# Probability and Stochastic Processes: <br> A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman 

Problem Solutions : Yates and Goodman, 1.5.1 1.5.2 1.5.3 1.6.3 1.6.4 and 1.6.7

## Problem 1.5.1

probability.
(a) Note that the probability a call is brief is

$$
P[B]=P\left[H_{0} B\right]+P\left[H_{1} B\right]+P\left[H_{2} B\right]=0.6 .
$$

The probability a brief call will have no handoffs is

$$
P\left[H_{0} \mid B\right]=\frac{P\left[H_{0} B\right]}{P[B]}=\frac{0.4}{0.6}=\frac{2}{3}
$$

(b) The probability of one handoff is $P\left[H_{1}\right]=P\left[H_{1} B\right]+P\left[H_{1} L\right]=0.2$. The probability that a call with one handoff will be long is

$$
P\left[L \mid H_{1}\right]=\frac{P\left[H_{1} L\right]}{P\left[H_{1}\right]}=\frac{0.1}{0.2}=\frac{1}{2}
$$

(c) The probability a call is long is $P[L]=1-P[B]=0.4$. The probability that a long call will have one or more handoffs is

$$
P\left[H_{1} \cup H_{2} \mid L\right]=\frac{P\left[H_{1} L \cup H_{2} L\right]}{P[L]}=\frac{P\left[H_{1} L\right]+P\left[H_{2} L\right]}{P[L]}=\frac{0.1+0.2}{0.4}=\frac{3}{4}
$$

## Problem 1.5.2

Let $s_{i}$ denote the outcome that the roll is $i$. So, for $1 \leq i \leq 6, R_{i}=\left\{s_{i}\right\}$. Similarly, $G_{j}=\left\{s_{j+1}, \ldots, s_{6}\right\}$.
(a) Since $G_{1}=\left\{s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\}$ and all outcomes have probability $1 / 6, P\left[G_{1}\right]=5 / 6$. The event $R_{3} G_{1}=\left\{s_{3}\right\}$ and $P\left[R_{3} G_{1}\right]=1 / 6$ so that

$$
P\left[R_{3} \mid G_{1}\right]=\frac{P\left[R_{3} G_{1}\right]}{P\left[G_{1}\right]}=\frac{1}{5}
$$

(b) The conditional probability that 6 is rolled given that the roll is greater than 3 is

$$
P\left[R_{6} \mid G_{3}\right]=\frac{P\left[R_{6} G_{3}\right]}{P\left[G_{3}\right]}=\frac{P\left[s_{6}\right]}{P\left[s_{4}, s_{5}, s_{6}\right]}=\frac{1 / 6}{3 / 6}
$$

(c) The event $E$ that the roll is even is $E=\left\{s_{2}, s_{4}, s_{6}\right\}$ and has probability $3 / 6$. The joint probability of $G_{3}$ and $E$ is

$$
P\left[G_{3} E\right]=P\left[s_{4}, s_{6}\right]=1 / 3
$$

The conditional probabilities of $G_{3}$ given $E$ is

$$
P\left[G_{3} \mid E\right]=\frac{P\left[G_{3} E\right]}{P[E]}=\frac{1 / 3}{1 / 2}=\frac{2}{3}
$$

(d) The conditional probability that the roll is even given that it's greater than 3 is

$$
P\left[E \mid G_{3}\right]=\frac{P\left[E G_{3}\right]}{P\left[G_{3}\right]}=\frac{1 / 3}{1 / 2}=\frac{2}{3}
$$

## Problem 1.5.3

Since the 2 of clubs is an even numbered card, $C_{2} \subset E$ so that $P\left[C_{2} E\right]=P\left[C_{2}\right]=1 / 3$. Since $P[E]=$ $2 / 3$,

$$
P\left[C_{2} \mid E\right]=\frac{P\left[C_{2} E\right]}{P[E]}=\frac{1 / 3}{2 / 3}=1 / 2
$$

The probability that an even numbered card is picked given that the 2 is picked is

$$
P\left[E \mid C_{2}\right]=\frac{P\left[C_{2} E\right]}{P\left[C_{2}\right]}=\frac{1 / 3}{1 / 3}=1
$$

## Problem 1.6.3

(a) Since $A$ and $B$ are disjoint, $P[A \cap B]=0$.
(b) Since $P[A \cap B]=0$,

$$
P[A \cup B]=P[A]+P[B]-P[A \cap B]=3 / 8
$$

(c) A Venn diagram should convince you that $A \subset B^{c}$ so that $A \cap B^{c}=A$. This implies

$$
P\left[A \cap B^{c}\right]=P[A]=1 / 4
$$

(d) $P\left[A \cup B^{c}\right]=P\left[B^{c}\right]=1-1 / 8=7 / 8$
(e) Events $A$ and $B$ are dependent since $P[A B] \neq P[A] P[B]$.
(f) Since $C$ and $D$ are independent,

$$
P[C \cap D]=P[C] P[D]=15 / 64
$$

(g) The previous part implies

$$
P[C \cup D]=P[C]+P[D]-P[C \cap D]=5 / 8+3 / 8-15 / 64=49 / 64
$$

(h) Since $C$ and $D$ are independent, $P[C \mid D]=P[C]=5 / 8$.
(i) The next few items are a little trickier. From Venn diagrams, we see

$$
P\left[C \cap D^{c}\right]=P[C]-P[C \cap D]=5 / 8-15 / 64=25 / 64
$$

(j) It follows that

$$
\begin{aligned}
P\left[C \cup D^{c}\right] & =P[C]+P\left[D^{c}\right]-P\left[C \cap D^{c}\right] \\
& =5 / 8+(1-3 / 8)-25 / 64=55 / 64
\end{aligned}
$$

(k) Using DeMorgan's law, we have

$$
P\left[C^{c} \cap D^{c}\right]=P\left[(C \cup D)^{c}\right]=1-P[C \cup D]=15 / 64
$$

(1) Since $P\left[C^{c} D^{c}\right]=P\left[C^{c}\right] P\left[D^{c}\right], C^{c}$ and $D^{c}$ are independent.

## Problem 1.6.4

(a) Since $A \cap B=\emptyset, P[A \cap B]=0$.
(b) To find $P[B]$, we can write

$$
\begin{aligned}
P[A \cup B] & =P[A]+P[B]-P[A \cap B] \\
5 / 8 & =3 / 8+P[B]-0
\end{aligned}
$$

Thus, $P[B]=1 / 4$.
(c) Since $A$ is a subset of $B^{c}, P\left[A \cap B^{c}\right]=P[A]=3 / 8$.
(d) Since $A$ is a subset of $B^{c}, P\left[A \cup B^{c}\right]=P\left[B^{c}\right]=3 / 4$.
(e) The events $A$ and $B$ are dependent because

$$
P[A B]=0 \neq 3 / 32=P[A] P[B] .
$$

(f) Since $C$ and $D$ are independent $P[C D]=P[C] P[D]$. So

$$
P[D]=\frac{P[C D]}{P[C]}=\frac{1 / 3}{1 / 2}=2 / 3
$$

(g) This permits us to write

$$
P[C \cup D]=P[C]+P[D]-P[C \cap D]=1 / 2+2 / 3-1 / 3=5 / 6
$$

(h) Since $C$ and $D$ are independent events, $P[C \mid D]=P[C]=1 / 2$.
(i) $P\left[C \cap D^{c}\right]=P[C]-P[C \cap D]=1 / 2-1 / 3=1 / 6$
(j) $P\left[C \cup D^{c}\right]=P[C]+P[D]-P\left[C \cap D^{c}\right]=1 / 2+(1-2 / 3)-1 / 6=2 / 3$
(k) By De Morgan's Law, $C^{c} \cap D^{c}=(C \cup D)^{c}$. This implies

$$
P\left[C^{c} \cap D^{c}\right]=P\left[(C \cup D)^{c}\right]=1-P[C \cup D]=1 / 6
$$

(1) By Definition 1.6, events $C$ and $D^{c}$ are independent because

$$
P\left[C \cap D^{c}\right]=1 / 6=(1 / 2)(1 / 3)=P[C] P\left[D^{c}\right]
$$

## Problem 1.6.7

(a) For any events $A$ and $B$, we can write the law of total probability in the form of

$$
P[A]=P[A B]+P\left[A B^{c}\right]
$$

Since $A$ and $B$ are independent, $P[A B]=P[A] P[B]$. This implies

$$
P\left[A B^{c}\right]=P[A]-P[A] P[B]=P[A](1-P[B])=P[A] P\left[B^{c}\right]
$$

Thus $A$ and $B^{c}$ are independent.
(b) Proving that $A^{c}$ and $B$ are independent is not really necessary. Since $A$ and $B$ are arbitrary labels, it is really the same claim as in part (a). That is, simply reversing the labels of $A$ and $B$ proves the claim. Alternatively, one can construct exactly the same proof as in part (a) with the labels $A$ and $B$ reversed.
(c) To prove that $A^{c}$ and $B^{c}$ are independent, we apply the result of part (a) to the sets $A$ and $B^{c}$. Since we know from part (a) that $A$ and $B^{c}$ are independent, part (b) says that $A^{c}$ and $B^{c}$ are independent.

