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Abstract—We consider the impact of end-user decision-
making on pricing of wireless resources when there is uncer-
tainty in the Quality of Service (QoS) guarantees offered by
the Service Provider (SP). Specifically, we consider the scenario
where an SP tries to sell wireless broadband services to multiple
potential customers when the advertised transmission rate
cannot be fully guaranteed at all times. Modeling the decision-
making of the end-users using Prospect Theory (a Nobel-Prize-
winning theory that captures human decision-making and its
deviation from Expected Utility Theory (EUT)), we formulate
a game to study the interplay between the price offerings,
bandwidth allocation by the SP and the service choices made
by end-users. We characterize the Nash Equilibria (NE) of the
underlying game and study the impact of such decision-making
on the system performance as well as revenue. We propose
“prospect pricing,” a pricing mechanism that can make the
system robust to decision-making that deviates from EUT.

Index Terms—Game Theory, Nash Equilibrium, Expected
Utility Theory, Prospect Theory, Probability Weighting,
Prospect Pricing

I. INTRODUCTION

The global mobile data traffic has seen a tremendous
growth in the past few years. According to a report by Cisco
[1], the global mobile data traffic grew 81% in the year 2013
alone, and is expected to increase 11-fold between 2013
and 2018. To overcome the challenge and provide a high-
capacity and reliable network, various technical approaches
have been explored by the Service Providers (SPs), including
improving spectrum efficiency, utilizing spectrum at 5GHz,
placing smaller cells in crowded areas, etc.. Meanwhile, from
an economical point of view, pricing mechanisms have been
studied extensively, since a proper pricing mechanism can
not only help an SP generate more revenue, but also provide
necessary control over the mobile data traffic [2]. In addition,
effort has been made to understand how people perceive
the quality of the delivered service, how different aspects
of the network’s performance may impact a user’s level of
satisfactory [3], [4], so that the SPs can improve and optimize
their network infrastructures accordingly. Despite all the
efforts, there isn’t much work that focuses on the fact that the
actual rates delivered by the SPs aren’t always as fast as they
advertise, and that the uncertainty that lies within the statistics
of the actual delivered data rate could potentially affect an

end-user’s decision-making process when she decides among
different service offers.

In order to fully inform the consumers about the actual
performance of their purchased services, the Federal Commu-
nications Commission (FCC) launched a project in which the
actual performances of broadband internet delivered by dif-
ferent SPs are measured and compared [5]. The result shows
that most SPs cannot deliver the advertised rates all the time.
A later project steered the attention to wireless broadband
service, in which participating users download a background
application onto their smartphones which periodically reports
key parameters that indicate the network’s performance such
as up link and down link data rates, and packet loss [6]. In
light of this, we investigate the problem where an SP tries
to sell her wireless broadband service to multiple potential
customers. We introduce the concept of service guarantee
as the probability that a user receives the advertised rate
successfully, and focus on the scenario where the users are
fully informed about this piece of information when they
purchase the service from an SP.

However, it is well known in behavioral economics that,
when risk and uncertainty are involved in a decision-making
process, people’s choices can systematically violate the pre-
dictions of Expected Utility Theory (EUT), the foundation
for the rationality assumption in game theory. Most of
the paradoxes can be successfully explained using Prospect
Theory (PT), a Nobel-Prize-winning theory first introduced
by D. Kahneman and A. Tversky in 1979 [7]. While PT was
originally developed to model and explain decision-making in
monetary transactions, it has recently found widespread use
in many contexts: social sciences [8]–[10], communication
networks [11]–[17], and smart energy management [18], [19].
Driven by the motivation to investigate the impact of the
violation of the predictions of the EUT caused by end-users’
decision-making processes in a wireless communications
setting, [12] investigated the scenario of data pricing in a
wireless random access game and compares the results be-
tween the game assuming that the users follow the decision-
making process predicted by EUT and the game where the
users follow the decision-making process predicted by PT.
In particular, the authors studied the impact when the users
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do not accurately evaluate their probabilities of successfully
accessing the channel. In our work, where the users are to
decide whether or not to purchase service over a channel
that might not be capable of delivering the advertised service
rate at all times, a user’s inaccurate weighting of probability
directly impacts her judgment on whether the service is worth
purchasing or not, and, as will be shown, this inaccurate
weighting of probability impacts the SP in both her revenue
and radio resources she owns. This impact motivates us to
study the role of “prospect pricing,” a term we use to describe
the method that effectively minimizes the revenue loss of the
SP and maintaining the radio resource allocation over the
users by adjusting the price of the service.

The rest of the paper is organized as follows: in Section
II, we introduce the model of the interactions between
the user and the SP as a Stackelberg game, and discuss
conditions under which the existence of a pure strategy NE
can be guaranteed; in section III, we discuss the impact of
the Probability Weighting Effect (PWE) on the end-user’s
decision-making process, the revenue of the SP, as well as
the prospect of recovering the revenue of the EUT game or
maintaining the NE of the EUT game via prospect pricing;
numerical results are shown in Section IV and conclusions
are presented in Section V.

II. A STACKELBERG GAME MODEL

Consider the scenario where there is a monopoly SP
and N potential users. The preliminary scenario involving
a monopoly SP and one potential user was studied in [20].
Similar to the single user scenario, we model the interactions
between the SP and the users with a Stackelberg game,
where the SP invests in the data rate, makes an offer to
a set of users first, based on the amount of bandwidth
she has, and each user decides whether or not to accept
the offer with some probability accordingly. We define an
offer made by the SP under the EUT game as the triple
{b, rEUT (b), ~BWEUT }, which corresponds to the rate b, the
price of the service at that rate determined by a predefined
function rEUT (b), and a specific allocation of the SP’s
bandwidth ~BWEUT = {BW1,EUT , ..., BWN,EUT }, where
| ~BWEUT |= BWmax,EUT , which is the total amount of
bandwidth the SP has. On the user’s side, we assume that no
interference exists between the users, and that the guarantee
level of the service at rate b is a function of the rate offered
and the amount of bandwidth allocated to that user. In
particular, for the i-th user, the service guarantee is defined
by

F̄Bi(b;BWi,EUT ) := P(Bi > b|BWi,EUT ), (1)

where Bi is the random variable representing the highest
rate the channel can support, and for a fixed rate b, a larger
BWi,EUT yields a higher service guarantee.

Denote the i-th user’s benefit upon receiving guaranteed
service at rate b with hi(b). Then, if the user accepts
the offer, she pays a price rEUT (b), and with probability
F̄Bi

(b;BWi,EUT ) she receives successful service, and with
probability FBi

(b;BWi,EUT ) := 1 − F̄Bi
(b;BWi,EUT ) the

channel cannot successfully deliver the service at rate b and
the user experiences an outage. Hence, if the user accepts
the service with probability pi, the expected utility of the
i-th user can then be represented as

Uuser,i(pi, b, BWi,EUT )

= pi[−rEUT (b) + hi(b)F̄Bi
(b;BWi,EUT )+

+ hi(0)FBi
(b;BWi,EUT )] + (1− pi)hi(0).

As a natural assumption, we assume that for all the users,
hi(0) = 0. Thus,

Uuser,i(pi, b, BWi,EUT ) = pi[−rEUT (b)

+ hi(b)F̄Bi
(b;BWi,EUT )].

The user will accept the offer at rate b with probability 1 if

hi(b)F̄Bi
(b;BWi,EUT ) > rEUT (b). (2)

As for the SP, a cost ci(b, BWi,EUT ) is incurred upon her
when she allocates an amount of bandwidth BWi,EUT and
makes an offer at rate b to the i-th user. Specifically, we
assume that

ci(b, BWi,EUT ) = c1b+ c2 + c3BWi,EUT , (3)

indicating that the cost for offering the service to a user
is an affine function with respect to the rate offered and
the amount of bandwidth allocated to that user. Hence, the
expected utility of the SP can be expressed as

USP (~p, b, ~BWEUT ) =

N∑
i=1

[pi [rEUT (b)− ci(b, BWi,EUT )]

+ (1− pi)(−ci(b, BWi,EUT ))].

Similar to the single user game presented in our previous
work, we assume that rEUT (b) and hi(b) are monotonically
increasing and concave functions. We also assume that the
guarantee level of the service goes to 0 as the offered rate
goes to infinity, and that the guarantee level of the service
is a monotonically increasing function with respect to the
bandwidth allocated to the user. Finally, we assume that the
fixed cost for the SP to offer the service is zero, i.e., c2 = 0.

With the above settings, the conditions for the existence
of an NE can be characterized. For simplicity, we dub the
the game involving a single user and a single SP as a Single-
User-Single-Provider (SUSP) game, and dub the generalized
game involving multiple users and a single SP as a Multiple-
User-Single-Provider (MUSP) game. Note that the results of
the SUSP game can be found in [20].

Theorem 1 (The existence of multiple Nash Equilibria (NE)).
Assuming that ∀i,

rEUT (b∗1,EUT ) > ci(b
∗
1,EUT , BWmax,EUT ), (4)

where

b∗1,EUT = argmax
b

(rEUT (b)− ci(b, BWmax,EUT )), (5)
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then there exists a pure strategy NE for the MUSP game1 if
and only if there exists a pure strategy NE for at least one
of the SUSP games consisting of one of the N users and the
SP, under which all the bandwidth of the SP is allocated to
that user.

Proof. If an SUSP game has a pure strategy NE, then
that NE is a pure strategy NE for the MUSP game. If
none of the SUSP games has a pure strategy NE, then ∀i,
rEUT (b∗1,EUT ) > hi(b

∗
1,EUT )F̄Bi

(b∗1,EUT ;BWmax,EUT ).
Hence, assuming the SP decides to offer the service to a set
of users denoted by SEUT , then ∀i ∈ SEUT , we must have
BWi,EUT < BWmax,EUT , and hence rEUT (b∗1,EUT ) >
hi(b

∗
1,EUT )F̄Bi(b

∗
1,EUT ;BWi,EUT ), which follows from the

assumption that reducing the bandwidth reduces the service
guarantee. Hence, the users within set SEUT will not accept
the offer at rate b∗1,EUT . Finally, we complete the proof by
showing that the same rate is offered under the pure strategy
NE of the MUSP and SUSP games. In fact, b∗1,EUT is the best
response of the SP given that the users within set SEUT all
accept with probability 1, regardless of the choice of SEUT .
This is because
b∗1,EUT = argmax

b
(rEUT (b)− ci(b, BWmax,EUT ))

= argmax
b

(rEUT (b)− c1b)− c3BWmax,EUT

= argmax
b
|SEUT | (rEUT (b)− c1b)

−
∑

i∈SEUT

BWi,EUT

= argmax
b

∑
i∈SEUT

(rEUT (b)− ci(b, BWi,EUT )).

It is worth pointing out that we do not consider mixed
strategy NE in the MUSP game. This is because, assuming
that under an NE the acceptance probability of the users is
represented by ~p, the offered rate is b, and the allocation of
the bandwidth is represented by ~BWEUT , we have

USP (~p, b, ~BWEUT ) =
∑

i∈SEUT

pi(rEUT (b)

− ci(b, BWi,EUT ))

= p̄ |SEUT | rEUT (b)− |SEUT | c1b
− c3BWmax,EUT ,

where p̄ is the average acceptance probability of all the users
within set SEUT . In order to reach a mixed strategy NE, the
SP must find a rate b and a corresponding bandwidth alloca-
tion ~BWEUT such that all the users are indifferent between
accepting and denying the offer. However, the expression also
shows that the users’ acceptance probabilities represented
by ~p only affect the SP’s decisions through their average p̄.
Hence, for any combinations of offered rate and bandwidth
allocation that induce a mixed strategy NE, the acceptance
probabilities of the users can be arbitrary as long as the

1In this article, the pure strategy NE refers to the NE where the users
accept the service with probability 1.

average acceptance probability remains fixed and the SP
cannot obtain a higher revenue through offering the service to
a subset of SEUT . Hence, the SP does not have control over
the individual user’s acceptance probability under a mixed
strategy NE.

Among the multiple NE of the MUSP game, we assume
that the SP selects the one that yields maximum profit. This
particular NE contains the largest number of users that could
possibly be supported by the total amount of bandwidth the
SP has. There can be multiple NE that achieve this maximum
profit, we here specify the procedure to find one.

1) Determine the minimum amount of bandwidth needed
for each user to accept the offer at rate b∗1,EUT and
price rEUT (b∗1,EUT ), denoted by BWi(b

∗
1,EUT ). This

bandwidth can be represented by the inverse function
of FBi

(b∗1,EUT ;BWi,EUT ) with BWi,EUT as the vari-
able, since FBi

(b∗1,EUT ;BWi,EUT ) is monotonically
increasing with respect to BWi,EUT and the SP knows
the service guarantee of the users in advance. Specifi-
cally, the expression

BWi(b
∗
1,EUT ) = F̄−1Bi

(
rEUT (b∗1,EUT )

hi(b∗1,EUT )
, b∗1,EUT

)
is equivalent to

F̄Bi
(b∗1,EUT ;BWi(b

∗
1,EUT )) =

rEUT (b∗1,EUT )

hi(b∗1,EUT )
.

2) Upon determining the minimum bandwidth needed
for each user to accept the offer, the SP selects the
user with the smallest BWi(b

∗
1,EUT ) each time until

the remaining bandwidth can no longer support an
additional user.

III. THE IMPACT OF PROSPECT THEORY ON END-USER
DECISIONS AND PROSPECT PRICING

In the remaining of this article, we consider the impact of
PT on the end-users’ decisions of whether or not to accept
a service offer, the impact to the radio resources and the
revenue of the SP, and the method the SP could utilize to
mitigate these effects and maintain the system on the original
designed operating status under the EUT game. PT is a theory
introduced in 1979 by D. Kahneman and A. Tversky. It is
commonly regarded as a better model for people’s decision-
making process under risky situations since it explains some
of the paradoxes that cannot be explained by EUT. The
introduction of the theory and a recent review can be found
in [7] [21], while a brief tutorial that tailors the theory to
the need of wireless communication scenarios can be found
in [12]. In our model, we consider specifically the impact of
the PWE, which characterizes people’s inaccurate judgement
of the probability of the occurrence of an event. It has
been agreed that people commonly under-weight probabilities
that are large and moderate, and over-weight probabilities
that are small. In the scenario in our model, we assume
that all the users under-weight the service guarantee. As an
analytical way to describe this under-weighting effect, we
adopt the notion of Prelec’s probability weighting function
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w(p) = exp {−(− ln p)α)} [22], and assume that all the
users share the same parameter α.

A. Impact of PWE

We study the condition under which the system is robust
to the PWE in the sense of retaining all the users without
having to change the service offer. The result is summarized
as follows.

Theorem 2. If all the users under-weight the service guaran-
tee, and the same offer inducing the pure strategy NE under
the EUT game is offered to the same set of users, then the
NE is preserved under PWE if and only if ∀i ∈ SEUT ,

BWi,EUT > F̄−1Bi

(
λi, b

∗
1,EUT

)
, (6)

where

λi = w−1
(
F̄Bi

(
b∗1,EUT ;BWi(b

∗
1,EUT )

))
. (7)

Proof. For the i-th user, the necessary and sufficient
condition for him to accept an offer at rate b∗1,EUT
and price rEUT (b∗1,EUT under the impact of
PWE is hi(b

∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,EUT )) >
rEUT (b∗1,EUT ), i.e., w(F̄Bi

(b∗1,EUT ;BWi,EUT )) >
F̄Bi

(b∗1,EUT ;BWi(b
∗
1,EUT )). Since the probability

weighting function is monotonically increasing,
and thus has an inverse, we have BWi,EUT >
F̄−1Bi

(
w−1

(
F̄Bi

(
b∗1,EUT ;BWi(b

∗
1,EUT )

))
, b∗1,EUT

)
.

The above result indicates that, in order to retain all the
users without changing the service offer, the total amount of
bandwidth of the SP must satisfy

BWmax,EUT =
∑

i∈SEUT

BWi,EUT

>
∑

i∈SEUT

F̄−1Bi

(
λi, b

∗
1,EUT

)
. (8)

When α = 1, w(p) = p, and the PT game reduces to EUT
game. As α decreases, w−1(p) increases for every fixed p that
satisfies w(p) < p, and hence the right hand side of the above
inequality increases, indicating that when PWE is introduced
and the users under-weight the service guarantee, the SP must
invest in more bandwidth than the amount required under the
EUT game in order to retain all the users with the same offer.

B. Prospect Pricing

When the bandwidth of the system does not satisfy the
condition specified in equation (8), we resort to the method
of prospect pricing, which changes the pricing function to
achieve the following goals.

• The first aspect of the goal is to retain the Radio
Resource Management (RRM) constraints when PWE
is introduced. Similar to the RRM constraints we intro-
duced in the SUSP game, the RRM constraints for the

MUSP game are as follows.

SEUT = SPT , (9)
b∗1,EUT = b∗1,PT , (10)

BW ∗max,EUT = BW ∗max,PT , (11)
~BWEUT = ~BWPT . (12)

The constraints restrict the SP to offer a service package
containing the same rate to the same set of users when
PWE is introduced. They also restrict the SP to allocate
the same amount of bandwidth to each user within the
set.

• The second aspect of the goal is to retain the revenue
when PWE is introduced. Similar to the results obtained
in the SUSP game, in order to retain the revenue, the
SP must violate the RRM constraints, assuming that all
the users under-weight the service guarantee.

We answer the questions of whether prospect pricing can
be used to retain strict RRM constraints and the question
of whether prospect pricing can be used to retain the same
amount of revenue with or without strict RRM constraints
being held.

Theorem 3. When (8) is not satisfied, and when all the users
under-weight the service guarantee, prospect pricing can be
used to retain strict RRM constraints, at the cost of the SP
losing revenue of at least

(13)
LRRM = max

i∈SEUT

{rEUT (b∗1,EUT )

− hi(b∗1,EUT )w(F̄Bi
(b∗1,EUT ;BWi,EUT ))}

per user. Furthermore, the revenue loss can be reduced, but
not fully recovered, when the SP is allowed to violate the
RRM constraints by reallocating the bandwidth.

Proof. In order to retain strict RRM constraints, all the users
must accept the same offer containing the same rate and
bandwidth, i.e., ∀i ∈ SEUT ,

rPT (b∗1,EUT ) < hi(b
∗
1,EUT )w(F̄Bi(b

∗
1,EUT ;BWi,EUT )).

(14)

Hence,

rPT (b∗1,EUT )

< min
i∈SEUT

{
hi(b

∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,EUT ))
}
.

(15)

However,

(16)
min

i ∈SEUT

{
hi(b

∗
1,EUT )w(F̄Bi(b

∗
1,EUT ;BWi,EUT ))

}
< rEUT (b∗1,EUT ).

Hence, in order to retain strict RRM constraints, the SP must
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take a revenue loss of at least
LRRM

= rEUT (b∗1,EUT )

− min
i∈SEUT

{
hi(b

∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,EUT ))
}

= max
i∈SEUT

{
rEUT (b∗1,EUT )

− hi(b∗1,EUT )w(F̄Bi
(b∗1,EUT ;BWi,EUT ))

}
.

(17)

Allowing reallocation of the bandwidth will reduce the
revenue loss, since the revenue loss allowing bandwidth
allocation LBA is the minimum revenue loss over all possible
bandwidth allocation, and the bandwidth allocation under
strict RRM constraints is only one instance. We next show
that allowing reallocation of the bandwidth cannot help the
SP to fully recover the revenue by contradiction. Since the
service is offered to the same set of users and the offered
rate remains the same, the price must be the same in oder
to retain the revenue, i.e., rEUT (b∗1,EUT ) = rPT (b∗1,EUT ).
Assume that there exists a bandwidth allocation such that
∀i ∈ SEUT ,

rPT (b∗1,EUT ) < hi(b
∗
1,EUT )w(F̄Bi(b

∗
1,EUT ;BWi,PT )).

(18)

Then we must have ∀i ∈ SEUT ,

BWi,PT > F̄−1Bi

(
w−1

(
rPT (b∗1,EUT )

hi(b∗1,EUT )

)
; b∗1,EUT

)
= F̄−1Bi

(
λi; b

∗
1,EUT

)
. (19)

Hence, the summation over the set SEUT yields the condi-
tion specified in (8), contradicting the assumption that the
bandwidth is inefficient in the first place.

The above results show that the price rPT (b∗1,EUT ) is
lower than the price rEUT (b∗1,EUT ). The choice of the pricing
function is not considered here as we are only interested
in the value of that pricing function at rate b∗1,EUT , which
remains the same when strict RRM constraints are enforced.

IV. NUMERICAL RESULTS

In this section, we demonstrate some of the conclusions
drawn above. We consider a scenario where N = 10 users
are spread uniformly within a single cell with a radius of 800
meters. There are no interference between different users, and
we assume that the SP offers the service to all the users. Each
user experiences a combination of path loss, shadowing, and
Rayleigh fading. The guarantee of the service for each user
in this setup is one minus the outage probability of the fading
channel between the user and the base station and the rate
offered is the encoding rate at the transmitter. The path loss
and shadowing are calculated using a simplified model [23]

Pri = Pt +K − 10γ log10

d

d0
+ ϕi,dB , (20)

where Pt and Pri are the transmitted signal power and the
received signal power at the i-th user in decibels, K is a
constant taking the value −20 log10(4πd0/λ). γ is the path

TABLE I
PARAMETERS USED FOR SIMULATION

Parameter Meaning Value
Pt Transmission power 10 W
K Antenna dependent constant −64.5 dB
N0 PSD of thermal noise −174 dBm
d0 Reference distance for the antenna far-field 20 m
γ Path loss exponent 4
σ Standard deviation for ϕi,dB 4
r Cell radius 800 m

loss exponent, d is the distance between the user and the
base station antenna, and d0 is the reference distance for the
antenna far-field. In addition, ϕi,dB is a Gaussian random
variable that captures the effect of shadow fading. Finally,
the guarantee function for each user can be expressed as

F̄Bi
(b) = exp

{
− 2

b
BWi,EUT − 1

Pri/(N0BWi,EUT )

}
. (21)

where N0 is the power spectral density (PSD) of the noise,
BWi,EUT represents the bandwidth allocated to the i-th user,
and b represents the encoding rate of the SP.

A list of the values for the parameters can be found in the
following table.

In Figure 1, we show the revenue loss of the SP when
no adjustment is made to the price of the service offer,
and compare it to the revenue loss when prospect pricing
is allowed (with/without bandwidth reallocation). Two cases
are considered, in which the initial bandwidth owned by
the SP is 10% (solid line) or 50% (dashed line) more than
the minimum that is necessary to make all the users accept
the offer under the EUT game, respectively, and is being
allocated to all the users such that each user receives 10%
or 50% more than the minimum needed for her to accept the
offer. The horizontal axis represents different values of α, the
parameter that captures the level of probability weighting of
the users, while the vertical axis represents the revenue loss
normalized by the revenue the SP makes under the EUT game
(prices paid by the users minus the cost).

The beige curves show the revenue loss of the SP when
prospect pricing is not implemented, which quickly increases
as α decreases. Notice that each increment represents a loss
of at least one user, and that the part of the curve above 1
indicates that the SP is getting negative revenue in reality,
since not enough users are retained to recover the cost. The
blue curves show the minimum revenue loss of the SP when
prospect pricing is allowed, but when strict RRM constraints
are enforced, while the red curve corresponds to the case
where the SP is allowed to implement prospect pricing and
violate the RRM constraints by reallocating the bandwidth
among the users. As can be seen, the solid and dashed blue
curves greatly reduce the revenue loss of their counterpart
beige curves, and the red curves reduces the revenue loss
further, which corresponds to our result in Theorem 3. It can
also be seen from the graph that adding more bandwidth into
the system provides more robustness against α, i.e., all the
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10% redundant bandwidth, strict RRM
constraints, without prospect pricing

10% redundant bandwidth, strict RRM
constraints, with prospect pricing

10% redundant bandwidth, strict RRM
constraints, with prospect pricing and
bandwidth reallocation

50% redundant bandwidth, strict RRM
constraints, without prospect pricing

50% redundant bandwidth, strict RRM
constraints, with prospect pricing

50% redundant bandwidth, strict RRM
constraints, with prospect pricing and
bandwidth reallocation

Fig. 1. Revenue loss of the SP normalized by the revenue under EUT
game. N = 10, hi(b) = 10−2 × (b × 10−3)0.65, rEUT (b) = 2 ×
10−3×(b×10−3)0.82, c1 = 1

3
×10−6, c3 = 10−7, ci(b;BWi,EUT ) =

c1b+ c3BWi,EUT b∗1,EUT ≈ 7Mbps.
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10% redundant bandwidth, strict RRM constraints,
with prospect pricing

10% redundant bandwidth, strict RRM constraints,
with prospect pricing and bandwidth reallocation

50% redundant bandwidth, strict RRM constraints,
with prospect pricing

50% redundant bandwidth, strict RRM constraints,
with prospect pricing and bandwidth reallocation

Fig. 2. Price of the SP at rate b∗1,EUT normalized by the price under the
EUT game. N = 10, hi(b) = 10−2 × (b × 10−3)0.65, rEUT (b) = 2 ×
10−3×(b×10−3)0.82, c1 = 1

3
×10−6, c3 = 10−7, ci(b;BWi,EUT ) =

c1b+ c3BWi,EUT , b∗1,EUT ≈ 7Mbps.

curves are pushed towards the left hand side of the graph.
Note that adding more bandwidth increases the cost for the
SP, which reduces revenue in turn.

The price at rate b∗1,EUT under the EUT and PT game is
shown in Figure 2. We can see that the price reduction is
smaller when the SP is allowed to reallocate her bandwidth
compared to the case when strict RRM constraints are
enforced, and is smaller when the initial amount of bandwidth
owned by the SP is larger.

V. CONCLUSION

In this work, we considered the impact of end-users’
decision-making process on the resource allocation in a wire-
less network when there is uncertainty in the QoS guarantees
offered by the SP. We formulated a Stackelberg game to
study the interplay between the price offerings, bandwidth

allocation by the Service Provider and the service choices
made by end-users. We characterized the Nash Equilibria of
the game, and studied the impact on the system performance
and the SP’s revenue when end-users follow the decision-
making process predicted by Prospect Theory. Finally, we
proposed “prospect pricing”, a pricing mechanism that can
make the system robust to decision-making that deviates from
Expected Utility Theory. We described the minimum revenue
loss of the SP under the strict Radio Resource Management
constraints with and without the help from prospect pricing,
we also characterized the minimum revenue loss when the
SP is allowed to reallocate the bandwidth allocated among
the users. We showed that, when the amount of bandwidth
of the SP is not large enough, the SP cannot fully retain
her revenue under the EUT game as the end-users start to
under-weight the service guarantee, even when she is allowed
to reallocate bandwidth and implement prospect pricing.
However, prospect pricing does reduce the revenue loss of the
SP under the strict RRM constraints, while further allowing
bandwidth reallocation reduces the loss further more.
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