Probability and Stochastic Processes:

A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman

Problem Solutions : Yates and Goodman,4.3.1 4.3.4 4.3.5 4.4.1 4.4.4 4.4.6 4.5.1 4.5.7 4.6.1 and 4.6.8

Problem 4.3.1

$$
f_{X}(x)= \begin{cases}1 / 4 & -1 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

We recognize that X is a uniform random variable from $[-1,3]$.
(a) $E[X]=1$ and $\operatorname{Var}[X]=\frac{(3+1)^{2}}{12}=4 / 3$.
(b) The new random variable Y is defined as $Y=h(X)=X^{2}$. Therefore

$$
h(E[X])=h(1)=1
$$

and

$$
E[h(X)]=E\left[X^{2}\right]=\operatorname{Var}[X]+E[X]^{2}=4 / 3+1=7 / 3
$$

Finally

$$
\begin{aligned}
E[Y] & =E[h(X)]=E\left[X^{2}\right]=7 / 3 \\
\operatorname{Var}[Y] & =E\left[X^{4}\right]-E\left[X^{2}\right]^{2}=\int_{-1}^{3} \frac{x^{4}}{4} d x-\frac{49}{9}=\frac{61}{5}-\frac{49}{9}
\end{aligned}
$$

Problem 4.3.4

(a) We can find the expected value of X by direct integration of the given PDF.

$$
f_{Y}(y)= \begin{cases}y / 2 & 0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

The expectation is

$$
E[Y]=\int_{0}^{2} \frac{y^{2}}{2} d y=4 / 3
$$

(b)

$$
\begin{aligned}
E\left[Y^{2}\right] & =\int_{0}^{2} \frac{y^{3}}{2} d y=2 \\
\operatorname{Var}[Y] & =E\left[Y^{2}\right]-E[Y]^{2}=2-(4 / 3)^{2}=2 / 9
\end{aligned}
$$

Problem 4.3.5

The CDF of Y is

$$
F_{Y}(y)= \begin{cases}0 & y<-1 \\ (y+1) / 2 & -1 \leq y<1 \\ 1 & y \geq 1\end{cases}
$$

(a) We can find the expected value of Y by first find the PDF by differentiating the above CDF.

$$
f_{Y}(y)= \begin{cases}1 / 2 & -1 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

And

$$
E[Y]=\int_{-1}^{1} y / 2 d y=0
$$

(b)

$$
\begin{aligned}
E\left[Y^{2}\right] & =\int_{-1}^{1} \frac{y^{2}}{2} d y=1 / 3 \\
\operatorname{Var}[Y] & =E\left[Y^{2}\right]-E[Y]^{2}=1 / 3-0=1 / 3
\end{aligned}
$$

Problem 4.4.1

observe that an exponential PDF Y with parameter $\lambda>0$ has PDF

$$
f_{Y}(y)= \begin{cases}\lambda e^{-\lambda y} & y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

In addition, the mean and variance of Y are

$$
E[Y]=\frac{1}{\lambda} \quad \operatorname{Var}[Y]=\frac{1}{\lambda^{2}}
$$

(a) Since $\operatorname{Var}[Y]=25$, we must have $\lambda=1 / 5$.
(b) The expected value of Y is $E[Y]=1 / \lambda=5$.
(c)

$$
P[Y>5]=\int_{5}^{\infty} f_{Y}(y) d y=-\left.e^{-y / 5}\right|_{5} ^{\infty}=e^{-1}
$$

Problem 4.4.4

(a) The PDF of a continuous uniform random variable distributed from $[-5,5)$ is

$$
f_{X}(x)= \begin{cases}1 / 10 & -5 \leq x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

(b) For $x<-5, F_{X}(x)=0$. For $x \geq 5, F_{X}(x)=1$. For $-5 \leq x \leq 5$, the CDF is

$$
F_{X}(x)=\int_{-5}^{x} f_{X}(\tau) d \tau=\frac{x+5}{10}
$$

The complete expression for the CDF of X is

$$
F_{X}(x)= \begin{cases}0 & x<-5 \\ (x+5) / 10 & 5 \leq x \leq 5 \\ 1 & x>5\end{cases}
$$

(c) the expected value of X is

$$
\int_{-5}^{5} \frac{x}{10} d x=\left.\frac{x^{2}}{20}\right|_{-5} ^{5}=0
$$

Another way to obtain this answer is to use Theorem 4.7 which says the expected value of X is

$$
E[X]=\frac{5+-5}{2}=0
$$

(d) The fifth moment of X is

$$
\int_{-5}^{5} \frac{x^{5}}{10} d x=\left.\frac{x^{6}}{60}\right|_{-5} ^{5}=0
$$

The expected value of e^{X} is

$$
\int_{-5}^{5} \frac{e^{x}}{10} d x=\left.\frac{e^{x}}{10}\right|_{-5} ^{5}=\frac{e^{5}-e^{-5}}{10}=14.84
$$

Problem 4.4.6

Given that

$$
f_{X}(x)= \begin{cases}(1 / 2) e^{-x / 2} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a)

$$
P[1 \leq X \leq 2]=\int_{1}^{2}(1 / 2) e^{-x / 2} d x=e^{-1 / 2}-e^{-1}=0.2387
$$

(b) The CDF of X may be be expressed as

$$
F_{X}(x)=\left\{\begin{array}{ll}
0 & x<0 \\
\int_{0}^{x}(1 / 2) e^{-x / 2} d \tau & x \geq 0
\end{array}= \begin{cases}0 & x<0 \\
1-e^{-x / 2} & x \geq 0\end{cases}\right.
$$

(c) X is an exponential random variable with parameter $a=1 / 2$. By Theorem 4.9, the expected value of X is $E[X]=1 / a=2$.
(d) By Theorem 4.9, the variance of X is $\operatorname{Var}[X]=1 / a^{2}=4$.

Problem 4.5.1

Given that the peak temperature, T, is a Gaussian random variable with mean 85 and standard deviation 10 we can use the fact that $F_{T}(t)=\Phi\left(\left(t-\mu_{T}\right) / \sigma_{T}\right)$ and Table 4.1 on page 142 to evaluate the following

$$
\begin{aligned}
P[T>100] & =1-P[T \leq 100]=1-F_{T}(100)=1-\Phi\left(\frac{100-85}{10}\right) \\
& =1-\Phi(1.5)=1-0.933=0.066 \\
P[T<60] & =\Phi\left(\frac{60-85}{10}\right)=\Phi(-2.5) \\
& =1-\Phi(2.5)=1-.993=0.007 \\
P[70 \leq T \leq 100] & =F_{T}(100)-F_{T}(70) \\
& =\Phi(1.5)-\Phi(-1.5)=2 \Phi(1.5)-1=.866
\end{aligned}
$$

Problem 4.5.7

$N\left[\mu, \sigma^{2}\right]$ distribution, the integral we wish to evaluate is

$$
I=\int_{-\infty}^{\infty} f_{W}(w) d w=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\infty} e^{-(w-\mu)^{2} / 2 \sigma^{2}} d w
$$

(a) Using the substitution $x=(w-\mu) / \sigma$, we have $d x=d w / \sigma$ and

$$
I=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x
$$

(b) When we write I^{2} as the product of integrals, we use y to denote the other variable of integration so that

$$
\begin{aligned}
I^{2} & =\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x\right)\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y\right) \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y
\end{aligned}
$$

(c) By changing to polar coordinates, $x^{2}+y^{2}=r^{2}$ and $d x d y=r d r d \theta$ so that

$$
\begin{aligned}
I^{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2} / 2} r d r d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}-\left.e^{-r^{2} / 2}\right|_{0} ^{\infty} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta=1
\end{aligned}
$$

Problem 4.6.1

(a) Using the given CDF

$$
\begin{aligned}
P[X<-1]=F_{X}\left(-1^{-}\right) & =0 \\
P[X \leq-1]=F_{X}(-1) & =-1 / 3+1 / 3=0
\end{aligned}
$$

Where $F_{X}\left(-1^{-}\right)$denotes the limiting value of the CDF found by approaching -1 from the left. Likewise, $F_{X}\left(-1^{+}\right)$is interpreted to be the value of the CDF found by approaching -1 from the right. We notice that these two probabilities are the same and therefore the probability that X is exactly -1 is zero.
(b)

$$
\begin{aligned}
& P[X<0]=F_{X}\left(0^{-}\right)=1 / 3 \\
& P[X \leq 0]=F_{X}(0)=2 / 3
\end{aligned}
$$

Here we see that there is a discrete jump at $X=0$. Approached from the left the CDF yields a value of $1 / 3$ but approached from the right the value is $2 / 3$. This means that there is a non-zero probability that $X=0$, in fact that probability is the difference of the two values.

$$
P[X=0]=P[X \leq 0]-P[X<0]=2 / 3-1 / 3=1 / 3
$$

(c)

$$
\begin{aligned}
& P[0<X \leq 1]=F_{X}(1)-F_{X}\left(0^{+}\right)=1-2 / 3=1 / 3 \\
& P[0 \leq X \leq 1]=F_{X}(1)-F_{X}\left(0^{-}\right)=1-1 / 3=2 / 3
\end{aligned}
$$

The difference in the last two probabilities above is that the first was concerned with the probability that X was strictly greater then 0 , and the second with the probability that X was greater than or equal to zero. Since the the second probability is a larger set (it includes the probability that $X=0$) it should always be greater than or equal to the first probability. The two differ by the probability that $X=0$, and this difference is non-zero only when the random variable exhibits a discrete jump in the CDF.

Problem 4.6.8

good, that is, no foul occurs. The CDF of D obeys

$$
F_{D}(y)=P[D \leq y \mid G] P[G]+P\left[D \leq y \mid G^{c}\right] P\left[G^{c}\right]
$$

Given the event G,

$$
P[D \leq y \mid G]=P[X \leq y-60]=1-e^{-(y-60) / 10} \quad(y \geq 60)
$$

Of course, for $y<60, P[D \leq y \mid G]=0$. From the problem statement, if the throw is a foul, then $D=0$. This implies

$$
P\left[D \leq y \mid G^{c}\right]=u(y)
$$

where $u(\cdot)$ denotes the unit step function. Since $P[G]=0.7$, we can write

$$
\begin{aligned}
F_{D}(y) & =P[G] P[D \leq y \mid G]+P\left[G^{c}\right] P\left[D \leq y \mid G^{c}\right] \\
& = \begin{cases}0.3 u(y) & y<60 \\
0.3+0.7\left(1-e^{-(y-60) / 10}\right) & y \geq 60\end{cases}
\end{aligned}
$$

Another way to write this CDF is

$$
F_{D}(y)=0.3 u(y)+0.7 u(y-60)\left(1-e^{-(y-60) / 10}\right)
$$

However, when we take the derivative, either expression for the CDF will yield the PDF. However, taking the derivative of the first expression perhaps may be simpler:

$$
f_{D}(y)= \begin{cases}0.3 \delta(y) & y<60 \\ 0.07 e^{-(y-60) / 10} & y \geq 60\end{cases}
$$

Taking the derivative of the second expression for the CDF is a little tricky because of the product of the exponential and the step function. However, applying the usual rule for the differentation of a product does give the correct answer:

$$
\begin{aligned}
f_{D}(y) & =0.3 \delta(y)+0.7 \delta(y-60)\left(1-e^{-(y-60) / 10}\right)+0.07 u(y-60) e^{-(y-60) / 10} \\
& =0.3 \delta(y)+0.07 u(y-60) e^{-(y-60) / 10}
\end{aligned}
$$

The middle term $\delta(y-60)\left(1-e^{-(y-60) / 10}\right)$ dropped out because at $y=60, e^{-(y-60) / 10}=1$.

