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Course: Wireless communication technologies 
16.332.559(Advanced topics in communication engineering) 

Lectures 19 (04/08/2002) and 20 (04/10/2002) 
Instructor: Dr. Narayan B. Mandayam 

Summary by: Pavan C. Kaivaram (kpavan@ece.rutgers.edu) 
 

Multi-user detection 
 
Multi-user detection in a CDMA was pioneered by Sergio Verdu. The recent ideas in 
multiuser detection are an outcome of Verdu’s Ph.D. thesis in 1984(3). Multi-user 
detection is necessary in all cellular and mobile communications. Multi-user detection 
describes various techniques used to reduce interference and design of practical receivers 
to obtain near-optimal detection of signals.  
 
Matched filter in a CDMA Channel: 
Consider a CDMA system with synchronous users. The received signal due to k users is 
given as: 
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)(tsk  is the signature waveform assigned to user k . We also assume that )(tsk  is 
normalized such that: 
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kA  is the received amplitude from the thk  user and 2
kA is the energy, and 0fkA . 

)(tn  is the additive white Gaussian noise, with unit power spectral density. 
}{ 1,1 +−∈kb  is the bit transmitted by the thk  user. 

T is the bit period. 
 
The output of the thk matched filter receiver ky  is given by: 
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kk ≈= ∫  is the noise component in the direction of the thk  

signature waveform. 
jkρ  is the cross correlation between the signature waveforms of thj  and thk  users. 

 
Orthogonal signature waveforms: 
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For orthogonal signature waveforms, we have 0=jkρ  and hence, the probability of the 
thk  user error )(σc

kP  is given by: 

)/()( σσ k
c

k AQP =  
The superscript in )(σc

kP  denotes the probability of error when a conventional receiver is 
used. The probability of error is same as the single-user case. 
 
Two users using non-orthogonal signature waveforms: 
If the users are not orthogonal, the statistics are not Gaussian anymore. When the number 
of users is two and the signature waveforms not orthogonal, the system can be 
represented as: 

2=k , ρρ =12  and the received signal by the matched filter at user one is given by: 

122111 nbAbAy ++= ρ  

The probability of error by user one is given by: )ˆ()( 111 bbprobPc ≠=σ . 
 
The decision rule for the conventional receiver is: If 01 fy , ;11 +=b  else ;11 −=b  
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Note 1y  is not Gaussian. So conditioning on 2b  we obtain: 
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Assuming that bits are equally likely and noting that, 
[ ] [ ]1/01/0 1111 +==−= byPbyP pf , 

probability of error at user one is given by: 
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Interchanging the roles of user one and two gives us: 
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Let us now focus on to user one and the same arguments hold true for user two. Since, 

)(xQ  is a monotonically decreasing function, we can bound ( )σcP1  as, 
( ) ( )( )σρσ /211 AAQPc −≤  

This bound is smaller than 0.5, provided 
ρ
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A
A , i.e. the interferer is not dominant. 

As 0→σ , the equation (*), is dominated by smallest argument and hence the upper 
bound, is a good approximation for all but low SNRs. 
∴ BER of conventional receiver behaves like a single-user system with reduced SNR i.e. 
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However if the relative amplitude of the interferer is stronger i.e. 
ρ
1
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2 f
A
A (referred from 

here on as condition (**)), then the conventional receiver exhibits highly anomalous 
behavior, referred to as the near-far problem. 
To show the anomalous behavior, we see that BER is not monotonic in σ , a property 
which is usually expected of any detector. 
From equation (*) ( ) 5.01 =

∞→
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cPLim , which shows that BER is not 

monotonic. This anomalous behavior can be attributed to the fact that, the polarity of the 
output for matched filter for user one is governed by the sign of 2b rather than 1b . (as 
seen from condition (**) 
 
Infact 0fσ  is actually better than 0=σ  for detection of 1b , in the sense that, 

( ) 5.01 <σcP . Further, we can show that the optimum noise variance that minimizes BER, 
under condition (**) is given by: 
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When ρ21 AA = , with a probability of 0.5, signal of user two exactly cancels signal of 
user one, which leaves a zero-mean Gaussian noise and with a probability of 0.5, signal 
of user two doubles the contribution of desired signal at the matched filter out put. So the 
expression for probability of error of user one is given by: 
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Figure1. shows the probability of error ( )σcP1  for user one versus normalized amplitude 
of user one σ1A  plotted at , for different ratios 12 / AA  at 2.0=ρ . MATLAB code for 
figure1 is included in Appendix1. 
 
Observations: 
We can see form the curve that BER degrades quite rapidly as ⇑2A (increases). 
When ,2.0,6/ 12 == ρAA  the condition (**) hold and hence the probability of error 
doesn’t go to zero as 0→σ . The near far effect can thus be observed. 
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Figure1. ))((log 110 σcP  vs. ( )2

1 /σA  for }{ 6,2,1,0/ 12 ∈AA  and 2.0=ρ  
 
Power Trade-off Regions: Power trade-off regions plotted for a given BER(p*) are 
defined as the region of permissible normalized powers for which the BER is always less 
the than the specified BER = p*, for all users. The power trade off region for 

510*3 −=BER  and different }{ 5.0,3.0,1.0,0∈ρ  are plotted in Figure2. 

 
Figure2. Regions ( )2

2 /σA  vs. ( )2
1 /σA  for }{ 5.0,3.0,1.0,0∈ρ , 510*3 −=BER  
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The MATLAB code for figure 2 is included in Appendix 2. 
 
Observations: 
For both the users parameterized by ρ , ( ) .1210*3 51 dBQ =−−  So we can observer that for 
zero cross-correlation, we all SNRs greater than 12dB as permissible powers. We also 
observe that as ρ  increases, even if both amplitudes are identical, necessary energy 
increases rapidly. The sensitivity to imbalances in received energy increases with ρ . 
In mobile systems, received amplitude may vary over a wide range and hence strict 
power control is necessary. 
 
We also observe that lower the cross-correlation, the better we perform and hence, to 
reduce cross correlation, we need to use complex codes such as Walsh codes or long 
random codes need to be used in signature sequences. Also channel coding is necessary 
which is useful when errors are independent. 
 
To visualize the operation of the conventional detector in signal space diagram, let now 
look at 21 yy −  plane. 

 
Figure3. Signal space representation of mean of received signals in 21 yy − plane. 

 
For the two-user system when bits ( )21 ,bb  are transmitted, the output vector conditioned 
on ( )21 ,bb  is Gaussian with: 
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Received vector is a sum of the transmitted vector (mean) and the zero mean Gaussian 
noise vector, with covariance matrix as above. 
If we keep decision regions fixed the transmitted vector changes according to amplitudes 
and cross correlations and therefore may lead to degradation in performance and 
anomalous behavior. 
 
Generalization to the k-user system: 
Based on the knowledge obtained from the two-user case, we know try to extend the 
arguments to K-user system and can obtain, the probability of error expression for user k 
as: 
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Observations:  
We observe that the bit error rate depends on shape of signature waveforms only through 
cross correlations. BER depends only on received amplitudes and noise level σ  only 

through the ratio 
Ak

σ
.The decisions are invariant under the scaling of received signal. 

 
We can now upper bound equation ( )***  as 
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To note the near far behavior observe that ( )*** → 0, as σ → 0, iff 

A Ak j jk
j k

f ρ .......⊕
≠
∑  

We refer to the condition above as eye-open condition i.e. error free decisions are 
possible in absence of background noise. When eye is open note that ( )**** → 0 , as 
σ → 0, 
Also note that computation of (***) grows exponentially in number of users. It is very 
tempting to use Gaussian approximation, i.e. replace the binomial random variable, 
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probability of error of k th  user is given by, 
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The Gaussian approximation is good for low SNR, but highly unreliable at high SNR. 
Gaussian approximation states that the probability of error goes to a non-zero limit for 
high SNR which is not the same as ).(lim
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Consider the plot shown in Figure4, where the BER of one user is plotted against the 
SNR, when ten users are present cross-correlation 08.0=klρ  and equal energy. The 
MATLAB code for Figure4, Figure5 and Figure6 is shown in Appendix 1. The different 
plots shown below can be obtained by changing the parameters corresponding to number 
of users, cross-correlation and the range of x-axis and y-axis. 
 
Figure5 and Figure6 are plotted with BER on the y-axis and SNR on the x-axis for 
fourteen users with equal powers and cross correlations. The second plot is specifically 
included to show the asymptotic behavior of exact probability of error under eye-closed 
condition. The asymptotic probability of error is 1/8192 in the case 
when jk AAK === ,08.0,14 ρ . 
 

 
Figure4. Probability of error vs. Signal to noise ratio for jAAK jk ∀=== ,08.0,10 ρ  

(Eye-open condition) 
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Figure5. Probability of error vs. Signal to Noise ratio for jAAK jk ∀=== ,08.0,14 ρ  

(Eye-closed condition) 
 

 
Figure6. Asymptotic behavior of exact probability of error 

for jAAK jk ∀=== ,08.0,14 ρ  (Eye-closed condition) 
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∴ We can observe that in the limit as 0→σ  (***), (*G) behave very differently. For e.g. 
(*G) has a non-zero limit, even if eye-open condition is satisfied. This difference can be 
attributed to error in replacing binomial random variable with Gaussian random variable 
and the error is greatest in the tails, which determine the BER (when background noise is 
dominant). 
 
When the users are not synchronized, each bit of thk  user is affected by, 2k-2 interfering 
bits and the expression for probability of error of thk  user is given by: 
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In the eye open condition the asynchronous environment is thus given by, 
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Multi-user Efficiency and related measures:  
While BER is a main performance measure in most communication systems, there are 
several performance measures derived from it. These can be useful in design analysis and 
understanding various detectors. SIR is a good measure. Outage is another measure 
which is defined as the probability of SIR going below some threshold. In the absence of 
interferers, SIR = 22 σkA  and single user performance is achieved. i.e. probability of 
error is given by, )()( σσ k
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Therefore the presence of interference increases BER. It is interesting to quantify multi-
user error probability relative to single-user BER. 
 
Effective energy of user k )(σke , is defined as the energy that user k would require to 
achieve a bit error rate equal to )(σc

kP  in a single-user, Gaussian channel with same back 
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Since multi-user error probability is lower bounded by the single user error probability, 
we have ( )σσ kk AQP >)( , and hence 2)( kk Ae pσ . Effective energy is upper bounded by 
actual energy. 
If we normalize the effective energy with noise, we obtain 
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The power trade off regions can then be characterized in terms of effective energies as 
follows. The power trade off regions for a given permissible BER p (same for all users), 

are a set of SNRs 
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Multi-user efficiency: Multi-user efficiency is defined as the ratio of effective and actual 
energies 2/)( kk Ae σ , which quantifies the performance degradation due to existence of 
other users in the channel. 

Asymptotic multi-user efficiency is defined as: 20
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Therefore we can see that, when “eye is closed”, (i.e. BER doesn’t vanish as 0→σ ) the 
asymptotic multi-user efficiency is zero. 
If 0fkη , then BER goes to zero in the limit as 0→σ , moreover vanishes 
exponentially. Typically the asymptotic multi-user efficiency is very close to multi-user 
efficiency, except in the low SNR regime.  
 
Asymptotic multi-user efficiency kη  depends on receiver and cross-correlations. 
 
Near-far resistance: The near-far resistance is defined as multi-user efficiency minimized 

over received energies of all the other users and is denoted by 
_

kη is given by: 

k

kj
Ak

j

ηη
≠

>
=

0

_

inf . 

_

kη  depends on the receiver and cross-correlations. 
 
It is sometimes easier to compute multi-user efficiency and near-far resistance than 
computing probability of error. 
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Appendix 1 
MATLAB code for Figure1: 
ro=0.2; 
range = [0 16]; 
yr = [-6 0]; 
k=[0 1 2 6]; 
for na1=range(1):range(2) 
    nna1(na1-range(1)+1) = 10^(na1/10); 
end; 
[k1 k2]=size(k); 
plt = zeros(range(2)-range(1),k2); 
for i=1:k2 
    for j=1:range(2)-range(1)+1 
        a1=nna1(j); 
        a2=k(i)*nna1(j); 
        if (a1>a2*ro) 
            plt(j,i)=0.25*erfc(sqrt(a1-a2*ro)/sqrt(2))+0.25*erfc(sqrt(a1+a2*ro)/sqrt(2)); 
        end; 
        if(a1<= a2*ro) 
            plt(j,i)=0.5*(1-erfc(sqrt(a2*ro-a1)/sqrt(2))/2)+0.25*erfc(sqrt(a1+a2*ro)/sqrt(2)); 
        end; 
    end; 
end; 
hold on; 
n=range(1):range(2); 
for i=1:k2; 
    plot(n,log10(plt(:,i))); 
end; 
axis([range yr]); 
xlabel('Signal to Noise Ratio of user one(dB)'); 
ylabel('Probablity of error (log10(p))'); 
hold off; 
clear all; 
 
MATLAB code for figure2: 
ro = [0 0.1 0.3 0.5]; 
[k1 k2]=size(ro); 
ber = 3*10^-5; 
del = 1; 
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range=[0 25]; 
nincr = 10; 
for na1=range(1):range(2) 
    nna1(na1-range(1)+1) = 10^(na1/10); 
end; 
for na2=range(1)*nincr:range(2)*nincr 
    nna2(na2-range(1)*nincr+1) = 10^(na2/(10*nincr)); 
end; 
for i=1:k2 
    for j=1:range(2)-range(1)+1 
        a1 = nna1(j); 
        min=1; 
        for k=1:(j-1)*nincr+1 
            a2=nna2(k); 
            if (a2>a1*ro(i)) 

 plt(k,j)=0.25*erfc(sqrt(a2-a1*ro(i))/sqrt(2))+0.25*erfc(sqrt(a2+a1*ro(i))/sqrt(2)); 
            end; 
            if(a2<= a1*ro(i)) 

plt(k,j)=0.5*(1-erfc(sqrt(a1*ro(i)-
a2)/sqrt(2))/2)+0.25*erfc(sqrt(a2+a1*ro(i))/sqrt(2)); 

            end; 
            if (abs(plt(k,j)/ber-1)<del) 
                if(abs(plt(k,j)-ber)<min) 
                    min = abs(plt(k,j)-ber); 
                    abra(i,j)=k;     
                end;                 
            end; 
        end; 
    end; 
end; 
for i=1:k2 
    bool=0; 
    for j=1:range(2)-range(1)+1 
        if((abra(i,j)>0)&(bool==0))  
            bool=1; 
            tt(i)=j; 
        end; 
    end; 
end; 
hold on;             
for i=1:k2 
    n=tt(i):range(2); 
    abn=zeros(range(2)-tt(i)+1,1); 
    for j=tt(i):range(2); 
        abn(j-tt(i)+1,1)=abra(i,j); 
    end; 
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    plot(n,(abn-1)/nincr); 
    plot((abn-1)/nincr,n); 
end; 
hold off; 
axis([range range]); 
xlabel('Signal to noise ratio of user one(dB)'); 
ylabel('Signal to noise ratio of user two(dB)'); 
clear all; 
 
MATLAB code for figure3: 
ro = 0.25 
A=[1+ro -1+ro -1-ro 1-ro;1+ro 1-ro -1-ro -1+ro] 
hold on; 
for i=1:4 
    plot(A(1,i),A(2,i),'*') 
end; 
axis([-1-2*ro 1+2*ro -1-2*ro 1+2*ro]); 
xlabel('Received signal of user 1,(A1=1) cross-correlation=0.25') 
ylabel('Received signal of user 2,(A2=1)') 
grid on; 
line([-1-2*ro;1+2*ro],[0;0]); 
line([0;0],[-1-2*ro;1+2*ro]); 
hold off; 
clear all; 
 
MATLAB for figure 4,5,6: 
 ro=0.08; 
range=[10 100]; 
nou = 14; 
yr = [-4,-1]; 
for i=range(1):range(2); 
    nna1(i-range(1)+1)=sqrt(10^(i/10)); 
end; 
for k=1:(range(2)-range(1)+1)  
    sum1(k)=0; 
    for i=0:nou-1 
        sum=1+(ro*i-ro*(nou-1-i)); 
        if(sum>=0) 
             
sum1(k)=sum1(k)+0.5*nchoosek(nou-1,i)*erfc(sum*nna1(k)/sqrt(2)); 
        end; 
        if(sum<0) 
             
sum1(k)=sum1(k)+nchoosek(nou-1,i)*(1-0.5*erfc(-sum*nna1(k)/sqrt(2))); 
        end; 
    end; 
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    sum1(k)=sum1(k)/2^(nou-1); 
end; 
xr =range(1):range(2); 
plot(xr,log10(sum1)); 
hold on; 
for i=range(1):range(2) 
     
temp(i-range(1)+1)=0.5*erfc(nna1(i-range(1)+1)/(sqrt(2)*sqrt(1+(nou-1)*ro^2*nna1(i-
range(1)+1)^2))); 
end; 
plot(xr, log10(temp)); 
axis([range yr]); 
xlabel('Signal to noise ratio of user one(dB)'); 
ylabel('Probablity of error (log10(p))'); 
hold off; 
clear all; 
 
            
         
 
 


