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Path Loss in Macrocells – Comparison of Hata’s Model and Lee’s Model 
 
The Path losses using Hata’s Model and Lee’s Model are plotted in the Figure 1 and 
Figure 2, where the parameters used are: 

 
Carrier Frequency: 900MHz 
BS Height: 70 m 
MS Height: 1.5 m 
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Figure 1: Path Loss obtained by using Hata’s Model 
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 Figure 2: Path Loss obtained by using Lee’s Model 

 
 
Path Loss in Microcells 
 
Most of the future PCS microcellular systems are expected to operate in 1800∼2000MHz 
frequency bands. Some studies have suggested that the pass losses experienced at 
1900MHz are approximately 10dB larger than those at 900MHz where all other 
parameters are kept constant. The COST231 (COST is an intergovernmental framework 
for European Co-operation in the field of Scientific and Technical Research) study has 
resulted in two models for urban Microcellular propagation, COST231– Hata Model and 
COST231–Walfish-Ikegami Model. 
 
COST231 – Hata Model  
 
The COST231– Hata Model extends Hata and Okumura model to 1500∼2000MHz where 
it is known that Hata and Okumura model under estimates the path loss. The parameters 
used for  COST231– Hata Model are: 
 

Carrier Frequency: 1500∼2000 MHz 
BS Height: 30∼200 m   
MS Height: 1∼10 m 
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Distance d: 1∼20 km   
 

The pass loss can be expressed as 
CdBALp ++= )(log10  

Where 
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Although both the Okumura and Hata and the COST231 – Hata Model are limited to BS 
antenna heights greater than 30m, they can be used for lower BS antenna heights 
provided that the surrounding buildings are well below the BS antenna. They should not 
be used to predict pass loss in urban canyons. The COST231 – Hata Model is good down 
to a path length of 1km. It should not be used for smaller ranges, where path loss 
becomes highly dependent on the local topography.  
 
COST231-Walfish-Ikegami Model 
 
The COST231-Walfish-Ikegami Model is applicable to cases where the BS antennas are 
either above or below the roof tops. It takes into account parameters such as roof heights, 
street widths, and road orientation with respect to radio path. The model works best when 
the BS antennas are much higher than the top of the roof. It is not very accurate when the 
BS antennas are about the same height as the top of the roof. It is poor when the BS 
antennas are much lower than the top of the roof because it doesn’t consider wave 
guiding in street canyons and diffraction at street corners. 
 
 
Path loss in street Microcells     Two-Slope Model 
 
For rangers less than 500m and antenna height less than 20m, some empirical 
measurements have shown that the received signal strength for LOS propagation along 
city streets can be accurately described by the two-slope model 
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Where 
d: Distance in meters 
A: Constance 
a and b: parameters that reflect path losses ranging from free space to higher. 
For distance close into the BS, free space propagation will prevail so that a=2. 
At large distances, an inverse-fourth to –eighth power law is experienced so that 
b ranges from 2 to 6. Note that a and b can be negative value. 
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g: break point parameter, ranges 150∼300m. Breakpoint occurs where the 
Fresnel zone between the two antennas just touches the ground assuming a flat 
surface. This distance is 
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Where 
mb hh +=Σ  

mb hh −=∆  
For high frequencies this distance can be approximated as cmbhhg λ/4= . It 
depends on frequency, with the breakpoint at 1.9GHz being about twice that for 
900 MHz.  

The model parameters obtained by Harley are listed in the following table, 
 

Base Antenna Height (m) a b Break point g (m) 
5 
9 
15 
19 

2.30 
1.48 
0.40 
-0.96 

-0.28 
0.54 
2.10 
4.72 

148.6 
151.8 
143.9 
158.3 

  
 
Corner Effect 
 
When MS rounds a street corner as shown in Figure 3, LOS changes to NLOS. In this 
case, average signal strength can drop by 25∼30dB over distances as small as 10m for 
low antenna heights in area with multistory building, and by 25∼30dB over distances of 
40∼50 m for low antenna heights in a region with only one- or two- story building. This 
is called Corner Effect. 

 
Figure 3: The corner effect in a street microcell environment. 

  
Grimlund and Gudmundson have proposed an empirical street corner path loss model. 
Their model assumes LOS propagation until the MS reaches a street corner. The NLOS 
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propagation after rounding a street corner is modeled by assuming LOS propagation from 
an imaginary transmitter that is located at the street corner having a transmit power equal 
to the received power at the street corner from the serving BS. The received signal 
strength (in dBm) is given by 
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Where 
dc: the distance between the serving BS and the corner. 
d: the distance between BS and MS. 

 
Small-Scale Fading 
 
Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio 
signal over a short period of time or travel distance, so that large-scale path loss effects 
may be ignored.  The presence of reflecting objects and scatters in the channel create a 
constantly changing environment that dissipates the signal energy in amplitude, phase 
and time. These effects result in multiple versions of the transmitted signals to arrive at 
the receiver. Each is distorted in amplitude, phase and angle of arrivals. Note here that 
angle means the direction of the arrivals. The random phase and amplitude of the 
different multipath components causes fluctuations in signal strength, thereby inducing 
small-scale fading. 
If objects in the radio channel are in motion, they induce a time varying Doppler shift on 
multipath components. If the surrounding objects move at a greater rate than the mobile, 
then this effect dominates the small-scale fading. Otherwise, motion of surrounding 
objects may be ignored, and only the speed of the mobile need be considered. 
Now let’s consider a two dimension model. A MS moving along the x axis with velocity 
v, as depicts in Figure 4, 

 
Figure 4: A typical plane wave component incident on a MS receiver 

 
The nth plane wave arrives at the MS antenna with an angle of incidence )(tnθ . The MS 
movement introduced a Doppler frequency shift into the incident plane wave, given by 
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where cλ  is the wavelength of the arriving plane wave. Plane waves arriving from the 
direction of motion will experience a positive Doppler shift, while those arriving opposite 
from the direction of motion will experience a negative Doppler shift. 
 
Consider the transmission of the band-pass signal 

{ }tfj cetuts π2)(Re)( = , 
where u(t) is the complex low-pass signal. 
If there are N waves arrive at the receiver, then the received band-pass signal is 

{ }tfj cetrtx π2)(Re)( = , 
where the received complex low-pass signal r(t) is given by 
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where 
)(tnα  is the amplitude associated with the nth path, 
)(tnτ  is the delay associated with the nth path. 

The received complex low-pass signal can be rewritten as 
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where ])()())([(2)( ,, ttfttfft nDnnDcn −+= τπφ  is the phase associated with the nth path.  
So the channel can be modeled by a time-variant filter that having complex low-pass 
impulse response 
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where ),( τtc  is the channel response at time t at an input at time τ−t . 
Typically, )(, tff nDc + is very large, a small change in the path delay )(tnτ causes a large 

change in phase )(tnφ . At any time t these random phases may result in the constructive 
or destructive addition of the components. The amplitudes )(tnα depend on the cross 
sectional area of the nth scatterer or the length of the nth diffracting surface. However, 
these quantities do not change significantly over small spatial distances. Therefore, 
fading is primarily due to time variations in the random phases )(tnφ  that are causes by 
the Doppler shifts )(, tf nD . 
 
Received Signal Correlation and Spectrum 
 
It is apparent that the different frequency components in a signal will be affected 
differently by the small-scale fading channel.  However, for narrow-band signals where 
the signal bandwidth is very small compared to the carrier frequency, it suffices to derive 
the characteristics of the received complex low-pass signals by considering the 
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transmission of an unmodulated carrier. For an unmodulated carrier, the received 
complex low-pass signal is 

 ∑
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Since 
{ }tfj cetrtx π2)(Re)( = , 

the received band-pass signal can be expressed in the quadrature form 
tftrtftrtx cQcI ππ 2sin)(2cos)()( −=  
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For large N, the central limit theorem can be invoked so that the quadrature components 
)(trI and )(trQ can be treated as independent Gaussian random processes. Assuming that 

these random processes are wide sense stationary (i.e., nDnD ftf ,, )( = , nn t αα =)( , and 

nn t ττ =)( ), and assuming that x(t) is wide sense stationary, the autocorrelation of x(t) is  
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Note that 
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It is reasonable to assume that the phases { })(tjφ are independent since their associated 

delays and Doppler shifts are independent. Furthermore, assume )(tnφ  uniform 
distributed over [ ]ππ,− . The autocorrelation function for )(trI  is 
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is the total average received power from all multipath components. 
Since nmnD ff θcos, = , the autocorrelation can be rewritten as 



 8

[ ])cos2cos(
2

)( θτπτφ θ m
p

rr fE
II

Ω
=  
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Two-Dimension Isotropic Scattering 

 
Clarke was the first one suggested that θ  is uniformly distributed over [ ]ππ,− , that is 
waves arrive with equal probability from all directions. This is called 2-D Isotropic 
Scattering Model. With the Isotropic Scattering Model, we can rewrite the 
autocorrelation of )(trI  as 
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Where )(0 xJ is the zero-order Bessel function of the first kind. Likewise, we can rewrite 
the crosscorrelation function as 
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The Power spectral density is 
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Also note that )(*)( τφτφ −=

IIII rrrr  and if x(t) is real, )(*)( ωω −= XX . It follows the 
PSD of x(t) is 
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The normalized PSD is plotted against the normalized frequency difference in Figure 5, 
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Figure 5: PSD of the received band-pass signal for an isotropic  scattering channel. 

 
Received Envelope  
 
Rayleigh Fading 
 



 10

)()()( tjrtrtr QI +=  is a complex Gaussian process. The question is, for large N, what is 

the envelope look like? The envelope )()( trtz =  has a Rayleigh distribution at any time 
t, 
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where 22 2][ σ=Ω= pzE   is the average power. This type of fading is called Rayleigh 
fading. It applies to any scenario where there is no LOS path between the transmitter and 
receiver antennas.  
The square envelope 22 )()( trtZ =  is exponentially distributed at any time t, 
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where the mean power is pΩ . 
 
Ricean Fading 
 
When there is a LOS component in addition to NLOS (commonly in microcellular 
environments), then the complex envelope has a Ricean Distribution at any time t, 
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Where 
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2 sincos αθαθα =+=s  is the non-centrality parameter, 
( )⋅0I is the modified Bessel function of 0th order, 
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K =  characterizes the power in direct path to all the power in non direct path. 

When  
0=K the channel exhibits Rayleigh fading, 
∞=K the channel does not exhibit fading. 

For a Ricean distributed envelope, the average power is 222 2][ σ+=Ω= szE p  and 
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these parameters completely describe the Ricean Fading, 
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Nakagami Fading 
 
The Nakagami model is a model purely based on empirical, not on physics. But it is 
known that it provides a closer match to some experimental data than either the Rayleigh, 
Ricean or log-normal distributions. 
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The Nakagami distribution describes the received envelope )()( trtz =  by the 
distribution 
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Where ][ 2zEp =Ω . This is called central 2χ distribution with m degrees of freedom. 
The Nakagami distribution is often used to model multipath-fading for the following 
reasons. First, the Nakagami destribution can model fading conditions that are either 
more or less severe than Rayleigh fading. When m=1, the Nakagami distribution 
becomes the Rayleigh distribution. When m=1/2, it becomes a one-sided Gaussian 
distribution, and when ∞→m , it becomes an impulse (no fading). Second, the Ricean 
distribution can be approximated by using the following relationship, 
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Since the Ricean distribution contains a Bessel function while the Nakagami distribution 
does not, the Nakagami distribution often leads to closed form analytical expressions and 
insights that are otherwise unattainable. 
 
Frequency-Selective Fading Channel 
 
Small-scale fading considered till now assumes that all frequencies in the transmitted 
signal are affected similarity by the channel, it is called Frequency Non-Selective or 
Narrow Band Fading. If the range in the propagation path delays is large compared to the 
inverse signal bandwidth, then the frequency components in the transmitted signal will 
experience different phase shifts along different paths. Under this condition the channel 
introduces amplitude and phase distortion into the message waveform. Such a channel is 
said to exhibit frequency-selective fading. 
Right now we just consider Wide Sense Stationary Uncorrelated Scattering (WSSUS) 
channels. These channel display uncorrelated scattering in both time-delay and Doppler 
shift. Fortunately, many radio channels can be accurately modeled as WSSUS channel 
(Recall, the channel impulse response is ),( τtc ). 
 
Definition 
 
1. Power Delay Profile (Multipath Intensity Profile) is defined as, 

[ ]),(*),(
2
1)( τττφ tctcEc = . 

It gives out the average power at the channel output as a function of time delay τ . A 
typical power delay profile is shown in Figure 6, 



 12

 
Figure 6: A typical Power Delay Profile 

 
2. Average Delay, defined as, 
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3. RMS Delay Spread, defined as 
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Where for indoors, the order of RMS delay spread is nanoseconds, it is microseconds for 
outdoors. 
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