Probability and Stochastic Processes:

A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman

Problem Solutions : Yates and Goodman,2.5.6 2.5.7 2.5.9 and 2.5.10

Problem 2.5.6

random variable X has PMF

$$
P_{X}(x)= \begin{cases}\binom{4}{x}(1 / 2)^{4} & x=0,1,2,3,4 \\ 0 & \text { otherwise }\end{cases}
$$

The expected value of X is

$$
\begin{aligned}
E[X]=\sum_{x=0}^{4} x P_{X}(x) & =0\binom{4}{0} \frac{1}{2^{4}}+1\binom{4}{1} \frac{1}{2^{4}}+2\binom{4}{2} \frac{1}{2^{4}}+3\binom{4}{3} \frac{1}{2^{4}}+4\binom{4}{4} \frac{1}{2^{4}} \\
& =[4+12+12+4] / 2^{4}=2
\end{aligned}
$$

Problem 2.5.7

random variable X has PMF

$$
P_{X}(x)= \begin{cases}\binom{5}{x}(1 / 2)^{5} & x=0,1,2,3,4,5 \\ 0 & \text { otherwise }\end{cases}
$$

The expected value of X is

$$
\begin{aligned}
E[X] & =\sum_{x=0}^{5} x P_{X}(x) \\
& =0\binom{5}{0} \frac{1}{2^{5}}+1\binom{5}{1} \frac{1}{2^{5}}+2\binom{5}{2} \frac{1}{2^{5}}+3\binom{5}{3} \frac{1}{2^{5}}+4\binom{5}{4} \frac{1}{2^{5}}+5\binom{5}{5} \frac{1}{2^{5}} \\
& =[5+20+30+20+5] / 2^{5}=2.5
\end{aligned}
$$

Problem 2.5.9

In this "double-or-nothing" type game, there are only two possible payoffs. The first is zero dollars, which happens when we lose 6 straight bets, and the second payoff is 64 dollars which happens unless we lose 6 straight bets. So the PMF of Y is

$$
P_{Y}(y)= \begin{cases}(1 / 2)^{6}=1 / 64 & y=0 \\ 1-(1 / 2)^{6}=63 / 64 & y=64 \\ 0 & \text { otherwise }\end{cases}
$$

The expected amount you take home is

$$
E[Y]=0(1 / 64)+64(63 / 64)=63
$$

So, on the average, we can expect to break even, which is not a very exciting proposition.

Problem 2.5.10

By the definition of the expected value,

$$
\begin{aligned}
E\left[X_{n}\right] & =\sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =n p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-1-(x-1))!} p^{x-1}(1-p)^{n-1-(x-1)}
\end{aligned}
$$

With the substitution $x^{\prime}=x-1$, we have

$$
E\left[X_{n}\right]=n p \underbrace{\sum_{x^{\prime}=0}^{n-1}\binom{n-1}{x^{\prime}} p^{x^{\prime}}(1-p)^{n-x^{\prime}}}_{1}=n p \sum_{x^{\prime}=0}^{n-1} P_{X_{n-1}}(x)=n p
$$

The above sum is 1 because it is he sum of a binomial random variable for $n-1$ trials over all possible values.

