Probability and Stochastic Processes:

A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman

Problem Solutions : Yates and Goodman,4.7.7 4.7.13 4.8.1 4.8.2 5.1.2 5.2.1 5.2.2 5.3.1 5.3.2 5.4.1 and 5.4.2

Problem 4.7.7

Since the microphone voltage V is uniformly distributed between -1 and 1 volts, V has PDF and CDF

$$
f_{V}(v)=\left\{\begin{array}{ll}
1 / 2 & -1 \leq v \leq 1 \\
0 & \text { otherwise }
\end{array} \quad F_{V}(v)= \begin{cases}0 & v<-1 \\
(v+1) / 2 & -1 \leq v \leq 1 \\
1 & v>1\end{cases}\right.
$$

The voltage is processed by a limiter whose output magnitude is given by below

$$
L= \begin{cases}|V| & |V| \leq 0.5 \\ 0.5 & \text { otherwise }\end{cases}
$$

(a)

$$
\begin{aligned}
P[L=0.5] & =P[|V| \geq 0.5]=P[V \geq 0.5]+P[V \leq-0.5] \\
& =1-F_{V}(0.5)+F_{V}(-0.5) \\
& =1-1.5 / 2+0.5 / 2=1 / 2
\end{aligned}
$$

(b) For $0 \leq l \leq 0.5$,

$$
F_{L}(l)=P[|V| \leq l]=P[-l \leq v \leq l]=F_{V}(l)-F_{V}(-l)=1 / 2(l+1)-1 / 2(-l+1)=l
$$

So the CDF of L is

$$
F_{L}(l)= \begin{cases}0 & l<0 \\ l & 0 \leq l<0.5 \\ 1 & l \geq 0.5\end{cases}
$$

(c) By taking the derivative of $F_{L}(l)$, the PDF of L is

$$
f_{L}(l)= \begin{cases}1+(0.5) \delta(l-0.5) & 0 \leq l \leq 0.5 \\ 0 & \text { otherwise }\end{cases}
$$

The expected value of L is

$$
E[L]=\int_{-\infty}^{\infty} l f_{L}(l) d l=\int_{0}^{0.5} l d l+0.5 \int_{0}^{0.5} l(0.5) \delta(l-0.5) d l=0.375
$$

Problem 4.7.13

shown in the following figure:

(a) Note that $Y=1 / 2$ if and only if $0 \leq X \leq 1$. Thus,

$$
P[Y=1 / 2]=P[0 \leq X \leq 1]=\int_{0}^{1} f_{X}(x) d x=\int_{0}^{1}(x / 2) d x=1 / 4
$$

(b) Since $Y \geq 1 / 2$, we can conclude that $F_{Y}(y)=0$ for $y<1 / 2$. Also, $F_{Y}(1 / 2)=P[Y=1 / 2]=$ $1 / 4$. Similarly, for $1 / 2<y \leq 1$,

$$
F_{Y}(y)=P[0 \leq X \leq 1]=P[Y=1 / 2]=1 / 4
$$

Next, for $1<y \leq 2$,

$$
F_{Y}(y)=P[X \leq y]=\int_{0}^{y} f_{X}(x) d x=y^{2} / 4
$$

Lastly, since $Y \leq 2, F_{Y}(y)=1$ for $y \geq 2$. The complete expression of the CDF is

$$
F_{Y}(y)= \begin{cases}0 & y<1 / 2 \\ 1 / 4 & 1 / 2 \leq y \leq 1 \\ y^{2} / 4 & 1<y<2 \\ 1 & y \geq 2\end{cases}
$$

Problem 4.8.1

$$
f_{X}(x)= \begin{cases}1 / 10 & -5 \leq x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

(a) The event B has probability

$$
P[B]=P[-3 \leq X \leq 3]=\int_{-3}^{3} \frac{1}{10} d x=\frac{3}{5}
$$

From Definition 4.15, the conditional PDF of X given B is

$$
f_{X \mid B}(x)=\left\{\begin{array}{ll}
f_{X}(x) / P[B] & x \in B \\
0 & \text { otherwise }
\end{array}= \begin{cases}1 / 6 & |x| \leq 3 \\
0 & \text { otherwise }\end{cases}\right.
$$

(b) Given B, we see that X has a uniform PDF over $[a, b]$ with $a=-3$ and $b=3$. From Theorem 4.7, the conditional expected value of X is $E[X \mid B]=(a+b) / 2=0$.
(c) From Theorem 4.7, the conditional variance of X is $\operatorname{Var}[X \mid B]=(b-a)^{2} / 12=3$.

Problem 4.8.2

Y is

$$
f_{Y}(y)= \begin{cases}(1 / 5) e^{-y / 5} & y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) The event A has probability

$$
P[A]=P[Y<2]=\int_{0}^{2}(1 / 5) e^{-y / 5} d y=-\left.e^{-y / 5}\right|_{0} ^{2}=1-e^{-2 / 5}
$$

From Definition 4.15, the conditional PDf of Y given A is

$$
\begin{aligned}
f_{Y \mid B}(y) & = \begin{cases}f_{Y}(y) / P[A] & x \in A \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}(1 / 5) e^{-y / 5} /\left(1-e^{-2 / 5}\right) & 0 \leq y<2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(b) The conditional expected value of Y given A is

$$
E[Y \mid A]=\int_{-\infty}^{\infty} y f_{Y \mid A}(y) d y=\frac{1 / 5}{1-e^{-2 / 5}} \int_{0}^{2} y e^{-y / 5} d y
$$

Using the integration by parts formula $\int u d v=u v-\int v d u$ with $u=y$ and $d v=e^{-y / 5} d y$ yields

$$
\begin{aligned}
E[Y \mid A] & =\frac{1 / 5}{1-e^{-2 / 5}}\left(-\left.5 y e^{-y / 5}\right|_{0} ^{2}+\int_{0}^{2} 5 e^{-y / 5} d y\right) \\
& =\frac{1 / 5}{1-e^{-2 / 5}}\left(-10 e^{-2 / 5}-\left.25 e^{-y / 5}\right|_{0} ^{2}\right) \\
& =\frac{5-7 e^{-2 / 5}}{1-e^{-2 / 5}}
\end{aligned}
$$

Problem 5.1.2

(a) Because the probability that any random variable is less than $-\infty$ is zero, we have

$$
F_{X, Y}(x,-\infty)=P[X \leq x, Y \leq-\infty] \leq P[Y \leq-\infty]=0
$$

(b) The probability that any random variable is less than infinity is always one.

$$
F_{X, Y}(x, \infty)=P[X \leq x, Y \leq \infty]=P[X \leq x]=F_{X}(x)
$$

(c) Although $P[Y \leq \infty]=1, P[X \leq-\infty]=0$. Therefore the following is true.

$$
F_{X, Y}(-\infty, \infty)=P[X \leq-\infty, Y \leq \infty] \leq P[X \leq-\infty]=0
$$

(d) Part (d) follows the same logic as that of part (a).

$$
F_{X, Y}(-\infty, y)=P[X \leq-\infty, Y \leq y] \leq P[X \leq-\infty]=0
$$

(e) Analogous to Part (b), we find that

$$
F_{X, Y}(\infty, y)=P[X \leq \infty, Y \leq y]=P[Y \leq y]=F_{Y}(y)
$$

Problem 5.2.1

(a) The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}c & x+y \leq 1, x, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

To find the constant c we integrate over the region shown. This gives

$$
\int_{0}^{1} \int_{0}^{1-x} c d y d x=c x-\left.\frac{c x}{2}\right|_{0} ^{1}=\frac{c}{2}=1
$$

Therefore $c=2$.
(b) To find the $P[X \leq Y]$ we look to integrate over the area indicated by the graph

$$
\begin{aligned}
P[X \leq Y] & =\int_{0}^{1 / 2} \int_{x}^{1-x} d y d x \\
& =\int_{0}^{1 / 2}(2-4 x) d x \\
& =1 / 2
\end{aligned}
$$

(c) The probability $P[X+Y \leq 1 / 2]$ can be seen in the figure at right. Here we can set up the following integrals

$$
\begin{aligned}
P[X+Y \leq 1 / 2] & =\int_{0}^{1 / 2} \int_{0}^{1 / 2-x} 2 d y d x \\
& =\int_{0}^{1 / 2}(1-2 x) d x \\
& =1 / 2-1 / 4=1 / 4
\end{aligned}
$$

Problem 5.2.2

Given the joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}c x y^{2} & 0 \leq x, y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) To find the constant c integrate $f_{X, Y}(x, y)$ over the all possible values of X and Y to get

$$
1=\int_{0}^{1} \int_{0}^{1} c x y^{2} d x d y=c / 6
$$

Therefore $c=6$.
(b) The probability $P[X \geq Y]$ is the integral of the joint $\operatorname{PDF} f_{X, Y}(x, y)$ over the indicated shaded region.

$$
\begin{aligned}
P[X \geq Y] & =\int_{0}^{1} \int_{0}^{x} 6 x y^{2} d y d x \\
& =\int_{0}^{1} 2 x^{4} d x \\
& =2 / 5
\end{aligned}
$$

Similarly, to find $P\left[Y \leq X^{2}\right]$ we can integrate over the region shown in the figure.

$$
P\left[Y \leq X^{2}\right]=\int_{0}^{1} \int_{0}^{x^{2}} 6 x y^{2} d y d x=1 / 4
$$

(c) Here we can choose to either integrate $f_{X, Y}(x, y)$ over the lighter shaded region, which would require the evaluation of two integrals, or we can perform one integral over the darker region by recognizing

$$
\begin{aligned}
P[\min (X, Y) \leq 1 / 2] & =1-P[\min (X, Y)>1 / 2] \\
& =1-\int_{1 / 2}^{1} \int_{1 / 2}^{1} 6 x y^{2} d x d y \\
& =1-\int_{1 / 2}^{1} \frac{9 y^{2}}{4} d y=\frac{11}{32}
\end{aligned}
$$

(d) The $P[\max (X, Y) \leq 3 / 4]$ can be found be integrating over the shaded region shown below.

$$
\begin{aligned}
P[\max (X, Y) \leq 3 / 4] & =P[X \leq 3 / 4, Y \leq 3 / 4] \\
& =\int_{0}^{\frac{3}{4}} \int_{0}^{\frac{3}{4}} 6 x y^{2} d x d y \\
& =\left(\left.x^{2}\right|_{0} ^{3 / 4}\right)\left(\left.y^{3}\right|_{0} ^{3 / 4}\right) \\
& =(3 / 4)^{5}=0.237
\end{aligned}
$$

Problem 5.3.1

(a) The joint PDF (and the corresponding region of nonzero probability) are

$$
f_{X, Y}(x, y)= \begin{cases}1 / 2 & -1 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(b)

$$
P[X>0]=\int_{0}^{1} \int_{x}^{1} \frac{1}{2} d y d x=\int_{0}^{1} \frac{1-x}{2} d x=1 / 4
$$

This result can be deduced by geometry. The shaded triangle of the X, Y plane corresponding to the event $X>0$ is $1 / 4$ of the total shaded area.
(c) For $x>1$ or $x<-1, f_{X}(x)=0$. For $-1 \leq x \leq 1$,

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{x}^{1} \frac{1}{2} d y=(1-x) / 2
$$

The complete expression for the marginal PDF is

$$
f_{X}(x)= \begin{cases}(1-x) / 2 & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(d) From the marginal $\operatorname{PDF} f_{X}(x)$, the expected value of X is

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\frac{1}{2} \int_{-1}^{1} x(1-x) d x=\frac{x^{2}}{4}-\left.\frac{x^{3}}{6}\right|_{-1} ^{1}=-\frac{1}{3}
$$

Problem 5.3.2

$$
f_{X, Y}(x, y)= \begin{cases}2 & x+y \leq 1, x, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Using the figure to the left we can find the marginal PDFs by integrating over the appropriate regions.

$$
f_{X}(x)=\int_{0}^{1-x} 2 d y= \begin{cases}2(1-x) & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Likewise for $f_{Y}(y)$:

$$
f_{Y}(y)=\int_{0}^{1-y} 2 d x= \begin{cases}2(1-y) & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 5.4.1

(a) The minimum value of W is $W=0$, which occurs when $X=0$ and $Y=0$. The maximum value of W is $W=1$, which occurs when $X=1$ or $Y=1$. The range of W is $S_{W}=\{w \mid 0 \leq w \leq 1\}$.
(b) For $0 \leq w \leq 1$, the CDF of W is

$$
\begin{aligned}
F_{W}(w) & =P[\max (X, Y) \leq w] \\
& =P[X \leq w, Y \leq w] \\
& =\int_{0}^{w} \int_{0}^{w} f_{X, Y}(x, y) d y d x
\end{aligned}
$$

Substituting $f_{X, Y}(x, y)=x+y$ yields

$$
F_{W}(w)=\int_{0}^{w} \int_{0}^{w}(x+y) d y d x=\int_{0}^{w}\left(x y+\left.\frac{y^{2}}{2}\right|_{y=0} ^{y=w}\right) d x=\int_{0}^{w}\left(w x+w^{2} / 2\right) d x=w^{3}
$$

The complete expression for the CDF is

$$
F_{W}(w)= \begin{cases}0 & w<0 \\ w^{3} & 0 \leq w \leq 1 \\ 1 & \text { otherwise }\end{cases}
$$

(c) The PDF of W is found by differentiating the CDF.

$$
f_{Y}(y)=\frac{d F_{W}(w)}{d w}= \begin{cases}3 w^{2} & 0 \leq w \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 5.4.2

(a) Since the joint PDF $f_{X, Y}(x, y)$ is nonzero only for $0 \leq y \leq x \leq 1$, we observe that $W=Y-X \leq 0$ since $Y \leq X$. In addition, the most negative value of W occurs when $Y=0$ and $X=1$ and $W=-1$. Hence the range of W is $S_{W}=\{w \mid-1 \leq w \leq 0\}$.
(b) For $w<-1, F_{W}(w)=0$. For $w>0, F_{W}(w)=1$. For $-1 \leq w \leq 0$, the CDF of W is

$$
\begin{aligned}
F_{W}(w) & =P[Y-X \leq w] \\
& =\int_{-w}^{1} \int_{0}^{x+w} 6 y d y d x \\
& =\int_{-w}^{1} 3(x+w)^{2} d x=\left.(x+w)^{3}\right|_{-w} ^{1}=(1+w)^{3}
\end{aligned}
$$

Therefore, the complete CDF of W is

$$
F_{W}(w)= \begin{cases}0 & w<-1 \\ (1+w)^{3} & -1 \leq w \leq 0 \\ 1 & w>0\end{cases}
$$

(c) By taking the derivative of $f_{W}(w)$ with respect to w, we obtain the PDF

$$
f_{W}(w)= \begin{cases}3(w+1)^{2} & -1 \leq w \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

