absorbed by the atmosphere or radiated
out from it [11].

Spatial Density, Elevation and Directionality: The aggre-
gate 5G leakage power into the 23.8 GHz band depends on the
spatial density of the 5G transmitters in a given geographical
area as well as the elevation from the earth’s surface and
their directionality. Hence, the density of outdoor base stations,
UEs, drones and outdoor IoT devices will need to be assessed.
In [21], using field measurement based path loss models for
5G, it is shown that roughly three times more base stations
(with cell radius up to 200 m) are required to accommodate
5G users as compared to existing 3G and 4G systems (with cell
radius of 500 m to 1 km). Since the coverage radius associated
with the pixel size of the AMSU sensor on weather satellites
is 48 km [3], we could use 5G equipment density distribution
models to evaluate the aggregate number of devices in a grid
of 48 square km, and estimate their total energy leakage in
a given angular direction that could reach the radiometers
located at weather satellites. Given that there is variability in
traffic demands across population centers, we should consider

at least 2 classes of models corresponding to metropolitan and
rural areas so that we can generate appropriate spatial density
models by taking into account the number of 5G base stations,
mobile devices of end-users and IoT devices in a given area.
We should also characterize as function of time of day, these
spatial densities to obtain dynamic spatial density models and
then augment them with both typical elevation data on devices
as well as models for directional transmissions.

Device and Transmission Parameters: Besides models
for spatial density, elevation and directionality, we should
additionally consider transmission parameters such as transmit
power levels, specific sub-band occupancy, transmit modu-
lation schemes and nonlinearity of power amplifiers in the
transmitters, to evaluate the ACI caused to the 23.8 GHz band.
Note that most of these parameters will vary depending on the
type of device (base station, mobile device, or IoT). In [22],
it is shown that the nonlinear distortion of power amplifiers in
5G networks increases due to the use of large bandwidth in
mmWave frequencies and operation near amplifier saturation.
Hence, we anticipate that the impact of the leakage and the
ACI to neighboring bands will be larger in mmWave bands.

Cross-Layer Approaches for Mitigating 5G Impact on
23.8 GHz: To further mitigate 5G impact, we should design
cross-layer PHY/antenna approaches to both spatially and
spectrally mitigate 5G leakage. For spatial mitigation, using
techniques such as direct antenna modulation (DM) [23]
seem promising. To spectrally mitigate 5G leakage, using
enabling technologies like filtennas [24] look promising. For
example, to spatially direct 5G transmissions away from the
direction of the passive weather sensors on satellites and also
spectrally minimize the ACI into the 23.8 GHz band, we can
use Direct Modulation Filtenna Array (DMFA), a mmWave
filtenna (filtering antenna) array [24] integrated with direct
antenna modulation [23] which enables sidelobe reduction for
the antenna farfield radiation patterns. Moreover, we could
integrate these PHY/antenna approaches into directional MAC
and routing schemes with power control to meet the dual goals
of mitigating 5G leakage and meeting desired QoS for 5G
users, at the same time.

Improved Weather Forecasting Algorithms: To enhance
coexistence of 5G systems and reliable weather forecasting,
we need to improve/update the data assimilation and NWP
models used for weather forecasting, to adapt them based on
the dynamics of 5G systems in time, space, and frequency.
For example, Weather Research and Forecasting (WRF) DA
(WRFDA) models could be utilized in several forecasting
periods to precisely capture 5G leakage impacts on different
weather events [25], [26] by comparing the obtained snapshots
for each period. The preliminary results in section IV used
3DVar, which is a three-dimensional scheme. Since 5G leakage
is dynamic in time, it is imperative to repeat the tests presented
with 4DVar – a DA scheme that adds the history of data to
3DVar to improve error correction [27]. Moreover, to identify
geospatial sensitivity of NWP to 5G leakage, stochastic model-
ing approaches could be implemented to systematically assess
the sensitivity of forecasting models to synthesized radiance



data disruptions resulting from 5G leakage. Traditional bias-
correction methods primarily focus on removing cloud affects
[28], however, such schemes should be upgraded to be able
to identify and remove 5G Leakage bias as well, thereby
increasing the precision of weather forecasts. Overall, pre-
processing of the radiance data before assimilation, passing
the data through proper filters, and using 5G leakage-informed
vector augmentation schemes, along with using machine learn-
ing approaches could all be helpful and effective in removing
the radiance noise associated to 5G leakage.

VI. CONCLUSION

Motivated by the concerns among the meteorological data
forecasting community regarding 5G, in this paper, we investi-
gated the impact of 5G mmWave leakage from the n258 band
on the precision of weather forecasts that rely on observations
of passive sensors (e.g. AMSU-A) operating at 23.8 GHz on
weather satellites used to detect the amount of water vapor in
the atmosphere. We studied the impact of 5G leakage on the
accuracy of data assimilation based weather prediction algo-
rithms by using a first order propagation model to characterize
the effect of the leakage signal on the brightness temperature
(atmospheric radiance) and the induced noise temperature at
the receiving antenna of the passive sensor (radiometer) on
the weather observation satellite. We then characterized the
resulting inaccuracies when using the Weather Research and
Forecasting Data Assimilation model (WRFDA) to predict
temperature and rainfall. For example, the impact of 5G
leakage of -20dBW to -15dBW on the well-known Super
Tuesday Tornado Outbreak data set, affects the meteorological
forecasting up to 0.9 mm in precipitation and 1.3 °C in
2m-temperature. We also outlined future directions for both
improved modeling of 5G leakage effects as well as mitigation
using cross-layer antenna techniques coupled with resource
allocation.
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