
Wireless Communication Technologies 
ECE559 (Advanced Topics in Communications Engineering) 

Lecture 7 (February 13, 2002) 
Instructor: Dr. Narayan B. Mandayam 

by Sridharan Muthuswamy (msridhar@winlab.rutgers.edu) 
 
 
 

Effect of Co-channel Interference 
 

Multiple Ricean or Rayleigh Interferers 
 
In microcellular environments, the received signal (at the mobile) often consists of a desired direct 
line of sight (LOS) component, accompanied by a diffuse component. In this case the envelope of 
the received signal experiences Ricean fading. In the same environment the co-channel signals can 
be assumed to be Rayleigh faded because a direct line of sight between the co-channel cells is not 
likely to exist and the propagation path lengths are much longer. The probability of co-channel 
interference (also called as outage probability) is derived for the case of only fading.  
 
    0s : instantaneous signal power of the desired base station  
    ks : instantaneous interfering signal power of the thk base station ( INk ,.......,2,1= ) 
   IN : number of co-channel base stations 
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    0s has non-central chi-square distribution with two degrees of freedom. 
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    ks  has exponential distribution  
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    )( thout PP λλ <=  is the probability of co-channel interference (outage probability) 
 

 
Independent co-channel interferers 
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When 1=IN ,  outP  is given by 
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For  dBth 0.10=λ  the probability of co-channel interference with a single interferer when the desired 
signal is Ricean faded with different Rice factors and the interfering signal is Rayleigh faded is 
shown in Figure 1. 
 
Independent, identically distributed co-channel interferers 
 
In this case )(yPY has the Gamma density function. 
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The probability of co-channel interference is derived as  
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Figure 1 

 
Modulated Signals and their Power Spectral Density (PSD) 

 
Modulation is the process of transmitting the message in the amplitude, frequency, phase (or a 
combination of these) of the radio carrier, in either digital or analog form. Digital modulation offers 
many advantages over analog modulation. Some advantages include greater noise immunity, use of 
error control codes which detect and/or correct transmission errors, greater security, easier 
multiplexing of various forms of data (e.g video, data and voice) and sophisticated signal processing 
techniques like equalization to improve the overall communication link performance. It is desirable 
to use bandwidth and power resources most efficiently.  
 
Several factors influence the choice of a digital modulation scheme. A desirable modulation scheme 
provides 
 

•  Low bit error rates (BER) at low received signal to noise ratios (SNR) 
•  Easy and cost effective to implement 



•  Occupies minimum bandwidth 
•  Performs well in multipath fading environments 

 
Existing modulation schemes do not simultaneously satisfy all of these requirements.  Some 
modulation schemes are better in terms of the bit-error rate performance, while others are better in 
terms of bandwidth efficiency.  Depending on the application, trade-off is made when selecting a 
digital modulation.  The performance of a modulation scheme is often  measured in terms of its 
power efficiency pη and bandwidth efficiency Bη .  
 
Power Efficiency    
 
It is a measure of tradeoff between bit-error rate (BER) achieved by a modulation scheme and the 
signal power required to achieve that.  pη is formally defined as the ratio of signal energy per bit bE , 
to noise power spectral density 0N , to achieve a certain probability of error eP .  

         
0N

Eb
p =η     to achieve, say 610−=eP  

 
Bandwidth Efficiency  
 
This describes the ability of a modulation scheme to accommodate data within a limited  bandwidth. 
In general, increasing the data rate implies increasing the bandwidth of the signal. Some modulation 
formats have a better trade-off than others. Bandwidth efficiency reflects how efficiently the 
allocated bandwidth is utilized and is defined as the ratio of the data rate R  to the bandwidth 
B occupied by the modulated RF signal.  
 

         Hzbps
B
R

B /=η  

 
A modulation scheme with a greater value of Bη  will transmit more data in a given spectrum 
allocation. But there is a fundamental upper bound on achievable bandwidth efficiency given by 
Shannon’s channel capacity formula  
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ratio. 
 
 
In the design of a digital communication system, there is a trade off between bandwidth efficiency 
and power efficiency. For example introducing channel coding increases the power efficiency and 
decreases the bandwidth efficiency where as higher level modulation schemes (M-ary keying) 
decrease power efficiency and increase bandwidth efficiency.   
 
 



Definition of Bandwidth (B) 
 
Figure 2 shows the plot of power spectral density )( fS  of a modulated signal. There are different 
definitions for the bandwidth of a modulated signal given as: 
 

•  Absolute Bandwidth: The range of frequencies for which 0)( ≠fS  
•  Null-Null Bandwidth: Width of the main lobe of )( fS  
•  Half Power (3-dB) Bandwidth: Interval between frequencies at which the psd has dropped to 

half power 
•  FCC Defined Bandwidth: FCC defines bandwidth as that band which leaves exactly 0.5% 

above the band and 0.5% below the band. That is 99% of signal power is contained within 
occupied bandwidth.  

 

 
Figure 2 

 
 
 
Standard Representation of Digitally modulated signal 
 
For any digital modulation scheme, )(tv  and )(ts can be written in the standard form as 
 



      ∑ −=
k

kXkTtbAtv ),()(  

      ( ){ })2(exp)(Re)( tfjtvts cπ=       
 
A  is the carrier amplitude 

),.....,,( 1 Lkkkk xxxX −−=  is the source symbol sequence 
L  is the memory length 
T  is the symbol duration 

),( iXtb is an equivalent shaping function of  duration T  
 
The band-pass waveform )(ts can be represented in the quadrature form  
 
      )2sin()()2cos()()( tftvtftvts cQcI ππ −=  where  
 
       )()()( tjvtvtv QI +=   
 
The waveforms )(tvI and )(tvQ  are known as the in-phase and quadrature components, respectively 
of )(tv . 
 
 In envelope phase form  
 
       ))(2cos()()( ttftats c φπ +=  where  
 
       22 ))(())(()( tvtvta QI +=  and  
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Power spectral density evaluation for band-pass signals 
 
A modulated bandpass signal can be written in the form 
 
       ( ){ })2(exp)(Re)( Tctfjtvts φπ +=   
 
       Tφ  is a random phase uniformly distributed over [ ]ππ,−  
    

       ( ) ( ){ })2(exp)()2(exp)(
2
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The auto-correlation function of )(ts  is given by 
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The complex base band signal is )(tv  is independent of the random phase Tφ . [ ]E  denotes the 
ensemble average. Therefore  
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The power spectral density )( fSss  is the Fourier transform of )(τssΦ . 
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Since )()( * ττ −Φ=Φ vvvv , the above equation reduces to  
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The above expression shows that the psd of the band-pass waveform )(ts  is completely determined 
by the psd of its complex envelope )(tv .  
 

),( ttvv τ+Φ  for the standard form representation of )(tv is given by 
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Under the assumption that the source sequence is a stationary random process we can write the 
above equation as 
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The autocorrelation function ),( ttvv τ+Φ of )(tv  is  periodic in t  with period T . That is )(tv is a 
cyclostationary random process.  The autocorrelation )(τvvΦ can be obtained by taking the time 
average of ),( ttvv τ+Φ , given by  
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The power spectral density of )(tv is given by 
 

ττπτ dfjdzXzbXmTzbE
T

AfS
m

mvv )2exp()],(),([
2

)( 0
*

2

−







−+= ∫ ∑ ∫

∞

∞−

∞

∞−

 

            











−








−+= ∫ ∫∑

∞

∞−

∞

∞−

ττπτ dfjdzXzbXmTzbE
T

A
m

m

)2exp(),(),(
2 0

*
2

 

                     

∑ ∫∫











−
















−+−−+=

∞

∞−

∞

∞−m
m fmTjdzfzjXzbdmTzfjXmTzbE

T
A )2exp()2exp(),()(2exp(),(
2 0

*
2

ππττπτ

 

)2exp()2exp(),()2exp(),(
2 0

*
2

fmTjdzfzjXzbdufujXubE
T

A
m

m πππ −



























−= ∑ ∫∫

∞

∞−

∞

∞−

 



[ ]∑ −=
m

mvv fmTjXfBXfBE
T

AfS )2exp(),(),(
2

)( 0
*

2

π  

 
 
The above equation shows that )( fSvv depends on the correlation properties of the source sequence 
and the form of the equivalent shaping function ),( mXtb . ),( mXfB is the Fourier transform of 

),( mXtb . 
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1. Representation of Modulation Formats 
 
1.1   Amplitude Shift Keying (ASK):               
ASK is a linear modulation scheme with non constant envelope. ASK has the advantage of being 
more spectrally efficient than other modulation schemes having constant envelope. However 
amplitude non linearity degrades the  
performance of ASK. The complex envelope can be represented as follows, 
                                      ∑ −=

n
an nTthxAtv )()(       (1)                          

    
where  { } =nx complex source symbol sequence = }{ Q

n
I

n jxx +     (2) 
      ( ) =tha amplitude shaping pulse 

Expressed in the standard form, ( ) ( )∑ −=
k

kxkTtbAtv ,      (3) 

            ( ) ( )thxxtb akk =,  (memory less modulation) 
ASK band-pass signal has the following quadrature representation, 
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            ( )tvI  and ( )tvQ  are the in-phase and quadrature phase components of the complex low-pass 
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and the envelope phase representation is, 
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Q
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n x
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Thus note that both amplitude and phase of the ASK signal depend on the complex symbol. 
However, in the simplest form of ASK which is the familiar PAM(Pulse Amplitude Modulation), 
only the signal amplitude is varied according to the source symbol. This is accomplished by making 

I
nn xx =  real.On-Off Keying(OOK) is a special case of M-PAM with M=2 and =nx {0,1} 

The basis functions are : ( ) ( ) ( )tfth
T

t ca πφ 2cos2
1 =      Tt ≤≤0  ; 0 otherwise                    (7) 



                                        ( ) ( ) ( )tfth
T

t ca πφ 2sin2
2 =      Tt ≤≤0     ; 0 otherwise                    (8) 

Using these basis functions, we can represent ( )tsn  as follows: 
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nA

I
nAn 21 φφ += ,                                                           (9) 

where 
2

2TAEA =  . The symbol energy is 2
mAm xEE = . 

A popular form of ASK is M-ary QAM, where the source symbols Q
n

I
nn jxxx +=  are chosen from an 

M-ary constellation such that  
                            ( ){ }1,.........3,1, −±±±∈ Nxx Q

n
I
n , MN =                                                   (10) 

The signal space diagram for 16-QAM would look like Fig 1 below. 
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 AE2  
 
  ( )t2φ  
 
 
 
 
 
                                Fig 1: Signal constellation for 16-QAM 
 
PSD of ASK 
Since ( ) ( )thxxtb akk =, , ( ) ( )fHxxfB akk =, .                                                                        (11) 
From (16), 
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If the source symbols are zero mean and uncorrelated, we get 

            ( ) ( ) 22
2

xavv fH
T
AfS σ=                                                                           (14) 

where [ ]22 xEx =σ  (since mean in zero ) is the variance of the source symbols.  
The amplitude shaping pulse ( )tha is very often chosen to be the square root raised cosine pulse 



               ( )

( ) ( )












−
















 −
+







 +

=

−

2

22

1

16
1

41
sin

1
cos

4

T

t
T

T

t

T

t

T

t

th a
β

π

βπβπβ

β                                             (15) 

where β is the roll-off factor. 
The corresponding Fourier Transform, ( )fH a , is 
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In practice, the pulse ( )tha  is truncated to length τ yielding the new pulse 
                       ( ) ( ) ( )τtrectthth aa ='                                                                                           (17) 
The corresponding Fourier Transform becomes 
                       ( ) ( ) ( )ττ fcfHfH aa sin' ⊗=                                                                              (18) 
Pulse truncation leads to sidelobe regeneration. The PSD of ASK is plotted below. 

  
Fig2: PSD of ASK using square root raised cosine pulse shape with 5.0=β  
 
 



1.2 Orthogonal Frequency Division Multiplexing (OFDM) 
Multipath causes considerable InterSymbol Interference (ISI) in single carrier systems, especially at 
high bit rates. OFDM (a multicarrier system) is a block modulation scheme designed to combat the 
effect of multipath frequency selective fading. In an OFDM system, a block of N serial source 
symbols (each of durationTs ) is converted into a block of N parallel modulated symbols(each of 
duration NTsT = ).Typically, N  is chosen such that τ>>NTs ,where τ is the rms delay spread. Seen 
in the time domain, this N fold increase in the symbol duration, reduces the effect of multi-path 
delay spread. Correspondingly, in the frequency domain, the wideband frequency selective channel 
is decomposed into N narrowband channels, such that each parallel channel encounters almost flat 
fading. Each of the N source symbols is transmitted in parallel by employing N orthogonal 
subcarriers. Such a scheme has practical advantages, because it may reduce or even eliminate the 
need for equalization. OFDM is being used in Digital Audio Broadcasting (DAB) and Digital Video 
Broadcasting(DVB) in Europe and in the IEEE 802.11a WLAN standard. It is being considered for 
use in broadband communications for 4th generation wireless systems. 
 
The complex envelope of an OFDM signal is described by 
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where ( )tnφ  are the orthonormal waveforms given by 
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If ( ) ( )tuth Ta = (rectangular pulse from 0 toT ), ( )fH a  is a sinc function with nulls at multiples of 
T1 . Thus, the N subcarriers which are placed at intervals of T1 overlap ( in the time domain), but 

are orthogonal (in the frequency domain) as the peak of each subcarrier coincides with the nulls of 
all the other subcarriers. Thus, ( ){ } 1

0
−

=
N
nn tφ are orthogonal.  

At time epoch k , N source symbols are transmitted using N distinct subcarriers. Since OFDM is 
typically used for high data rates, nkx , are usually chosen from a QAM constellation. It is to be noted 
that OFDM is just a multiplexing technique and does not specify a modulation scheme  and any 
modulation scheme can be used. Infact, by knowing (estimating) the channel, different modulation 
schemes can be employed in the different subcarriers (adaptive modulation) to give improved 
performance. 
 
The OFDM signal can also be expressed in the standard form as  
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           ( )1,2,1, ...,,........., −= Nkkkk xxxx  is source symbol at time epoch k 
 
                 ( ) ( ) ≡= tuth Ta rectangular pulse from 0  to T  
 
From the notation it is clear that N source symbols are transmitted in parallel. 
 
Basis functions:  
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One of the major advantages of OFDM is that the modulation can be performed in the discrete 
domain using an Inverse Discrete Fourier Transform (IDFT) or the more computationally efficient 
Inverse Fast Fourier Transform (IFFT). To illustrate this, consider 0=k , ignore the frequency offset 

term ( )
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If we sample ( )tv  at instants kTs (satisfying Nyquist criterion), we get  
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It is easily seen that { } 1
0,

−
=

N
kkoX is the IFFT of the block 0xA  

Thus, the OFDM transmitter will look like Fig 3 below. 
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                                      Fig 3:  OFDM Transmitter 
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The receiver would similarly involve DFT of FFT after getting the signal to baseband. Though ISI is 
substantially reduced, it can be almost completely eliminated by using a guard band at the beginning 
of the OFDM symbol. The length of the guard band is obviously chosen such that it is greater than 
the rms delay spread.  It is to be noted that increasing the symbol duration to counter multipath 
makes an OFDM system more prone to fast fading. 
 
PSD of OFDM 
The PSD of OFDM can be obtained by treating OFDM as independent modulation on orthogonal 
subcarriers that are separated in frequency by .1 T For a signal constellation with zero mean and 
with amplitude shaping function ( )tha , the PSD of the complex envelope is             
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If  ( ) ( )tuth Ta =  is used, ( ) )(sin fTcTfH = , where ( ) ( )xxxc ππsin)(sin =  
The PSD for this case is plotted for 3 different values of N in Fig 4 below       
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             Fig 4: PSD of OFDM with different number of subcarriers                      
     
It is observed that for large values of N, the PSD becomes more flat in the TsTN 1= bandwidth 
region. Therefore, as the block length N  becomes large, the spectral efficiency approaches that of 
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single carrier modulation with ideal Nyquist filtering. Further improvement in PSD can be obtained 
by using a square root raised cosine pulse, but it destroys the subcarrier orthogonality, which leads to 
degraded error rate performance. 
 
1.3 Phase Shift Keying (PSK) 
We consider the general case of M-ary PSK. 
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            ( )tha  is the amplitude shaping function 
            ( )thp  is the phase shaping function 
            M is the size of the constellation 

The symbol energy 
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2TAEk = is the same for every symbol and so is the amplitude. From the 

notation, it is clear that the information is contained in the phase, hence the name. 
 
Often, the phase shaping pulse ( ) ( )tuth Tp = , while the amplitude shaping pulse ( )tha  is usually the 
square root raised cosine pulse, given as 
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and the corresponding square root raised cosine spectrum is 
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The signal space diagram of 8-ary PSK is shown in Fig 5 below 
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                       Fig 5: Signal space diagram of 8-ary PSK 
 
PSD of PSK 
It is assumed that the source symbols are uncorrelated and equally likely and defined by the set  

                                               { }MiMixn ,........,2,1;12 =−−∈                                        (31) 
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Taking expectation , we get 
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If the phase shaping function is ( ) ( )tuth Tp = , we get 
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on taking the limit in ( 60). 
If the amplitude shaping function is ( ) ( )tuth Ta = , we get 
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To make a fair comparison on BW efficiency with different M, the frequency variable must be 
normalized by the bit interval bT . For M-ary signaling, 

MTT b 2log=                                                                  (38) 
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                              Fig 6: PSD of M-ary PSK for different M 
 
 
Comparing the bandwidth efficiency for different M, we get the results, shown in Table 1 below, 
using the relation 

                         
B
Rb=βη  , where bR is the bit rate and B is the null-to-null bandwidth 

 
 
M 2 4 8 16 32 64 
ηB 0.5 1 1.5 2 2.5 3 
 
Table 1: Bandwidth efficiency depending on alphabet size 
 
It is observed that with an increase in N , the bandwidth efficiency is improving. 
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Appendix: Signal Space Representation of Signals 

 
This representation is used for time domain representation or characterization of the entire class of 
baseband waveforms. Any set of M finite energy signals ( ){ } M

ii tv 1=  can be represented in terms of N 

orthonormal basis functions ( ){ } N
nn t 1=φ  where N<=M 

Bases are orthonormal =>  ( ) ( )∫ =∗
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δφφ  where ijδ  is the Kronecker Delta Function. 

Each of the M signals can be represented as  
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Thus, on fixing the orthonormal basis functions, a signal ( )tvm  can be represented in vector notation 
as follows: 
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The bandpass waveforms ( )tsm can also be represented in terms of a set of real orthonormal basis 
functions that are defined in the interval [ ]T,0 . The corresponding vector notation would be: 
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'
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where we require ∗N  real orthonormal basis functions. 
 

Signal Energy, Correlation and Euclidean Distance 
 
Consider the bandpass waveform ( ) ( ){ }tfj
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cetvts π2Re=  of finite duration [ ]T,0 . The energy of the 
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mE can also be represented in terms of the signal energy of the low-pass equivalent as follows: 
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If 1>>Tfc (symbol duration contains many cycles of the carrier), the second term .0→   
Thus, 
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Also, the cross-correlation between ( )tsm  and ( )tsk  is 
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In terms of the low-pass equivalent, 
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The Euclidean distance ijd between two signals ( )tsi  and ( )ts j  is defined as  

                                     ijjijijiij EEEEssd ρ2
22 −+=−=

                                                        (13)

 

                                            ( )ijE ρ−= 12  if iEEi ∀= ,                                                                     (14) 

 


