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Problem Solutions: Yatesand Goodman,4.3.14.3.44.354.414.4444645.145.74.6.1and
4.6.8

Problem 4.3.1

(14 1<x<3
fx (x) _{ 0 otherwise

We recognize that X isauniform random variable from [-1,3].

3+1)2
(@ E[X]=1and Var[xX] = B —4/3,
(b) The new random variableY isdefined asY = h(X) = X2. Therefore

and
E[h(X)] = E[X?] = Var[X] +E[X]* =4/3+1=7/3
Finally
E[Y] = E[h(X)] = E[X?] = 7/3
Var[Y] = E[x%] — E[x?] —/igdx 02 %
Problem 4.3.4

(8) We can find the expected value of X by direct integration of the given PDF.

_Jy/2 0<y<2
f (y)—{ 0 otherwise

The expectation is
22
E[Y] = /0 L dy=4/3

(b)

dy=2

N[

E[Y?] = /02
E

VarlY] = E[Y?] —E[Y]*=2—(4/3)>=2/9



Problem 4.3.5
TheCDFof Y is

0 y< -1
Fly)=9 (y+1)/2 -1<y<1
1 y>1

(@) We can find the expected value of Y by first find the PDF by differentiating the above CDF.

[ 1/2 —1<y<1
) _{ 0  otherwise
And
1
el = [ y/2dy=0
(b)
1,2
E[Y?] = [l%dy:1/3
VarlyY] = E[Y?]-E]V*=1/3-0=1/3
Problem 4.4.1

observe that an exponential PDF Y with parameter A > 0 has PDF

[ A&V y>0
) = { 0 otherwise

In addition, the mean and variance of Y are

Vary] — =

E[Y} = 22

1

A

(8 SinceVar[Y] = 25, wemust have A = 1/5.
(b) The expected valueof Y isE[Y] = 1/A =5.
(©

PIY > 5 :/5 fyly) dy=—e°| =e?

Problem 4.4.4

(8 The PDF of acontinuous uniform random variable distributed from [—5,5) is

[ 1/10 -5<x<5
B () = { 0  otherwise



(b) Forx < —5, Fx(x) = 0. For x> 5, Fx (x) = 1. For -5 < x < 5, the CDF is
X X+5
P = [ () dr="3>
The complete expression for the CDF of X is

0 X< =5
Fx(x)=4¢ (x+5)/10 5<x<5
1 Xx>5

(c) the expected value of X is

5 x x2 |°
—dx=—| =0
/,5 107 20|
Another way to obtain this answer is to use Theorem 4.7 which says the expected value of X
is

(d) Thefifth moment of X is

5 %5 X6 |°
/,5de7 50 _570
The expected value of €* is
5 & «° &f-e®
/_Sdef S T
Problem 4.4.6
Given that
[ (122 x>0
B (0= { 0 otherwise

@

2
PL<X<2 = / (1/2)e ¥2dx = e Y2 _e L = 0.2387
1

(b) The CDF of X may be be expressed as
R (%) = 0 x<0 [0 x<0
T (@/2e2dt x>0 | 1-e¥2 x>0
(c) Xisan exponential random variable with parameter a = 1/2. By Theorem 4.9, the expected
valueof X isE[X]=1/a=2.
(d) By Theorem 4.9, the variance of X isVar[X] = 1/a° = 4.



Problem 4.5.1

Given that the peak temperature, T, is a Gaussian random variable with mean 85 and standard devi-
ation 10 we can use the fact that Fr (t) = ®((t — pt)/oT) and Table 4.1 on page 142 to evaluate the
following

PT>1000 = 1-P[T<100=1-F(100)=1- (%)
= 1 ®(1.5)=10.933=0.066
PT<60] = @ <601085> = ®(-2.5)
= 1-®(2.5)=1-.993 = 0.007
P[7T0<T <100] = Fr(100)—Fr(70)

— ®(15)— ®(—1.5) = 2d(15) — 1 = .866

Problem 4.5.7
N[u, o?] distribution, the integral we wish to evaluate is

© 1 ® 2 152
I :/ fu (W) dw = 7/ g W-H)/20° Gy
o w (W) 3] .

(8 Using the substitution x = (w— )/0, we have dx = dw/o and

1 © 2
l=— [ e*/2dx
V211 =0

(b) Whenwewritel? astheproduct of integrals, we usey to denote the other variabl e of integration

so that
1 e 2 1 o0
oo (L[ ) (L[ o)
(m o V2 ) e y

1 r® [® 2
e Py

(c) By changing to polar coordinates, x? +y? = r? and dxdy = rdr d6 so that



Problem 4.6.1
(a) Using the given CDF

PX<—1=F(-1) = 0
PX<—1=F(-1) = —1/3+1/3=0

WhereFx (—1) denotesthelimiting value of the CDF found by approaching — 1 fromtheleft.
Likewise, Fx (—1") isinterpreted to be the value of the CDF found by approaching —1 from
the right. We notice that these two probabilities are the same and therefore the probability that
Xisexactly —1iszero.

(b)

PX<0 = Fx(07)=1/3
PX<0 = Fx(0)=2/3

Here we see that thereisadiscrete jump at X = 0. Approached from the left the CDF yieldsa
value of 1/3 but approached from theright the valueis 2/3. Thismeansthat thereisanon-zero
probability that X = 0, in fact that probability is the difference of the two values.

P[X=0]=P[X <0 —P[X <0/ =2/3-1/3=1/3

(©

PO<X<1 = F(1)-F(0")=1-2/3=1/3
PO<X<1 = F(1)-F(0)=1-1/3=2/3

Thedifference in the last two probabilities above isthat the first was concerned with the prob-
ability that X wasstrictly greater then O, and the second with the probability that X was greater
than or equal to zero. Since the the second probability is alarger set (it includes the probabil-
ity that X = 0) it should always be greater than or equal to the first probability. Thetwo differ
by the probability that X = 0, and this difference is non-zero only when the random variable
exhibits adiscrete jump in the CDF.

Problem 4.6.8
good, that is, no foul occurs. The CDF of D obeys

Fo (y) = P[D <y|GJP[G] + P[D < y|G°|P[G"]
Given the event G,
PID<y|G]=PX<y—60]=1—e 080/10 (y> 60)

Of course, for y < 60, P[D <y|G] = 0. From the problem statement, if the throw is a foul, then
D =0. Thisimplies

P[D <y|G] = u(y)

5



where u(-) denotes the unit step function. Since P[G] = 0.7, we can write

Fp (y) = P[GJP[D < Y|G] +P[G*|P[D < y|G]

0.3u(y) y < 60
0.3+0.7(1— e~ 0=80/10) y> 60

Another way to write thisCDF is
Fo (y) = 0.3u(y) + 0.7u(y — 60)(1— e (v~60/10)

However, when we take the derivative, either expression for the CDF will yield the PDF. However,
taking the derivative of the first expression perhaps may be simpler:

oy J 038(y) y < 60
p(y) = 0.07e -609/10 y > g

Taking the derivative of the second expression for the CDF is alittle tricky because of the product
of the exponential and the step function. However, applying the usual rule for the differentation of
aproduct does give the correct answer:

fo (y) = 0.38(y) + 0.73(y — 60) (1 — e~¥=80/1%) + 0.07u(y — 60)e~¥~60)/10
— 0.33(y) + 0.07u(y — 60)e~(y=60)/10

The middle term 8(y — 60)(1— e~ (¥~89/10) dropped out because at y = 60, e (V-60/10 — 1,



