Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman

Problem Solutions : Yates and Goodman,1.7.1 1.7.5 1.8.1 1.8.2 1.8.4 and 1.9.1

Problem 1.7.1

A sequential sample space for this experiment is

(a) From the tree, we observe

$$
P\left[H_{2}\right]=P\left[H_{1} H_{2}\right]+P\left[T_{1} H_{2}\right]=1 / 4
$$

This implies

$$
P\left[H_{1} \mid H_{2}\right]=\frac{P\left[H_{1} H_{2}\right]}{P\left[H_{2}\right]}=\frac{1 / 16}{1 / 4}=1 / 4
$$

(b) The probability that the first flip is heads and the second flip is tails is $P\left[H_{1} T_{2}\right]=3 / 16$.

Problem 1.7.5

The $P[-\mid H]$ is the probability that a person who has HIV tests negative for the disease. This is referred to as a false-negative result. The case where a person who does not have HIV but tests positive for the disease, is called a false-positive result and has probability $P\left[+\mid H^{c}\right]$. Since the test is correct 99% of the time,

$$
P[-\mid H]=P\left[+\mid H^{c}\right]=0.01
$$

Now the probability that a person who has tested positive for HIV actually has the disease is

$$
P[H \mid+]=\frac{P[+, H]}{P[+]}=\frac{P[+, H]}{P[+, H]+P\left[+, H^{c}\right]}
$$

We can use Bayes' formula to evaluate these joint probabilities.

$$
\begin{aligned}
P[H \mid+] & =\frac{P[+\mid H] P[H]}{P[+\mid H] P[H]+P\left[+\mid H^{c}\right] P\left[H^{c}\right]} \\
& =\frac{(0.99)(0.0002)}{(0.99)(0.0002)+(0.01)(0.9998)} \\
& =0.0194
\end{aligned}
$$

Thus, even though the test is correct 99% of the time, the probability that a random person who tests positive actually has HIV is less than 0.02 . The reason this probability is so low is that the a priori probability that a person has HIV is very small.

Problem 1.8.1

There are $2^{5}=32$ different binary codes with 5 bits. The number of codes with exactly 3 zeros equals the number of ways of choosing the bits in which those zeros occur. Therefore there are $\binom{5}{3}=$ 10 codes with exactly 3 zeros.

Problem 1.8.2

Since each letter can take on any one of the 4 possible letters in the alphabet, the number of 3 letter words that can be formed is $4^{3}=64$. If we allow each letter to appear only once then we have 4 choices for the first letter and 3 choices for the second and two choices for the third letter. Therefore, there are a total of $4 \cdot 3 \cdot 2=24$ possible codes.

Problem 1.8.4

In this case, the designated hitter must be chosen from the 15 field players. We can break down the experiment of choosing a starting lineup into two sub-experiments. The first is to choose 1 of the 10 pitchers, the second is to choose the remaining 9 batting positions out of the 15 field players. Here we are concerned about the ordering of our selections because a new ordering specifies a new starting lineup. So the total number of starting lineups when the DH is selected among the field players is

$$
\binom{10}{1}(15)_{9}
$$

Where (15) $)_{9}$ is read as 15 "permute" 9 and is equal to

$$
(15)_{9}=15!/ 9!=1,816,214,400
$$

This gives a total of $N_{1}=18,162,144,000$ different lineups

Problem 1.9.1

(a) Since the probability of a zero is 0.8 , we can express the probability of the code word 00111 as 2 occurrences of a 0 and three occurrences of a 1 . Therefore

$$
P[00111]=(0.8)^{2}(0.2)^{3}=0.00512
$$

(b) The probability that a code word has exactly three 1's is

$$
P[\text { three } 1 \text { 's }]=\binom{5}{3}(0.8)^{2}(0.2)^{3}=0.0512
$$

