Probability and Stochastic Processes:
 A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman

Problem Solutions : Yates and Goodman,7.1.1 7.1.2 7.2.2 7.3.1 7.4.2 and 7.5.2

Problem 7.1.1

random variable that indicates the result of flip 33. The PMF of X_{33} is

$$
P_{X_{33}}(x)= \begin{cases}1-p & x=0 \\ p & x=1 \\ 0 & \text { otherwise }\end{cases}
$$

Note that each X_{i} has expected value $E[X]=p$ and variance $\operatorname{Var}[X]=p(1-p)$. The random variable $Y=X_{1}+\cdots+X_{100}$ is the number of heads in 100 coin flips. Hence, Y has the binomial PMF

$$
P_{Y}(y)= \begin{cases}\binom{100}{y} p^{y}(1-p)^{100-y} & y=0,1, \ldots, 100 \\ 0 & \text { otherwise }\end{cases}
$$

Since the X_{i} are independent, by Theorems 7.1 and 7.3, the mean and variance of Y are

$$
E[Y]=100 E[X]=100 p \quad \operatorname{Var}[Y]=100 \operatorname{Var}[X]=100 p(1-p)
$$

Problem 7.1.2

(a) Since $Y=X_{1}+\left(-X_{2}\right)$, Theorem 7.1 says that the expected value of the difference is

$$
E[Y]=E\left[X_{1}\right]+E\left[-X_{2}\right]=E[X]-E[X]=0
$$

(b) By Theorem 7.2, the variance of the difference is

$$
\operatorname{Var}[Y]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[-X_{2}\right]=2 \operatorname{Var}[X]
$$

Problem 7.2.2

$$
f_{X, Y}(x, y)= \begin{cases}1 & 0 \leq x, y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Proceeding as in Problem 7.2.1, we must first find $F_{W}(w)$ by integrating over the square defined by $0 \leq x, y \leq 1$. Again we are forced to find $F_{W}(w)$ in parts as we did in Problem 7.2.1 resulting in the following integrals for their appropriate regions. For $0 \leq w \leq 1$,

$$
F_{W}(w)=\int_{0}^{w} \int_{0}^{w-x} d x d y=w^{2} / 2
$$

For $1 \leq w \leq 2$,

$$
F_{W}(w)=\int_{0}^{w-1} \int_{0}^{1} d x d y+\int_{w-1}^{1} \int_{0}^{w-y} d x d y=2 w-1-w^{2} / 2
$$

The complete expression for the CDF of W is

$$
F_{W}(w)= \begin{cases}0 & w<0 \\ w^{2} / 2 & 0 \leq w \leq 1 \\ 2 w-1-w^{2} / 2 & 1 \leq w \leq 2 \\ 1 & \text { otherwise }\end{cases}
$$

With the CDF, we can find $f_{W}(w)$ by differentiating with respect to w.

$$
f_{W}(w)= \begin{cases}w & 0 \leq w \leq 1 \\ 2-w & 1 \leq w \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 7.3.1

For a constant $a>0$, a zero mean Laplace random variable X has PDF

$$
f_{X}(x)=\frac{a}{2} e^{-a|x|} \quad-\infty<x<\infty
$$

The moment generating function of X is

$$
\begin{aligned}
\phi_{X}(s)=E\left[e^{s X}\right] & =\frac{a}{2} \int_{-\infty}^{0} e^{s x} e^{a x} d x+\frac{a}{2} \int_{0}^{\infty} e^{s x} e^{-a x} d x \\
& =\left.\frac{a}{2} \frac{e^{(s+a) x}}{s+a}\right|_{-\infty} ^{0}+\left.\frac{a}{2} \frac{e^{(s-a) x}}{s-a}\right|_{0} ^{\infty} \\
& =\frac{a}{2}\left(\frac{1}{s+a}-\frac{1}{s-a}\right) \\
& =\frac{a^{2}}{a^{2}-s^{2}}
\end{aligned}
$$

Problem 7.4.2

points X_{i} that you earn for game i has PMF

$$
P_{X_{i}}(x)= \begin{cases}1 / 3 & x=0,1,2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) The MGF of X_{i} is

$$
\phi_{X_{i}}(s)=E\left[e^{s X_{i}}\right]=1 / 3+e^{s} / 3+e^{2 s} / 3
$$

Since $Y=X_{1}+\cdots+X_{n}$, Theorem 7.10 implies

$$
\phi_{Y}(s)=\left[\phi_{X_{i}}(s)\right]^{n}=\left[1+e^{s}+e^{2 s}\right]^{n} / 3^{n}
$$

(b) First we observe that first and second moments of X_{i} are

$$
\begin{aligned}
E\left[X_{i}\right] & =\sum_{x} x P_{X_{i}}(x)=1 / 3+2 / 3=1 \\
E\left[X_{i}^{2}\right] & =\sum_{x} x^{2} P_{X_{i}}(x)=1^{2} / 3+2^{2} / 3=5 / 3
\end{aligned}
$$

Hence, $\operatorname{Var}\left[X_{i}\right]=E\left[X_{i}^{2}\right]-\left(E\left[X_{i}\right]\right)^{2}=2 / 3$. By Theorems 7.1 and 7.3 , the mean and variance of Y are

$$
\begin{aligned}
E[Y] & =n E[X]=n \\
\operatorname{Var}[Y] & =n \operatorname{Var}[X]=2 n / 3
\end{aligned}
$$

Problem 7.5.2

Using the moment generating function of $X, \phi_{X}(s)=e^{\sigma^{2} s^{2} / 2}$. We can find the nth moment of $X, E\left[X^{n}\right]$ by taking the nth derivative of $\phi_{X}(s)$ and setting $s=0$.

$$
\begin{aligned}
E[X] & =\left.\sigma^{2} s e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0 \\
E\left[X^{2}\right] & =\sigma^{2} e^{\sigma^{2} s^{2} / 2}+\left.\sigma^{4} s^{2} e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=\sigma^{2}
\end{aligned}
$$

Continuing in this manner we find that

$$
\begin{aligned}
& E\left[X^{3}\right]=\left.\left(3 \sigma^{4} s+\sigma^{6} s^{3}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0 \\
& E\left[X^{4}\right]=\left.\left(3 \sigma^{4}+6 \sigma^{6} s^{2}+\sigma^{8} s^{4}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=3 \sigma^{4}
\end{aligned}
$$

