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ABSTRACT

Device-free passive (DfP) localization is proposed to liaeahu-
man subjects indoors by observing how the subject disthpat-
tern of the radio signals without having the subject wearga ta
our previous work, we have proposed a probabilistic clasgifin
based DfP technique, which we call PC-DfP in short, and demon
strated that PC-DfP can classify which cell (32 cells inljatoc-
cupied by the stationary subject with an accuracy as highy 298
in a one-bedroom apartment. In this poster, we focus on diign
PC-DfP to track a mobile subject in indoor environments txyrig
into consideration that a human subject’s locations shéarie a
continuous trajectory. Through experiments in axd@5 meters
open plan office, we show that we can achieve better accgrhyie
exploiting the property of continuous mobility trajectesi
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1. INTRODUCTION

The ability to continuously track human subjects in indoorie
ronments can enable alarge array of important applicatiémmong
the existing localization methods, radio-frequency (RéSddl device-
free passive (DfP) localization does not inconveniencepleeads
unobtrusive, and offers good privacy protectioh[[B, 2]. ur pre-
vious work [2], we propose PC-DfP, a probabilistic classifien
based device-free passive localization technique by ftatimg the
localization problem as a linear classification problem.athieve
high classification accuracies, we take extra care to néite ad-
verse impact of indoor multipath. Our results show that Fe-D
can classify which cell (32 cells in total) is occupied by #tation-
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Figure 1: In (a), we show the first author’s lab in which we
deployed our system. In (b), we show the experimental topol-
ogy. The office deployment region is partitioned into 32 culaile-
sized cells. Thirteen transmitters and nine receivers are e+
ployed. We show the cell boundaries in this plot.

ary subject with an accuracy as high as 97.2% in a one-bedroomthe problem space. With preliminary experimental resuita L0

apartment, and an accuracy of 93.8% in an open-plan office.

In this paper, we focus on tracking mobile subjects using PC-

DfP. We argue that mobility can introduce new opportunifies
optimizing the localization accuracies. First, peoplealisumove
on continuous trajectories, and as a result their locatghmaild
exhibit continuity with time. Second, various obstaclesamin-
door environment also bound human movement, further reduci
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x 15 meters office environment, we demonstrate that we cak trac
a subject’s movement with a cell estimation accuracy of @6.3

2. TRACKING STRATEGIES

To mitigate multi-path effect, we use training data to chteeze
the deployed room. In our approath [2], we first slice a depdiae-
gion into cells, and then we localize a subject to a cell. Rizrpur-
pose, we obtain the training data by collecting the ReceSigdal
Strength (RSS) of each radio link when the subject movesnarou
within each of these cells. Based on this training infororatiwe
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Figure 2: Experimental trajectory simulating a sub-
ject’s daily path in a office’s environment.

can determine the cell with the maximum likelihood of conitady
the subject. We treat all the possible RSS vectors from alfdldio
links when a subject is located in a cell as a class. We tredt ea
class as a multi-variate Gaussian, construct a multi-d¢tassing
dataset, and use Linear Discriminant Analysis (LDA) [1] as o
classification algorithm to solve the indoor localizatiaoldem.

This approach can be used to not only localize a static sttbjec
position, but also track his/her moving trajectory. Tragka mov-
ing subject actually introduces new optimization oppaittas - we
can improve our localization results by considering the ttaat hu-
man’s locations from adjacent time intervals should fornoatin-
uous trajectory. In our cell-based approach, we define beigh
and rings for each cell. A cell’'s neighbors is defined as this ce
which are possibly reachable by a subject in next reasorabée
interval. For an arbitrary celt, its 1-order neighbors are its im-
mediate adjacent cells in physical space, an@-ibsder neighbors
are all the immediate adjacent cells of itorder neighbors, etc.
Further, the-th ring of cellc is the area consisting of the following
cells: ¢ itself, its 1-order neighbors, ..., up to itsorder neighbors.
In particular, we define the-order neighbors as not considering
its neighbors, and-th ring of cell is the cell itself. If the subject
appears in a specific cell in an interval, then we assume thjecu
can only appear within this cell’sh ring in the next time interval.
In more detail, suppose the subject is in egh the previous inter-
val, and we are using PC-DfP to estimate in which cell theesttbj
is in the current interval. In our previous work, PC-DfP ondy
turns the cell with the highest likelihood. In this paper, search
for the cell with the highest likelihood from cefls rth ring. We
believe the tracking performance can be improved by addiigy t
additional constraint. When we say we adopttharder neighbor,
each estimated cell comes from the cells inside the prewell’s
rth ring. The value- is an important parameter that we are going
to study and evaluate through experiments in this paper.

3. EXPERIMENTAL RESULTS

Our experimental setup consists of a centralized PC sewmsng

Neighbor | Cell Estimation | Localization Error
Order Accuracy (%) Distance (m)

0 94.7 1.2

1 70.7 25

2 95.3 1.0

Table 1: Comparison of tracking performance when different
number of order neighbor are adopted.
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Figure 3: Tracking performance of a daily path when
different number of order neighbor are adopted.

the system manager, thirteen wireless transmitters arel wire-
less receivers. Each transmitter broadcasts a packettitinique
id every 0.25 second. The receivers receive the packetscetihe
RSS values and forward them to the centralized PC for dateccol
tion and analysis.

The deployment takes place in a office room with the total area
of 10 x 15 meters, which contains office furniture as shown in Fig-
ure[I{@). The room is spatially divided into 32 cubicle-siedls as
shown in Figur¢ I(®). In the training phase, the first authoves
around within each of these cells and makes 100 RSS measure-
ments for all the links. Then, in the testing phase, as shawn i
Figure[2, the first author follows a daily path: enters thentpo
crosses an aisle, prints paper in his cubicle, and walksigfran-
other aisle to retrieve his paper. We consider a trackingrwal
successful if the estimated cell is the same as the occupledie
sample the RSS measurements every second. To evaluatachur tr
ing performance, we define cell estimation accuracy as tbeess
rate among all the tracking intervals, and localizatiooedistance
as the average distance between the actual location aneier c
of the estimated cell. We test our tracking performance when
adopt0-order,1-order, and2-order neighbors respectively. For in-
stance, in Figurg I(p), cell 28 is cell 22's 1-order neighlbod cell
32 is cell 22’s2-order neighbor.

Table[1 shows that tracking performance lebrder neighbor
case is worse than 0-order neighbor. We found that most of the
mis-estimated cells are the neighbors of the actual cethignway,
if the mis-estimated cell’$-th ring does not cover the actual cell for
the next interval, then this single mistake in one intervaymas-
cade to subsequent intervals. This problem, however, canlied
by adopting2-order neighbor. Our experimental results show that
we achieve 95.3% cell estimation accuracy and 1.0 m lodaiza
error distance in the-order neighbor case, which is the best among
these three cases. In addition, Fidure 3 sh2nesder neighbor case
has a shorter tail thabrorder andl-order cases, which suggest
order neighbor performs the best in the worst case.
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