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ECE559:WIRELESS COMMUNICATION TECHNOLOGIES

LECTURE    16 AND 17

Digital  signaling on frequency selective fading channels

Notes Prepared by: Abhishek Sood
1 OUTLINE

In section 2 we discuss the receiver design problem in presence of an unknown channel
distortion and AWGN. The channel distortion causes inter symbol interference (ISI)
which in turn causes high error rates. The solution is to use an equalizer for reducing ISI
in the received signal. Section 3 deals in 3 types of equalization methods. The lecture
concludes with an introduction to diversity systems, which are covered in subsequent
lectures.

2 MODELLING OF ISI CHANNELS

We model the land mobile radio channel as a fading dispersive channel concentrating on
the effects of,
1) delay spread that causes interference between adjacent symbols (ISI)
2) A large doppler spread that indicates rapid channel variations and necessitates a fast

convergent algorithm.

Recall, the complex envelope of any modulated signal is represented by,

v(t) = A  Σ  b( t-kT, xk )                                         (1)

                K

We restrict to linear modulation schemes where,

b(t, xk) = xk ha(t)                     (2)

where, ha(t) = amplitude shaping pulse and {  xk }  = complex symbol sequence

The above signal (1), when transmitted over a channel c(t) results in received signal

envelope given by: ( refer figure 1 )

      ∞

w(t) = Σ xk h(t-kT) + z(t) (3)
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                               K=0

Where z(t) is the zero mean AWGN with PSD N0 watts/hertz and
                 ∞

h(t) = ∫ ha(δ) c(t-δ) dδ  (4)

               -∞
if we assume a causal channel(physical channel), the lower limit becomes zero:
                 ∞

h(t) = ∫ ha(δ) c(t-δ) dδ t >= 0 (5)

                         0

finally assume some memory(finite duration) for pulse h(t):
h(t) = 0, t<=0

             = 0, t>=LT

 where L is some positive integer.

h(t)

w(t) Σ w(t)        y(t)       yn

y(t)

z(t)

    z(t) Matched Filter

Complete model for an ISI channel with a matched filter receiver.
Figure 1

If we know h(t), a maximum likelihood receiver can be implemented, as a filter  matched
to h(t) as shown in Fig.1 and the complex low pass signal at the output of matched filter
is:

                     ∞

y(t) =  Σ  xk f(t-kT) + v(t) (6)
                      K = -∞

Overall pulse response f(t) which accounts for transmit, channel and receive filter, is
given by:

           ∞

f(t) = ∫ h*(δ) h(t+δ) dδ and (7)

  ha(t) c(t)

Σ xn δ(t-nT)

n
h*(-t)

Rate
1/T
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                         -∞

∞

v(t) = ∫ h*(τ) z(t-τ) dτ (8)

                  -∞
is the filtered noise, which is gaussian but colored.

Sampling the matched filter output every T seconds gives the sequence:

∞

 yn = y(nT) =  Σ  xk f(nT-kT) + ϒ(nT) (9)
        k = -∞

           ∞

yn = xn f0 +  Σ  xk fn-k + ϒn (10)

                      k = -∞
                        k ≠ n

Conditions for ISI free transmission:

To achieve the same performance like an AWGN channel we need ISI free transmission.
This can be achieved if (from 10),

        ∞

Σ  xk fn-k = 0

        k = -∞
        k ≠ n
i.e. we can choose an fk such that ISI = 0:

fk =  δko fo     (11)

and yn = xn f0 + ϒn

Equivalently in frequency domain we can write:

            ∞

 1/T [  Σ  F( f + n/T )] = fo (12)

                   n=-∞

where F(f)=  F{ f(t)}

(11) and (12) is the equivalent forms of conditions for ISI free transmission. The pulse
f(t) can be a function with equally spaced zero crossings. To get rid of ISI we need to
know F(t) and hence c(t). Thus, the whole design comes down to finding c(t) and then we
know the receiver.

  ISI     Desired symbol
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2.1 ML OPTIMUM RECEIVER FOR ISI CHANNELS WITH AWGN
Assuming  that we know the channel c(t), use the karhunen loeve expansion to express
the received signal as:

                              N

w(t) = lim.  Σ  wn φn(t) (13)

          N→∞  n=1

Where { φn(t)}  form a  complete set of orthonormal basis functions.

Then(refer to figure 1),
                           ∞

wn =  Σ  xk hnk + zn (14)

                   k =-∞
 where,

           T

hnk = ∫ h(t-kT) φ*n(t) dt  and

          0

                         T

zn = ∫ z(t) φ*n(t) dt (15)
      0

since z n is gaussian random variable, w = ( w1, w2,……,wn ) has a multivariate gaussian
distribution.

N       ∞

P ( w|x,H ) =  ∏  (1/πN0) exp{ (-1/N0) | wn -  Σ  xk hnk |2} (16)
n=1               k=-∞

where H = ( h1,  h2,  h3,………………., hn )
T , hn = (……,.hn,-3 , hn,-2 , hn,-1 , hn,0 , hn,1 , hn,2  , ………)

ML receiver decides in favour of the symbol sequence x that maximizes the Log
likelihood function:

Choose x if   
             ^         ^

Log  P{  w|x,H }  >  log P{  w|x,H }    for all x ≠  x (17)
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For AWGN case we use (16) and the decision rule in (17) reduces to

                   N              ∞

Arg[ max  µ(x) = -  Σ  | wn -  Σ  xk hnk |
2

] (18)

  x        n=1          k = -∞
Expanding the square and ignoring the | wn  |

 2   term we get,
ML receiver chooses x to maximise:

            N              N

Arg{  max µ(x) = 2 Re{   Σ  xk*   Σ  wn h*nk }  -  Σ  Σ  xk x m*   Σ  hnk hnm*  }
x                                k          n=1                         k      m                     n=1

where Re(y) denotes the real part of y. As N → ∞, replace the 2 summations in ‘n’  by yk           
and fm-k  respectively to rewrite the above equation as:

Arg{  max µ(x) = 2 Re {   Σ  xk*   yk }  -  Σ  Σ   xk  fm-k  x m*  } (19)
x       k                  k  m

{  fn }  are the ISI coefficients.

(1)Again the bottomline is that the knowledge of { fn}  is required, which implies
knowledge of channel response { cn]. Again, we need to estimate channel to equalize ISI.

(2)An additional problem results.

    ∞

y(t) =  Σ  xk f(t-kT) + v(t)
                        K= -∞
Now v(t) is not white, the noise samples at the output are correlated and the equalization
becomes complicated. To overcome this difficulty a noise whitening filter may be
employed to process the sequence yn , resulting in discrete time white-noise channel
model.

2.2 Discrete time white noise channel model:

  Z(t)

                                                    Σ                   h* (-t)  y(t)          

Complete Model for an ISI channel with Whitening Filter
Figure 2

h(t)
Whitening
Filter

vk

Σ xk δ(t-kT)
k

Rate
1/T
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The discrete time samples at the output of the noise whitening filter are:

          L

vk =  Σ  gn xk-n +  nkT  (now white) (20)
       n=0

where gn is the channel vector that describes the overall channel response.         

We need to know the exact timings at which zero crossings occurs i.e.when zeros occur
in frequency response.

(3)The design of equalizers is extremely sensitive to timing information.

Solutions:

(a)raised cosine pulse shaping (b) fractional sampling : normally we have filter taps
spaced ‘T’  apart. Space them at say T/2 and oversample . Typically sample the output at a
rate 2/T. We still have  correlated noise and need whitening filter but oversampling
makes the overall pulse shape less sensitive to timing errors. This leads to fractionally
spaced receiver.

{ an}

T T T T

h0 Χ h1 Χ h2 Χ ……………………   hL Χ

Σ

ηn Σ   γn

Discrete time white noise channel model

             Figure 3

3 EQUALIZERS

The purpose of an equalizer is to mitigate the combined effects of ISI and noise.
There are 2 strategies to build equalizers :

(a)Symbol By Symbol Equalizers: Use a linear filter with adjustable coefficients or
exploit the previously detected symbols to suppress ISI in the present symbol(DFE).
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(b)Sequence Estimation Equalizers: Use maximum likelihood sequence detection from a
probability of error viewpoint.

3.1 symbol by symbol equalizers:

They include a decision rule to make symbol by symbol decisions on received symbol
sequences and are further split into 2 categories:
(1)Linear forward and (2) Non linear decision feedback equalizers

From figure 3:

L

  γn  =  Σ  hk an-k + ηn (21)

                k=0

The equalizer estimates the nth transmitted symbols,

∧
           M

an =  Σ  cj γn-j (22)

                            j = -M

where,
{ cj}  = equalizer filter taps

N = 2M+1 =length of equalizer

Let  q = (q0 q1 q2 ………q n+L-1)
T

q is the overall channel and equalizer sampled response, given as  the discrete
convolution of  h  and c.

   N-1

i.e. qn =  Σ  cj hn-j = cT  hn (23)

       j=0

hn = ( hn, hn-1, hn-2, …………hn-N+1 )
 T

where,
hi  = 0  i<0

       = 0   i>L

3.1.1 Linear Equalization
A linear forward equalizer consists of a filter with adjustable tap coefficients. It has the
drawback of  enhancing channel noise while eliminating ISI.
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3.1.1.1 Zero forcing equalizer
It is based on the peak distortion criterion, which forces ISI to zero but ignores the effect
of noise. With a zero forcing equalizer, choose the filter tap coefficients, c that minimize
the peak distortion of the channel,

 N+L-1           ∧

Dp = {  1/|qd| }   Σ  | qn – qn |    (24)
 n = 0

    n ≠ d

∧      ∧              ∧
q = ( q0……………….qn+l-1 )

T  is the desired equalized channel response and ‘d’  is the
overall delay.
Perfect equalization demands that the combined channel and equalizer response is forced
to zero, at all but one of the taps in the TDL filter, when M → ∞, no ISI.

ZF equalizer is unsuitable for channels with severe ISI as the equalizer tries to
compensate for nulls and introduces infinite gains at these frequencies. This enhances
noise and is not a candidate for mobile radio applications where spectral nulls are often
seen.

3.1.1.2 Mean square error equalizer

It is more robust than ZF equalizer in convergence properties and performance.
         ∧

Define estimation error as  εn = an - an (25)

Mean square error (MSE) is defined as J and to minimize the mean square error,            
       m

min J = E [εn
2] = min  E[( an -  Σ  cj γn-j  )

2] (26)
  e         e                 j=-m

Equalizer tap solution:

A mean squared error equalizer adjusts tap coefficients to minimize MSE.

Choose { cj}  so as to make error sequence  εn orthogonal to the signal sequence γn-l for
|l|<=m.

E [ εn γn-l ] = 0 |l|<=m

 M

Σ  cj E [ γn-j γn-l ] = E [ an γn-l ]  |L|<=m. (27)
j=-M

Copt (optimum coefficients) can be obtained by solving the matrix equality ,

Copt = Γ -1  b

Γ is the matrix whose entries are E [ γn-j γn-l ]      j,l = -M,……………………,M

b = {  E [ an γn+m ] E [ an γn+m-1 ] E [ an γn-m ] }
T (28)



9

We need adaptive algorithms to implement the above criterion since the channel is not
known readily.

Typically, we may use the steepest descent algorithm.

Cj(n+1) = cj(n) - ½ µ  ∂  E [ ε2(n) ] ,  j=0, ±1, ±2, ±3, ……,±M       and 0<µ<1 (28)
           ∂cj

∂  E [ ε2(n) ] = -2 E [ ε(n) ∂  ε(n) ] = -2 E [ ε(n) γn-j ] = -2 Rεγ ( j )  
∂cj                    ∂cj

This algorithm is deterministic and assumes that E[.] is known. But the PDF’s used to
compute E[.] are not available. So, normally implement as stochastic gradient algorithm
given by:

Cj(n+1) = cj(n) + µ ε(n) γn-j

γn-j is the input to the equalizer and ε(n) is computed using training. This is employed in
real systems like GSM. But a lot of effort is still devoted to finding fast convergent
adaptive algorithms.

Although MSEE accounts for effects of noise, it doesn’ t work well with severe ISI
channels or spectral nulls due to noise enhancement at the output.

3.1.2 NON LINEAR DECISION FEEDBACK EQUALIZERS (DFE)

It was proposed to mitigate the effects of noise enhancement. It consists of 2 sections; a
feedforward section and a feedback section. The feedforward  section is identical to linear
forward equalizer discussed in 3.1.1 and  reduces the precursor ISI. To eliminate the
postcursor ISI, decisions made at the equalizer output are fed  back through the feedback
filter, which estimates ISI for these symbols. It introduces error propagation, which
seriously degrades the performance of  DFE and complicates performance analysis.

Recall,

        ∞

yn = xn f0 +  Σ  xk fn-k + ϒn

                      k = -∞
                     k ≠ n

At a time n, all symbols till n have been decided and are used to cancel the ISI due all
previous symbols and we have to deal with only the future ISI now. Thus we use
previous decisions to eliminate ISI caused by previously detected symbols on the current
symbol.

Output of the DFE equalizer is denoted by

∧       0             m2               ~
an =  Σ  cj 

(f|f) γn-j +  Σ  cj 
(f|B) an-j (29)

                  j=-m          j=1
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There are (m+1) taps in f|f part and m2 taps in the f|b part.
~     ~ ~
an-1, an-2,……………..an-m2  are the earlier detected symbols.

DFE is very effective in frequency selective fading channels.(better than linear equalizer)

Design says:

If we assume that the feedback decisions are correct then design of  feed forward filter
taps c0, c1, c2,…cm+1  is given by

    ∧
Min J = E [ (an – an)

2 
]

For  the feedback part  :
0

Ck = -  Σ  cj hk-j ,  ck = feedback coefficients and cj  are the feedforward coefficient
         j=-m  k=1,2,…m2

again the assumption is that the channel hk-j is known. In reality we need adaptive
algorithms for implementation in both FeedForward and FeedBack parts. This is not
optimum, as non linear operation makes the distribution non-gaussian. [ MSE is optimum
for gaussian case only]

3.2 ML   sequence estimation[MLSE]  equalizers
These equalizers make decisions on a sequence of received symbols. They are more
complex than Symbol by symbol equalizers but offer better performance. It is impractical
for systems with large signal constellations and long channel response.

Consider the discrete time white noise channel model,

            L

γn =  Σ  hm an-m + ηn

  m=0

      k

Assume K symbols are transmitted over the channel, then after receiving  { γn} n=1, the ML
receiver  decides in favor of the sequence { an} n=1

k that maximizes the likelihood function.

Log-likelihood function is given by

Log P ( γk, γk-1, ….., γ1  |  ak, ak-1, ak-2, …….a1 )

Since the noise samples are independent and received signal γn depends only on L most
recent transmitted symbols,

Log P ( γk, γk-1, ….., γ1  |  ak, ak-1, ak-2, …….a1 ) =
Log P ( γk |  ak, ak-1, ak-2, …….ak-L ) + Log  P ( γk-1, γk-2, ….., γ1  |  ak-1, ak-2,…….a1)

(30)
        BRANCH- METRIC
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ak-l =0 for k-l <= 0

If the second term has been previously calculated at epoch k-1 then, only the first need to
be computed For each incoming signal γk at epoch k.

The first term as labeled is known as Branch metric.

When ηn is gaussian : L

P ( γk | ak, ak-1, ak-2, …….ak-l ) = ( 1/πN0 )  exp {  (-1/N0 ) | γk -  Σ  hi ak-i |
2 } (31)

                    I=0
Taking logarithms implies the branch metric is given as:

                                      L

µk = | γn -  Σ  hi ak-i |
2 (32)

    I=0
(30) is recursive and (32) is the branch metric, ML receiver  can be implemented  using
VITERBI algorithm by searching through the 2nl state trellis for most likely transmitted
sequence x. This search process is called MLSE. We still need the channel hi to compute
this branch metric. Any mobile phone with an equalizer implements viterbi algorithm.
2n = digital constellation size

READING: Viterbi algorithm (pg. 295 –301 )

3.2.1 Adaptive MLSE:
The viterbi algorithm uses channel vectors for computing branch metrics so that an
adaptive channel estimator is required. Use training to establish the channel based on
MSE. These estimates are passed onto the MLSE algorithm, which does the sequence
estimation. It uses adaptive algorithms  to estimate channel and then these estimates are
fed to a viterbi equalizer for ML sequence estimation.(used in GSM).

Equalization was trying to undo the effects of fading/channel. Now we move on to
diversity systems.

4 DIVERSITY SYSTEMS

To reduce the SNR penalty incurred due to fading we use diversity. It provides the
receiver with multiple faded replicas of the same information signal and some may be
better than others as far as the effects of fading are concerned. Diversity also improves
the performance of data transmission over fading channels. Receiver is provided with
multiple copies of information transmitted over 2 or more “ independent”  Transmission
channels. The basic idea is “ repetition of information and combination improves
performance.”  Diversity systems are classified into:

1)Macro diversity: It exploits combining of different base stations and mitigates long
term fading effects.
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2)Micro diversity : It handles short scale fading e.g. antenna elements

Diversity works well when different branches experience different fading. The diversity
techniques are classified into 5 categories:

1)Frequency diversity : we transmit on 2 or more carriers separated by atleast the
coherence bandwidth of the channel. It gobbles up bandwidth and is not efficient.

2)Time diversity : Transmit signals using multiple time slots separated by coherence time
of the channel. it’s not a good idea on slow fading channels. If fading rate is slow we
need long intervals between transmission.

3)Polarization diversity : we manipulate Electro magnetic fields to obtain orthogonal
polarization. Receiver antennas having different polarizations are used.

 4)Angle diversity: Use multiple directional antennas to create independent copies of
transmitted signals through multipath.

5)Space diversity:
Place multiple receiving antennas at different locations. It will result in different and
possibly independent Signals.
Correlation between signals as a function of distance between  antenna elements is given by

ρ= J0
2 (2π d/λ)

If antennas are spaced at multiples of half wavelengths apart the received signals have
zero correlation. We cannot do this at the mobile as the spacing required for zero
correlation would be of the order of a foot .

So time/Frequency diversity uses more bandwidth while space diversity gives complex
antennas.
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