# Probability and Random Processes 

Course No: 14:332:321 (Fall 2001)

## Solutions to Exam 2

Maximum Marks : 60
Total Time : 1 hour \& 10minutes
Instructions : The points for each question are listed below in parentheses.

1. $Y=3 X+4$, where $X$ is an exponential random variable with
parameter 3. Therefore $E[X]=1 / 3$ and $\operatorname{Var}[X]=1 / 9$.
(a) Therefore $E[Y]=3 E[X]+4=5$ and $\operatorname{Var}[Y]=9 \operatorname{Var}[X]=1$
(b) If $Y$ is an exponential random variable, then the following must be true: $(E[Y])^{2}=\operatorname{Var}[Y]$. Clearly, in this case $5^{2} \neq 1$, thus $Y$ is not an exponential random variable.
2. A total of 4 buses carrying 148 students from the same school arrives at a football game. The buses carry respectively $40,33,25$ and 50 students.
(a) One of the students is randomly selected during a halftime prize giveaway event.

Let $X$ denote the number of students that were on the bus carrying this randomly selected student. The PMF of $X$ is

$$
\begin{gathered}
P_{X}(x)= \begin{cases}x / 148 & x=40,33,25,50 \\
0 & \text { otherwise }\end{cases} \\
E[X]=\sum_{x} x P_{X}(x)=\left[40^{2}+33^{2}+25^{2}+50^{2}\right] / 148 \approx 39.28
\end{gathered}
$$

(b) One of the 4 bus drivers is also randomly selected to receive a prize during the same halftime event. Let $Y$ denote the number of students on her bus.

$$
P_{Y}(y)= \begin{cases}1 / 4 & y=40,33,25,50 \\ 0 & \text { otherwise }\end{cases}
$$

$E[Y]=\sum_{y} y P_{Y}(y)=148 / 4=37$
(c) $X$ and $Y$ are independent, therefore they are also uncorrelated.
3. Three distinct numbers are randomly distributed to players $A, B$ and $C$. Whenever two players compare their numbers, the one with the higher number wins. Initially, players $A$ and $B$ compare their numbers; the winner then compares with player $C$. Let $Y$ denote the number of times player $A$ is a winner.
Clearly $A$ can win 0,1 or 2 times.
Consider when $Y=0$. This happens only when $A$ loses to $B$ right away. Therefore $P[Y=0]=$ $1 / 2$.

Consider when $Y=1$. This happens only when $A$ wins against $B$ and then loses to $C$. Therefore

$$
\begin{gathered}
P[Y=1]=P[\mathrm{C} \text { has largest number and } \mathrm{A} \text { is larger than } \mathrm{B}] \\
=P[\mathrm{C} \text { has largest number }] P[\mathrm{~A} \text { is larger than } \mathrm{B} \mid \mathrm{C} \text { has largest number }]
\end{gathered}
$$

$$
=1 / 3 \times 1 / 2=1 / 6
$$

Consider when $Y=2$. In this case, A has to have the largest number, i.e., $P[Y=2]=1 / 3$ The probability mass function of $Y$ is therefore:

$$
P_{Y}(y)= \begin{cases}1 / 2 & y=0 \\ 1 / 6 & y=1 \\ 1 / 3 & y=2 \\ 0 & \text { otherwise }\end{cases}
$$

4. A salesman has scheduled two appointments to sell vacuum cleaners. His first appointment (15) is with a "sloppy" single-guy and will lead to a sale with probability 0.3 . His second appointment is with a "mysophobic" ${ }^{1}$ woman and will lead independently to a sale with probability 0.8 . Any sale made is equally likely to be either for the deluxe model which costs $\$ 1000$ or the standard model which costs $\$ 500$. Let $X$, be the total dollar value of all sales.
Let us define the following events and corresponding probabilities:

- $S_{g} \equiv$ Sale with guy $\quad P\left[S_{g}\right]=0.3$
- $N_{g} \equiv$ No Sale with guy
$P\left[N_{g}\right]=0.7$
- $S_{w} \equiv$ Sale with woman
$P\left[S_{w}\right]=0.8$
- $N_{w} \equiv$ No Sale with woman
$P\left[N_{w}\right]=0.2$
- Dx $\equiv$ Deluxe Sale
$P[D x]=0.5$
- St $\equiv$ Standard Sale

$$
P[S t]=0.5
$$

$X=0$ when both the guy and the woman do not buy a vacuum cleaner. Therefore,

$$
P[X=0]=P\left[N_{g} \text { and } N_{w}\right]=P\left[N_{g}\right] P\left[N_{w}\right]=0.7 \times 0.2=0.14
$$

$X=500$ when there is only one standard vacuum cleaner sale (either to the guy or the woman) from both visits. Therefore,

$$
P[X=500]=P\left[S_{g} S t \text { and } N_{w}\right]+P\left[N_{g} \text { and } S_{w} S t\right]=0.3 \times 0.5 \times 0.2+0.7 \times 0.8 \times 0.2=0.31
$$

$X=1000$ when there are two standard sales (one to the guy and one to the woman) or one deluxe sale (either to the guy or the woman). Therfore,

$$
\begin{aligned}
P[X & =1000]=P\left[S_{g} S t \text { and } S_{w} S t\right]+P\left[S_{g} D x \text { and } N_{w}\right]+P\left[N_{g} \text { and } S_{w} D x\right] \\
& =0.3 \times 0.5 \times 0.8 \times 0.5+0.3 \times 0.5 \times 0.2+0.7 \times 0.8 \times 0.5=0.37
\end{aligned}
$$

[^0]$X=1500$ when there is one standard and one deluxe sale to the guy and woman, respectively or vice-versa. Therfore,
$P[X=1500]=P\left[S_{g} D x\right.$ and $\left.S_{w} S t\right]+P\left[S_{g} S t\right.$ and $\left.S_{w} D x\right]=0.3 \times 0.5 \times 0.8 \times 0.5+0.3 \times 0.5 \times 0.8 \times 0.5=0.12$
$X=2000$ when one deluxe sold to the guy and one to the woman. Therefore,
\[

$$
\begin{gather*}
P[X=2000]=P\left[S_{g} D x \text { and } S_{w} D x\right]=0.3 \times 0.5 \times 0.8 \times 0.5=0.06 \\
P_{X}(x)= \begin{cases}0.14 & x=0 \\
0.31 & x=500 \\
0.37 & x=1000 \\
0.12 & x=1500 \\
0.06 & x=2000 \\
0 & \text { otherwise }\end{cases} \tag{5}
\end{gather*}
$$
\]

5. If $X$ and $Y$ are discrete random variables such that their joint PMF is $P_{X, Y}(x, y)$ and their marginal PMFs are $P_{X}(x)$ and $P_{Y}(y)$, respectively. To prove that if $X$ and $Y$ are independent, then they are also uncorrelated we proceed as follows.
Since $X$ and $Y$ are independent, $P_{X, Y}(x, y)=P_{X}(x) P_{Y}(y)$. Therefore, we can write

$$
E[X Y]=\sum_{x} \sum_{y} x y P_{X, Y}(x, y)=\sum_{x} \sum_{y} x y P_{X}(x) P_{Y}(y)=\left(\sum_{x} x P_{X}(x)\right)\left(\sum_{y} y P_{Y}(y)\right)=E[X] E[Y]
$$

which in turn implies

$$
\operatorname{Cov}[X, Y]=E[X Y]-E[X] E[Y]=0,
$$

thus proving that $X$ and $Y$ are uncorrelated.
6. $X$ is a random variable with PDF given as

$$
\begin{equation*}
f_{X}(x)=\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(x-2)^{2}}{8}}-\infty \leq x \leq \infty \tag{10}
\end{equation*}
$$

Clearly $X$ is Gaussian with mean $\mu_{X}=2$ and variance $\sigma_{X}^{2}=4$. Since a linear transformation of the Gaussian random variable results in a Gaussian random variable, $Y=2 X+10$ is also Gaussian with $\mu_{Y}=2 \mu_{X}+10=14$ and $\sigma_{Y}^{2}=4 \sigma_{X}^{2}=16$. The PDF of $Y$ is

$$
f_{Y}(y)=\frac{1}{4 \sqrt{2 \pi}} e^{-\frac{(y-14)^{2}}{32}}-\infty \leq y \leq \infty
$$


[^0]:    ${ }^{1}$ Mysophobia: Fear of Dirt

