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Abstract – This document discusses the probability of error for non-coherent FSK and 
DPSK.  Digital signaling on a frequency selective channel will be reviewed as well as 
equalization schemes to eliminate ISI. 
 
1.0 Probability of Error for non-coherent BFSK  
 
Recall from the last lecture that we have Binary FSK orthogonal modulation.  When a 
“1” is selected then S1(t) is transmitted and when a “0” is selected then S2(t)is 
transmitted.  S1(t) and S2(t) are orthogonal.  The received signal is g1(t) if S1(t) was 
transmitted and g2(t) if S2(t) is transmitted.  The received signals g1(t) and g2(t) are also 
orthogonal.  The receiver structure is shown in figure 1. 
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Figure 1. Non-coherent Receiver for BFSK
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Let S1(t) be transmitted, then an error occurs if l2 > l1. 
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Where XI2 and XQ2 are both Gaussian with zero mean and psd = N0/2. 
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2.0 Probability of error for non-coherent M-ary FSK 
 
In general for M-ary FSK with non-coherent detection: 
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A non-coherent receiver for M-ary FSK is shown in Figure 2.  As with the binary FSK 
receiver a comparison of the output of the envelope detectors selects the appropriate 
branch. 
 
Figure 3 illustrates the probability of bit error for various values of M.  As M increases 
the bandwidth efficiency decreases but the power efficiency increases.  More 
constellations require more chunks of orthogonal spaces. 
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Figure 3. Non-coherent M-ary FSK BER 

 
 
 
3.0 Differential Phase Shift Keying  
 
If information is keyed onto the phase, PSK, it cannot be detected by non-coherent 
methods.  Use phase difference between two consecutive waveforms to carry the 
information. 
 
Assumption: It works provided the unknown phase introduced by the channel varies 
slowly (i.e. slow enough to be considered constant over 2 bit intervals).  Consider input 
sequence {mk}. Generate differentially encoded sequence {dk} from {mk} as follows: 
 

1. Sum dk-1 and mk Modulo 2. 
2. Set dk to be the complement of the result from 1 above. 
3. Use dk to phase shift a carrier as follows: 
 
dk = 1    ⇒   θ = 0 
 
dk = 0      ⇒  θ = π  
 
Example:   if  { }  10010011km →  

    { }1 11011011kd − →  

   { }   10110111kd →  

    { }   0 00 000θ π π→  

 

Observe: Symbol  is unchanged from previous symbol if incoming symbol is 1.  
Symbol  is toggled from previous symbol if incoming symbol is 0. 

kd

kd
 
 

4.0 
4
π  - DQPSK 

 
Exploit the above observation to derive the probability of error.  Let the DPSK signal in 

0  t ≤  T≤ b be (cos 2
2

b
c

b

E )f t
T

π .  If the next bit (in the interval Tb≤ t≤2 Tb) is 1, then the 

phase is unchanged.  If the next bit is 0, then the phase is shifted by π . 
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It is possible to consider  and ( )1S t ( )2S t  as similar to non-coherent orthogonal 
modulation over a 2 bit interval, 0≤  t ≤  2Tb. 
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Figure 4 compares the BER for DPSK and FSK.  Observe that DPSK BER is 
approximately 3 dB better than non-coherent FSK. 
 

Figure 4 BER Comparisons of DPSK and FSK 
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5.0 Digital Signaling on Frequency Selective Fading Channels 
 
Modeling: Recall any modulated signal is given as ( )( ) , k

k
v t A b t kT x= −∑ � .  We restrict 

ourselves to linear modulation. 
 

( ) ( ) { }k,          complex symbol sequence

                       
                      amplitude sampling pulse

k k ab t x x h t x= →�

�  

The above signal is transmitted through a channel c(t) that results in the received signal 
w(t). 
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We also assume h(t) = 0 for t 0 and h(t) = 0  for t ≥  LT.  L is some real positive integer. ≤
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Figure 5. Matched Filter Receiver in AWGN Channel  

 
If we know h(t), we can implement a matched filter as above. 
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( )f t  is the overall pulse response and it accounts for transient filter, channel and receive 
filters. 
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ISI is caused by the channel so if we can eliminate it then we can treat the channel as 
AWGN channel.  Therefore to achieve the same performance as on a AWGN channel, we 

require 2  0k n
k
k n

x f
∞

−
=−∞
≠
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 Equally in the frequency domain  
 

0
1     , ( )

n

nF f f F f
T T

∞

=−∞

⎛ ⎞+ = =⎜ ⎟
⎝ ⎠

∑ F{ }( )f t  

 
It can be shown that f(t) can be any function that has equally spaced zero crossings.  
What is the optimum receiver?  We must express ( ) lim ( )n nn

w t w t
→∞

= Φ∑  using the 

Karhunen-Loeve expansion. 
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( 1 2, ,  ... nw w w w= )  is a multivariate Gaussian distribution because z(t) is Gaussian. 
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Therefore the optimum receiver is the Maximum Likelihood receiver, for the case of 
AWGN it reduces to  
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The bottom line is: 

1. We need knowledge of { }nf to understand the channel response and knowledge of 

{ }nc  in order to perfectly eliminate ISI.  Therefore we need to estimate the 
channel in order to equalize it. 

 
2. An additional problem results as well by observing the following: 
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*( ) ( ) ( )v t h z t dτ τ τ
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is still Gaussian but is not white.  Therefore the noise samples at the output are 
correlated.  In this case we can obtain a discrete time white noise model as 
follows. 
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where  is the overall filter for the channel and the whitening filter and ng kη  is the 
white noise process. 

3. Another important consideration is the design of ISI equalizing filters is 
extremely sensitive to timing information.  We can solve this sensitivity in two 
ways. 

a. Use pulse shaping.  Raised cosine pulse shaping allows us to derive the 
length of the pulse by sampling at even points. 

b. Use fractional sampling.  Sample the output y(t) at a rate higher than 2/T.  
Although we will still have correlated noise and will need a whitening 
filter the overall pulse shape will be less sensitive to timing errors. 

 
6.0 Equalization Schemes 
 
There are two types of equalization schemes. 

1. Symbol by symbol equalizers that can be linear or non-linear. 
2. Sequence estimation equalizers that are non-linear. 

 
6.1 Symbol-by-Symbol Equalizers 
 
We consider the discrete time white noise model shown in figure 7.  Where { }na  is the 
input signal, L is the memory of the channel, nη is the additive noise and 

0 1,( , ....., )T
lg g g g= is the channel vector that describes the overall channel impulse 

response.   
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Figure 7. Discrete Time White Noise Model
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Linear equalizers estimate the nth transmitted symbol  as ˆna

   Where {ˆ
M

n j
j M

c ra −
=−

= ∑ n j } M

j M
c

+

−
 is the equalizer filter of (2M+1) taps.  M is a 

design choice and C is the chosen number of taps to estimate . ˆna
 
6.2 Zero Forcing Equalizer 
 
The Zero Forcing Equalizer combines the channel and equalizer impulse response to 
force to zero at all but one of the taps in the TDL filter. The tap coefficients, c, are chosen 
to “zero-out” the ISI.  Given the channel vector, g , we can select the tap coefficients, c, 
to get the desired response (0,0,0,......, , 0,...)nq q= .  The Zero Forcing Equalizer zeros 
out all but the desired result .  The tap coefficients are calculated using the 

relationship
nq

T
nq c g= n

n

.  Zero forcing equalizers can perfectly eliminate ISI as but 
it also enhances the noise.  In practice, the receiver does not know the channel vector and 
finite length training sequences are used to choose the tap coefficients.  

M →∞

 
6.3 Minimum Mean Square Equalizer (MMSE) 
 
The MMSE is another symbol-by-symbol equalizer but is superior to the zero forcing 
equalizer in performance.  The MSME utilizes the mean square error criterion to adjust 
the tap coefficients.  We define an estimation error: 
 
   ˆn na aε = −             
 
Where is the symbol sent and  is the estimated symbol.  The function to be 
minimized is: 

na ˆna
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The error is minimized by choosing { }jc so as to make the error sequence orthogonal to 

the signal sequence , for n lr − l M≤ , i.e. [ ] 0n n lrE ε − = , l M≤ .  The optimum c is 
obtained by solving the following set of equations. 
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Define the following functions. 
 
   ,  E n j n lr r− −⎡ ⎤Γ ⎣ ⎦� , ,....,j l M M≠ = −  

and  [ ] [ ] [ ]( )1 ........n n m n n m n n mb E a r E a r E a r+ + −= −  

then  1
optc b−= Γ  

 
To implement the MSME we need to us adaptive algorithms because the channel 
response is not readily known.  Typically, we use the steepest descent algorithm. 
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Where µ is a positive number. 
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The term erR is the cross correlation between the input and the error.  The equalizer taps 
can be obtained by implementing a stochastic gradient algorithm. 
 

  1( 1) ( ) ( )
2j jc n c n n rµε n j−+ = −  

To evaluate ( )nε in this algorithm we use a training sequence. 
 
6.4 Decision Feedback Equalizer (DFE) 
 
A DFE is a nonlinear equalizer that consists of a feed forward section and a feedback 
section.  DFEs are very effective in frequency selective channels because they mitigate 
the effects of noise enhancements that degrade the performance of linear equalizers.  The 
DFE uses previous decisions to eliminate ISI caused by previously detected symbols on 
current symbols.  The output of the equalizer can be expressed as: 
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Where 

2
are earlier detected symbols.  Both the feed forward loop 

and the feedback loop need adaptation to adjust the coefficients. 
21,  ,  .....,  nn a aa −− % %% n M−
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6.5 Maximum Likelihood Sequence Estimation (MLSE) 
 
Recall the discrete-time white noise channel model. 
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Assume k symbols are transmitted over the channel.  Then after receiving the sequence 
{ } 1

k
n n

r
=

, the ML receiver decides in favor of the sequence { } 1

k
n n

a
=

 that maximizes the 
likelihood function  

( )1, 1 , 1 1log , ..., ,...,k k k kr r r a a a− −  

 
 
Since the noise samples are independent and depends only on the L most recent 
transmitted symbols. 

nr

 
 

( ) ( ) ( )1, 1 , 1 1 , 1 1 2, 1 1, 2 1

This has already been calculated

log , ..., ,..., log ,., log , .., ,..,k k k k k k k k l k k k kr r r a a a r a a a r r r a a a− − − − − − − −= +
1444442444443

 

where  0  for 0k La k− = − L ≤
 
Since the 2nd term has been calculated at the previous time (k-1), only the first term needs 
to be computed at time k for each incoming signal .  The Veterbi algorithm can be used 
to implement the MLSE equalizer.  Adaptive MLSE is used in GSM. 

kr
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