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Abstract - One of the many impairments inherently
present in any wireless communication system, that
must be recognised and often effectively mitigated for
a system to function well, is fading. Fading itself has
been studied and classified into a number of different
types. Here we present a detailed mathematical
analysis and some useful models for capturing the
effect of small scale fading. Further we discuss the
types of fading as per the behaviour of the wireless
channel with respect to the transmit signal.

I. RAYLEIGH FADING

Small scale fading is a characteristic of radio
propagation resulting from the presence reflectors
and scatterers that cause multiple versions of the
transmitted signal to arrive at the receiver, each
distorted in amplitude, phase and angle of arrival.
Consider the situation shown in Fig. 1 wherein a
mobile receiver (mobile station or MS) is assumed to
be travelling along the positive x axis with a velocity
v m/s. The figure shows one of the many waves
arriving at the mobile station. Let us call this the
nth incoming wave. Let it be incident at an angle
θn(t), where the dependence on t stems from the
fact that the receiver is not stationary.

The motion of the MS produces a Doppler shift in
the received frequency as compared to the carrier fre-
quency. This doppler offset is given by:

∗Taught by Dr. Narayan Mandayam, Rutgers University.

Figure 1: The figure shows a mobile station moving along the

positive x-axis moving at a velocity of v m/s and the nth incoming
wave at an angle of θn(t).

fD,n(t) = fm cos(θn(t)) (1)

where fm = maximum Doppler frequency = v/λ, λ
being the wavelength of the radiowave. Waves ar-
riving from the direction of motion cause a positive
doppler shift, while those coming from the opposite
diection cause a negative doppler shift. We wish to
derive a mathematical framework to characterize the
effects of small scale fading. Consider the transmit
bandpass signal:

s(t) = Re{u(t).ej2πfct} (2)

where u(t) is the complex baseband equaivalent of
the bandpass transmit signal. If N waves arrive at
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the MS, the received bandpass signal can be written
as:

x(t) = Re{r(t)ej2πfct} (3)

with

r(t) =
N∑

n=1

αn(t).e−j2πφn(t)u(t − τn(t)) (4)

where

φn(t) = (fc + fD,n(t))τn(t) − fD,n(t).t (5)

is the phase associated with the nth wave. The above
expression for r(t) looks like the output of a linear
time-varying system. Therefore the channel can be
modeled as a linear filter with a time varying impulse
response given by:

c(τ, t) =

N∑

n=1

αn(t)e−jφn(t)δ(τ − τn(t)) (6)

c(τ, t) is the channel response at time t to an input
at time t − τ . Typically the quantity fc + fD,n(t)
is large. This means that a small change in delay
τn(t) causes a large change in the phase φn(t). The
delays themselves are random. This implies that
the phases of the incoming waves are random. The
αn(t)’s are not very different from one another, i.e.
the αn(t)’s do not change much over a small time
scale. Therefore the received signal is a sum of a
large number of waves with random phases. The
random phases imply that sometime these waves
add constructively producing a received signal with
large amplitude, while at other times they add
destructively, resulting in a very low amplitude.
This precise effect is termed small-scale fading, and
the time scale at which the resulting fluctuation of
amplitude occurs is of the order of one wave-cycle
of the carrier frequency. The range of amplitude
variation that can result can be upto 60 to 70 dB.
Small scale fading is therefore pramarily due to the
random variations in phase φn(t) and also because of
the doppler frequency fD,n(t). The effect of fading
is even more important at higher data rates, as we

shall see later.

Further continuing our modeling of the received sig-
nal, we can neglect the baseband modulating signal
for narrowband signals (i.e. signals in which the base-
band signal bandwidth is very small compared to the
carrier frequency, which is true of most communica-
tion systems) and consider the unmodulated carrier
alone.

r(t) =
N∑

n=1

αn(t)e−jφn(t) (7)

x(t) = Re{
N∑

n=1

αN (t)e−jφn(t)ej2πfct} (8)

= rI(t) cos(2πfct) − rQ(t) sin(2πfct)

where

rI(t) =

N∑

n=1

αn(t) cos(2πfct) (9)

rQ(t) =

N∑

n=1

αn(t) sin(2πfct) (10)

r(t) = rI(t) + rQ(t) (11)

rI(t) and rQ(t) are respectively the in-phase and the
quadrature-phase components of the complex base-
band equivalent of the received signal. Now we invoke
the Central Limit Theorem for large N . This makes
rI(t) and rQ(t) independent gaussian random pro-
cesses. Further, assuming all the random processes
involved are WSS, we have:

fD,n(t) = fD,n (12)

αn(t) = αn (13)
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τn(t) = τn (14)

We also assume that x(t) is WSS.

Φxx(τ) = E{x(t).x(t + τ)} (15)

= ΦrIrI
(τ). cos(2πfct) − ΦrQrI

(τ). sin(2πfct)

Now,

ΦrIrI
(τ) = E{rI(t)rI(t + τ)} (16)

= E{{
N∑

i=1

αi cos(φit)}.{
N∑

j=1

αj cos(φj(t + τ))}}

We can assume the φj ’s are independent because de-
lays and doppler shifts are independent from path to
path.

φn(t) = U(−π, π) (17)

On evaluating the expectations, we get:

ΦrIrI
(τ) =

Ωp

2
E {cos(2πfD,nτ)} (18)

where

Ωp

2
=

1

2

N∑

i=1

E
{
α2

i

}
(19)

which is the total average received power from all
multipath components. Now, in the expression above
(18), we have

fD,n = fm cos(θn) (20)

Therefore, we have the auto correlation function of
the in-phase component rI(t):

ΦrIrI
(τ) =

Ωp

2
Eθ {cos(2πfmτ cos(θ)} (21)

Going through a similar series of steps for the
cross-correlation function between the in-phase and
quadrature-phase component, we get:

ΦrIrQ
(τ) = E {rI(t)rQ(t + τ)} (22)

=
Ωp

2
Eθ {cos(2πfmτ cos(θ))}

If the 2-D isotropic scattering assumption is used in
the above analysis (i.e. the incoming angle θ is uni-
formly distributed over (−π, π)) then the above is
called the Clarke’s Model. Using the uniform distri-
bution for θ in the above, we get:

ΦrIrI
(τ) =

Ωp

2
.

1

2π

∫ +π

−π

cos(2πfmτ. cos(θ))dθ (23)

which with a change of variable gives us:

=
Ωp

2
.
1

π

∫ +π

0

cos(2πfmτ. sin(θ))dθ

︸ ︷︷ ︸

J0(2πfmτ)

(24)

=
Ωp

2
.J0(2πfmτ)

where J0(.) is the Bessel function of the zeroth order
and first kind.1

Similarly, using the uniform pdf for θ in the expres-
sion for cross correlation of the in-phase and quadra-
ture phase components of r(t) gives:

ΦrIrQ
= 0 (25)

We are now in a position to talk about the PSD of
rI(t):

SrIrI
(f) = F {ΦrIrI

(τ)} (26)

=

{
Ωp

4πfm

1√
1−(f/fm)2

|f | < fm

0 otherwise

1The Bessel functions of the first kind Jn(x) are defined

as the solutions to the Bessel differential equation: x2 d2y
dx2 +

x
dy
dx

+ (x2
− n2)y = 0. The bessel function Jn(x) can

also be defined in terms of the contour integral: Jn(x) =
1

2πj

∫
e(x/2)(t−1/t)t−n−1dt where the contour encloses the ori-

gin and is traversed in a counter-clockwise direction. For the
special case of n = 0 a closed form expression due to Frobe-

nius is Jo(x) =
∑

∞

k=0
(−1)K ( 1

4
x2)2

(k!)2
or the integral J0(x) =

1
π

∫ π

0
ejx cos(θ)dθ
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Figure 2: Bessel function of the zeroth order and the first type.
This is the shape of the autocorrelation function ΦrI rI

(τ) of the
in-phase component of the complex baseband equivalent of the
received signal.

Having obtained the PSD of rI(t), we can now pro-
ceed to derive the PSD x(t) as follows:

r(t) = rI(t) + jrQ(t) (27)

Φrr(τ) = E {r∗(t).r(t + τ)} (28)

= ΦrIrI
(τ) + jΦrIrQ

(τ)

Therefore:

Φrr(τ) = ΦrIrI
(τ)

Further:

Φxx(τ) = Re
{
Φrr(τ).ej2πfct

}
(29)

= Re
{
ΦrIrI

(τ).ej2πfct
}

Sxx(f) = F
{
Re

{
ΦrIrI

(τ).ej2πfct
}}

(30)

= F
{

ΦrIrI
(τ).ej2πfct + Φ∗

rIrI
(τ).e−j2πfct

2

}

Note that ΦrIrI
(τ) = Φ∗

rIrI
(−τ), and so for real rI(t),

ΦrIrI
(τ) = ΦrIrI

(−τ). Thus we have:

Sxx(f) = F
{

ΦrIrI
(τ).ej2πfct + ΦrIrI

(τ).e−j2πfct

2

}

(31)

Sxx(f) =
1

2
{SrIrI

(f − fc) + SrIrI
(−f − fc)} (32)

Now we shall make use of the knowledge that that
r(t) = rI(t) + j.rQ(t) is a complex Gaussian process
for large N . Therefore the envelope z(t) = |r(t)| =
√

r2
I (t) + r2

Q(t) has a Rayleigh distribution 2

Pz(x) =
x

σ2
.e−x2/2σ2

; x ≥ 0 (33)

where E{z2} = Ωp = 2σ2 = average power. Thus
we have the probability density function of the recd.
signal given by:

Pz(x) =
x

Ωp/2
.e−x2/Ωp ; x ≥ 0 (34)

The above is called Rayleigh fading and is derived
from Clarke’s fading model, wherein the PSD of
the received signal has the U-shape shown above.
Rayleigh fading is generally applicable when there is
no line-of-sight component. This is a good model for
cellular mobile radio. Also note that the squared en-
velope |r(t)|2 is exponentially distributed at any time
t:

Pz2(x) =
1

Ωp
.e−x/Ωp ; x ≥ 0 (35)

2It is known that the random variable obtained by finding
the square-root of the sum of the squares of two independent
gaussian random variables has a Rayleigh distribution
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Figure 3: Power spectral density of the received signal, Sxx(f).
This is called the U-shaped PSD characteristic of Rayleigh fading
modeled by the clarke’s model

II. RICIAN FADING

We now consider the situation that arises when there
is a line-of-sight component in the received signal.
This is common in microcellular systems. The prob-
ability dstribution for the envelope of the received
signal is then given by:

pz(x) =
x

σ2
.e

−(x2+s2)

2σ2 .I0

{xs

σ2

)

; x ≥ 0 (36)

where s2 = α2
0 cos2 θ0 + α2

0 sin2 θ0 = α2
0 = ’non cen-

trality parameter’. It denotes the power in the line-
of-sight component. 3 I(.) is the modified bessel
function of the zeroth order 4.

The quantity K = s2

2σ2 is called the Rice factor. Note
that setting K = 0 transforms this model into the
Rayleigh fading model discussed in the preceeding
section and setting K = ∞ would transform it into a

3α0 denotes the amplitude gain of the zeroth wave, (ref:
previous section) which in this case is the line-of-sight compo-
nent.

4The modified Bessel functions In(x) are defined as the so-

lutions to the ’modified’ Bessel differential equation: x2 d2y
dx2 +

x
dy
dx

− (x2 + n2)y = 0 and can be expressed in terms of the

Bessel functions as: In(x) = (j)−nJn(jx)

simple AWGN model with no fading. The avegrage
power is given by E[z2] = Ωp = s2 + 2σ2. Also:

s2 =
Kωp

K + 1
, 2σ2 =

Ωp

K + 1
(37)

III. NAKAGAMI FADING MODEL

The Nakagami Fading model is a purely emperical
model and is not based on results derived from phys-
ical consideration of radio propagation. It uses a chi-
square distrbution with m degrees of freedom. The
distribution of the received signal’s envelope is given
by:

pz(x) =
2mmx2m−1

Γ(m)Ωm
p

.e−mx2/Ωp ; m ≥ 1

2
(38)

where Ωp = E[z2] = average power, and m is a model
parameter. By varying the value of this parame-
ter, the model can capture various distributions. For
m = 1 the model converges to the Rayleigh fading
model, setting m = 1/2 makes it a one sided gaus-
sian distribution, while setting m = ∞ transforms
it into a ’no-fading’ model. Finally, the Rician dis-
tribution can be approximated though the Nakagami
model using the followingrelationships:

K =

√
m2 − m

m −
√

m2 − m
; m ≥ 1 (39)

or,

m =
(K + 1)2

2K + 1
(40)

The Nakagami model is favoured because it has a
closed form analytical expression.

All the small-scale fading models considered above
assume that all frequencies in the transmitted sig-
nal are affected similarly by the channel, i.e. by the
fading. This is called flat-fading or frequency non-

selective fading.
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Figure 4: The power delay profile gives the the power received as
a function of time when an impulse is transmitted over the wireless
channel.

IV. FREQUENCY SELECTIVE FADING CHANNELS

Consider only WSSUS (Wide Sense Stationary
Uncorrelated Scattering). Recall that the channel
response is given by c(t, τ) and represents the
response of the channel at time t to an input impulse
at time t − τ .

Definition: The power delay profile or multipath in-

tensity profile is defined as:

Φc(τ) =
1

2
E[c(t, τ)c∗(t, τ)] (41)

It gives the average power at the channel output as
a function of time delay.

Definition: Average delay is defined as:

µτ =

∫
∞

0 τφc(τ)dτ
∫
∞

0
φc(τ)dτ

(42)

Definition: RMS Delay spread is defined as:

στ =

√∫
∞

0 (τ − µT )2φc(τ)dτ
∫
∞

0
φc(τ)dτ

(43)

Figure 5: Since received power can only be measured on a dis-
crete time scale, we can only have a discrete power delay profile,
which indicates the power received at discrete instants of time
when an impulse is transmitted on the wireless channel.

The RMS delay spread is a way of quantifying the
multipath nature of the channel. It is of the order
of µs in outdoor situation and of the order of ns in
indoor situations. Note that the absolute transmit
power level does not affect the definition of στ and
µτ . Instead the above two definitions only depend
on the relative amplitudes of multipath components.

As against the power delay profile shown above, in
reality we can only have a discrete power delay pro-
file. Corresponding to this discrete delay profile, we
have the following definitions:

τ =

∑

k P (τk)τk
∑

k P (τk)
(44)

στ =

√

τ̄2 − (τ̄ )2 (45)

where

τ̄2 =

∑

k P (τk)τ2
k

∑

k P (τk)
(46)
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V. CHARACTERIZATION OF FADING CHANNELS

Fading radio channels have been classified in two
ways. 5 The first type of classification discusses
whether the fading is flat (frequency non-selective)
or frequency selective, while the second classification
is based on the rate at which the wireless channel
is changing (or in other words, the rate of change
of the impulse response of channel), i.e. whether
the fading is fast or slow. In connection with these
characterizations of fading channels, it is useful to
note the following quantities:

Coherence bandwidth : Coherence bandwidth is a
statistical measure of the range of frequencies over
which the channel can be considered ”flat” (i.e. fre-
quency non-selective, or in other words a channel
which passes all spectral components with equal gain
and phase). It may also be defined as the range of fre-
quencies over which any two frequency components
have a strong potential for amplitude correlation. It
has been shown that:

Bc ∝
1

στ
(47)

where στ is the RMS delay spread. Also, if we define
the coherence bandwidth as that bandwidth over
which the frequency correlationfunction is above
0.5 (i.e. the normalized cross-correlation coefficient
> 0.5 for all frquencies) then Bc ≈ 1

5στ
. Note that

if the signal bandwidth is > BC , then the different
frequency components in the signal will not be faded
the same way. The channel then appears to be
’frequency-selective’ to the transmitted signal.

Doppler spread and Coherence time: While στ

and Bc describe the time dispersive nature of the
channel in an area local to the receiver, they do not
offer any information about the time-variations of the
channel due to relative motion between the trans-
mitter and the receiver. The doppler spread BD,

5An excellent treatment of the characterization of fading
channels is found in an article in the Sept. 1997 issue of the
IEEE communications magazine: ’Rayleigh Fading Channels
in Mobile Digital Communication Systems: Part I: Caharac-
terization’, by Bernard Sklar.

defined as a measure of spectral broadening caused
by the time-rate of change of the channel (related to
the doppler frequency). 6. The coherence time is a
statistical measure of the time duration over which
two received signals have a strong potential for am-
plitude correlation. Thus if the inverse bandwidth
of the basebad signal is greater than the coherence
time of the channel then the channel changes during
transmission of he baseband message. This will cause
a distortion at the receiver. It is shown that:

Tc ≈
1

BD
(48)

If the coherence time is defined as the duration of
time over which the time correlation function is > 0.5,
then:

Tc ≈
√

9

16πf2
m

(49)

where fm is the maximum doppler frequency = v/λ.

Example - Consider a vehicle travelling at 60 mi.
per hour and communicating with a stationary base
station using a carrier frquency fc = 900 Mhz. This
would give a channel coherence time of Tc ≈ 6.77
msec. Therefore if the symbol rate of transmission
is greater than 150 samples per second then the
fading nature of the channel doesn’t really affect the
transmitted signal being received by the receiver in a
harmful way. For a smaller symbol rate, the symbol
width is so large that the channel changes (symbol
duration > Tc) within a single symbol.

Flat fading : If a channel has a constant response
for a bandwidth > the transmitted signal bandwidth,
then the channel is said to be a flat fading channel.
The conditions for a flat fading channel are:

Bs � Bc (50)

Ts � Tc (51)

6If the baseband signal frequency is much greater than the
doppler spread BD then the effects of doppler spread are neg-
ligible
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where Bs and Ts are the signal bandwidth and the
symbol duration respectively.

Frequency selective fading : A channel is said
to be frequency selective if the signal bandwidth is
greater than the coherence bandwidth of the chan-
nel. In such a case, different frequency components
of the transmit signal undergo fading to different ex-
tents. For a frequency-selective fading situation:

Bs > Bc (52)

Ts < Tc (53)

The concept of pulse-shaping is used to control the
transmit signal bandwidth. This is used in the degin
of the transmit symbol such that given the required
symbol rate of transmission, a pulse shape is designed
so as to make the signal bandwidth fit within the
coherence bandwidth of the signal. Ofcourse, this
places an upper limit on the achievable symbol rate.
OFDM attempts to solve this problem by breaking
up the signal bandwidth into sub-carriers, each of
which can be individually transmitted without the
channel behaving in a frequency - selective manner.
A common rule of thumb to characterize a channel
as frequency selective is that if:

στ > 0.1Ts (54)

Fast fading : In a fast fading channel, the chan-
nel impulse response changes rapidly within the sym-
bol duration, i.e. the coherence time of the channel
is smaller that the symbol period of the transmit-
ted signal. Viewed in the frequency domain, signal
distortion due to fast fading increases with increas-
ing Doppler spread relative to the bandwidth of the
transmitted signal. Therefore, a signal undergoes fast
fading if:

Ts > Tc (55)

Bs < BD (56)

where BD is the Doppler spread of the channel and
Tc is its coherence time.

Slow fading : In a slow fading channel, the chan-
nel impulse response changes at a rate much slower
than the transmitted baseband signal S(t). In the fre-
quency domain, this implies that the Doppler spread
of the channel is much less than the bandwidth of the
baseband signal. There fore, a signal undergoes slow
fading if:

Ts � Tc (57)

Bs � BD (58)

Key Channel Parameters and
Time Scales

Symbol Typical
Value

Carrier frequency fc 1 GHz
Communication bandwidth W 1 MHz
Distance between Tx and Rx d 1 km
Velocity of mobile v 64 km/h
Doppler shift for a path fm = fcv/c 50 Hz
Time for change in path gain d/v 1 min
Time for change in path phase 1/(4fm) 5 ms
Coherence time Tc = 1/(BD) 2.5 ms
Delay spread στ 1 µs
Coherence bandwidth Bc ≈ 1/2στ 500 kHz

Table 1: A summary of the physical parameters
of the channel and the time scale of change of
the key parameters in its discrete-time baseband
model. (Taken from ’Fundamentals of Wireless
Communication’, David Tse, University of California
Berkely, Promod Vishwanath, University of Illinios
Urbana-champaign)

It must be noted that the wireless channel is func-
tion of what is transmitted over it. In order to
determine whether fading will affect communication
on a wireless channel, we must compare the symbol
duration of data transmission with the coherence
time and the bandwidth of the baseband signal (fast
/ slow fading) with the coherence bandwidth of the
channel (flat / frequency selective nature).

It should also be clear that when a channel is specified
as a fast or slow fading channel, it does not specify
whether the channel is flat fading or frequency selec-
tive in nature. These are two independent classifica-
tions. Fast and slow fading deal with the time rate of
change of the channel with reference to the transmit-
ted signal, whicle flat and frequency-selective fading
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deal with weather the relationship between the signal
bandwidth and the range of frequencies over which
the fading behaviour of the channel is uniform.
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