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ABSTRACT
Radio frequency based device-free passive localization has been
proposed as an alternative to indoor localization because it does not
require subjects to wear a radio device. This technique observes
how people disturb the pattern of radio waves in an indoor space
and derives their positions accordingly.

The well-known multipath effect makes this problem very chal-
lenging, because in a complex environment it is impractical to have
enough knowledge to be able to accurately model the effects of
a subject on the surrounding radio links. In addition, even minor
changes in the environment over time change radio propagation
sufficiently to invalidate the datasets needed by simple fingerprint-
based methods. In this paper, we develop a fingerprinting-based
method using probabilistic classification approaches based on dis-
criminant analysis. We also devise ways to mitigate the error caused
by multipath effect in data collection, further boosting the classifi-
cation likelihood.

We validate our method in a one-bedroom apartment that has 8
transmitters, 8 receivers, and a total of 32 cells that can be occu-
pied. We show that our method can correctly estimate the occupied
cell with a likelihood of 97.2%. Further, we show that the accu-
racy remains high, even when we significantly reduce the training
overhead, consider fewer radio devices, or conduct a test one month
later after the training. We also show that our method can be used to
track a person in motion and to localize multiple people with high
accuracies. Finally, we deploy our method in a completely differ-
ent commercial environment with two times the area achieving a
cell estimation accuracy of 93.8% as an evidence of applicability
to multiple environments.
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1. INTRODUCTION
There is growing interest in incorporating automatic “intelligence”

in our homes and offices using a dense array of wireless radio/sensor
nodes. Central to this intelligence is often the need to localize and
track people in indoor environments. Many radio frequency (RF)
based localization techniques have been proposed, such as those
discussed in [1, 18, 5, 7, 12, 14, 19, 8, 10, 4, 20, 9, 15]. Most
of these techniques, however, require the subjects to carry wire-
less devices, and are referred to as device-based active localization.
This requirement has several inherent disadvantages. First, track-
ing stops whenever the device is detached from the subject either
accidentally or intentionally. Second, for applications such as elder
care, we cannot assume the subjects will always agree or remember
to carry the device.

Recognizing these limitations, the community has started the
discussion on RF-based device-free passive (DfP) localization tech-
niques [21]. Compared to its active localization counterpart, DfP
offers a lower cost solution as it does not require the participation
of the subject and uses low-power RF devices that may already be
available in our home/office environment. In DfP localization, we
capture the change of the RF signals caused by the subject and try
to derive his/her location based upon this change.

Deriving a subject’s location from the RSS change caused by
the subject, however, is a challenging task, mainly due to the well-
known “multi-path” effect [11] that is caused by the reflection and
diffraction of the RF signal from subjects and objects in the envi-
ronment.
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Figure 1: (a) shows the indoor environment in which the radio
link has one LoS and four NLoS components; (b) and (c) show
the fluctuation of RSS changes between Tx and Rx when the
radios operate at 909.1 MHz and 433.1 MHz respectively.

Let us look at a simple experiment to understand the effect of
the multipath problem. Figure 1(a) shows the topology of a one-
bedroom apartment in which we conduct our experiments. We have
one transmitter (Tx in the picture) and one receiver (Rx in the pic-
ture), and this radio link has one Line-of-Sight (LoS) component
and four Non-Line-of-Sight (NLoS) (or, multipath) components.
We only show four NLoS components for simplicity; in reality
there are many more present. A person walks from the marked
“Start Point” to the marked “End Point”. During the movement,
we record the received signal strength (RSS) at the receiver (operat-
ing at 909.1 MHz), and report the differences between these values
and the RSS values when the subject is absent in Figure 1(b). Fig-
ure 1(b) shows that the person’s effect on the RSS value is random
and unpredictable – we observe RSS decreases at different levels,
and sometimes we even observe an RSS increase. Figure 1(b) also
shows that changes from motion relative to the LoS and NLoS com-
ponents can be far larger when the subject is not on the LoS than
when he is – the variation is as high as 10 db from location 17 to
location 18 over a distance of less than 20 cm where the person is

not crossing the LoS of the link. Finally, we note that the multipath
effect is affected by many factors. Figure 1(c) shows a completely
different behavior when the radio frequency is set to 433.1 MHz.

Many earlier DfP localization techniques either ignored multi-
path, or failed to treat multipath carefully enough. For example,
radio tomography proposed in [16] tries to calculate a subject’s lo-
cation based upon the signal attenuation when the subject is block-
ing the LoS of the link. These schemes assume there is a direct
relationship between a subject’s location and the impact on radio
signals. They will have good localization results either outdoor or
in an empty room with little multipath. In a cluttered room, which
is more common in real life than empty rooms, this assumption
does not hold. In [21, 13], the authors acknowledge the importance
of multipath, and propose a fingerprinting-based approach in which
they first collect a radio map with the subject present in a few pre-
determined locations, and then map the test location to one of these
trained locations based upon observed radio signals. While the fin-
gerprinting approach is certainly a better fit for indoor DfP local-
ization, the localization algorithm in [21, 13] adopts a point-based
simplistic minimum Euclidean distance based matching algorithm,
which is only practical when the training locations are sparse and
the test location closely matches one of the training locations. As
training points become denser, classification difficulty will grow
significantly.

In this paper, we take on the challenge and strive to improve the
performance of DfP localization. Considering the complexity of
multipath,we choose to adopt the fingerprinting approach, and try
to achieve good results when we have dense training locations, and
random test locations.We believe these requirements are crucial
to many smart home applications such as infant care or elder care.
We achieve improved results with the following two optimizations.
First, we apply discriminant analysis to the classification problem
based on the assumption that the covariates follow a multivariate
Gaussian distribution. We validate the assumption of Gaussian dis-
tribution through experimental data as well as theoretical approxi-
mations. Second, in collecting radio signal readings, we adopt var-
ious ways to mitigate the multipath effect so that signal variations
within a short distance become smoother. This can increase the
distance between classes and further lead to higher classification
likelihood. Specifically, our study has the following contributions:

• We derive a sophisticated classification model to better de-
scribe the DfP localization problem.

• We improve the quality of data sets by mitigating the error
caused by the multipath effect.

• We show that in a one-bedroom apartment of 5× 8 m that
consists of 32 cells (each being 0.75× 0.75m in size), with
8 transmitters and 8 receivers, we can estimate the occupied
cell ID with an accuracy of 97.2%.

• We show that our approach can achieve cell estimation ac-
curacies over 90% in degraded conditions, such as reducing
the training overhead (taking 16 data samples per cell instead
of 100 samples), reducing the computation overhead, using
fewer radio devices (10 devices instead of 16), and conduct-
ing tests a month later after the training.

• We show that our approach can be used to track multiple
people when they are standing still, walking, sitting, or even
lying down. We can also localize multiple people that co-
exist in the apartment.
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Figure 2: In an outdoor environment,
when the radio devices are placed lower
than the subject height, the subject
causes distinctly different RSS changes
for on-LoS cells and off-LoS cells.
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Figure 3: In an outdoor environ-
ment, when the radio devices are placed
higher than the subject height, the sub-
ject causes little effect on the radio sig-
nals regardless of his location.
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Figure 4: In an indoor environment,
when the radio devices are placed be-
low the subject height, the subject’s ef-
fect on the radio signal is unpredictable
with respect to his location.

• We also implement our approach in a much larger commer-
cial office space, and report a cell estimation accuracy of
93.8% from 32 cubicle-size cells.

The rest of the paper is organized as follows. In Section 2,
we highlight the challenges faced in indoor DfP localization. We
model the system and present our localization algorithm in Sec-
tion 3. In Section 4, we introduce our experimental setup and
methodology. In Section 5, we implement our algorithm in a one-
bedroom apartment and report detailed experimental results. We
discuss the related studies in Section 6, and conclude the paper in
Section 7.

2. CHALLENGES IN A CLUTTERED INDOOR
ENVIRONMENT

In this section, through experimentation, we demonstrate the dif-
ferences between RF-based outdoor and indoor localization, and
highlight the challenges posed by indoor environments.

2.1 Outdoor Free Space Localization
We begin our experiments in an open outdoor environment. By

setting up a transmitter and a receiver attached on tripods 4.5 me-
ters away from each other in an empty parking lot, we only have
a relatively small reflection from the ground. We partition the area
into 0.75× 0.75m cells and categorize the cells into two groups:
those on the LoS, and those off the LoS. We first record the median
of the RSS measurements when the subject is 9 meters away from
either device,RSSE , which represent the base RSS when the sub-
ject is absent. Then, we collect 10 continuous RSS readings from
each cell while the subject remains stationary in that cell. For each
cell, we calculate the RSS change caused by the subject.

We first place the radios such that their height from ground is
less than a person’s height. In this way, a person can block radio
signals more pronouncedly. Figure 2 shows that in this setting,
RSS changes in different cells caused by the person clearly fall into
two disjoint sets. RSS changes in on-LoS cells are much larger
than RSS changes in off-LoS cells. This observation suggests that
we may perfectly determine whether the subject is on the LoS or
not simply by setting an appropriate threshold for observed RSS
changes, which agrees with the observations in earlier studies [16,
3].

Next, we repeat the same experiment, but place the radios above
the height of the subject (radios were placed 2 meters above the
ground, and the subject is 1.8 meters in height). In this case, the

position of the subject has little effect on the RSS values, as shown
in Figure 3. As a result, in the rest of the study, we place the ra-
dio devices vertically lower than the subject except when explicitly
noted.

2.2 The Multipath Effect
Compared with straightforward localization in the outdoor space,

localization in the indoor space is much harder because of the mul-
tipath problem. This is particularly true for environments of inter-
est for most applications. Next we will support this statement using
experimental observations.

In our indoor experiments, we attach the transmitters and re-
ceivers on the wall, 1.2 meters above the floor, which is below
most adults and above most of the furniture so that the impact of a
subject’s presence on the radio signal is maximized. As explained
earlier, in an indoor environment, the subject may have an unpre-
dictable impact on the RSS. Figure 4 shows the histogram of RSS
changes in different cells. We observe that, when a subject ran-
domly blocks a LoS,there is only a 50% probability of the sig-
nal being attenuated by 1 dB or more. In other words, 50% of the
time the signal will not attenuate or even increase. This observation
clearly shows thatthe assumption of “blocking LoS” means “atten-
uation” is misleading in cluttered environments. On the other hand,
the results show that if a subject does not block any LoS, there is a
15% probability that the RSS of a radio link will change more than
3 dB. This further shows the unpredictable nature of the multipath
effect.

3. DEVICE-FREE PASSIVE LOCALIZATION
THROUGH PROBABILISTIC CLASSIFI-
CATION METHODS (PC-DFP)

As discussed earlier, indoor radio propagation is a very complex
phenomenon such that the relationship between a subject’s loca-
tion and the resulting RSS of any radio links in the environment is
hard to predict. Thus, statistical rather than deterministic methods
are required to extract location information from the measured RF
signals. In this section, we discuss in detail our probabilistic classi-
fication based device-free passive localization method,PC-DfP in
short.

3.1 Overview of PC-DfP
We visualize a room as a grid of small square cells with unique

addresses or ID numbers. By localizing a subject, we mean to es-
timate accurately the ID of the cell in which the subject is located.



In our method, we assume there areL radio links in the environ-
ment, and there areK cells in a room. In the training phase, we
first measure the RSS values for allL radio links when the room is
empty (referred to as environmental RSS). Then for each cellk, we
collect a set of RSS values with the subject present in this cell. The
change between the environmental RSS and the RSS when the sub-
ject is in cellk, [xk,1, ..., xk,L], gives the RSS change vector,xk,
for cell k. xk is referred to as thefootprint for cell k. By the end
of the training phase, we have obtained RSS footprints for every
cell in the room. We build aK-class classifier based on the RSS
footprints. Subsequently, in the testing phase, this classifier is used
to classify the testing subject with an unknown label (i.e., cell ID).

3.2 Discriminant Analysis
In formulating our classification problem, we label a classk as

the state with the subject in thek-th cell, with the associated RSS
footprintxk. For each cellk, we collect the RSS footprint matrix
Xk of dimensionRnk×L, wherenk denotes the number of RSS
footprints sampled in the training phase for thek-th cell. The class
label is denoted asyk. The goal of our analysis is to classify the
subject with an unknown label into the correct cell ID based on the
measured RSS vector.

A large number of classification techniques have been proposed
in the literature, including density based approaches. Under the0−
1 loss, the objective is to find the maximizer of the class posterior
distributionP (Y |X), whereY is the class labelyk andX is the
RSS change vectorxk. A simple application of the Bayes rule
gives

P (Y = k|X = x) =
fk(x)πk

∑K
j=1

fj(x)πj

,

wherefk(x) is the class-conditional density of X in classY = k,
andπk is the prior probability of class k that sums to 1. Assuming
f to be a multivariate Gaussian distribution, we have the classical
discriminant analysis. In the remaining of this section, we present
a few variations of this technique and describe the rationale for
applying them to solve our localization problem.

3.2.1 Minimum Euclidean Distance (MED)
Suppose we have the mean vectorµk ∈ R

L of the RSS for each
class k from the training data. We also have the testing RSS vector
x andŷ associated with the unknown cell label to be estimated. The
Euclidean distance betweenx andµk is defined as

d(x, µk) =

√

√

√

√

l
∑

i=1

(xi − µki)
2,

where

µk =
∑

i∈class k

xi/nk.

Thus, we have the objective classifier function

ŷ = argminkd(x, µk),

as studied in [13].

3.2.2 Linear Discriminant Analysis (LDA)
Linear discriminant analysis aims to find a linear combination

of features which characterize or separate two or more classes of
subjects [6]. We assume the density of each class k is multivariate
Gaussian with meanµk and a common covariance matrixΣ:

fk (x) =
1

(2π)
L

2 |Σ|
1

2

exp

[

−
1

2
(x− µk)

TΣ−1 (x− µk)

]

.

Applying Bayes rule, we have the objective function

ŷ = argmaxkfk(x)πk.

In the log-scale, we can write the discriminant function as

δk(x) = xTΣ−1µk −
1

2
µk

TΣ−1µk + log πk,

and we find

ŷ = argmaxkδk(x).

Maximization of the discriminant function results in the follow-
ing parameter updates:

• π̂k = nk/n;

• µ̂k =
∑

i∈class k

xi/nk;

• Σ̂ =
K
∑

k=1

∑

i∈class k

(xi − µ̂k)(xi − µ̂k)
T /(n−K);

In our experiment, the number of samplesnk is the same across
the all the cells. Therefore the class probabilityπj = 1/K for all
the classes.

3.2.3 Quadratic Discriminant Analysis (QDA)
In practice, it is rare that multiple classes share a common co-

variance matrix. Quadratic Discriminant Analysis (QDA) is a gen-
eralization of LDA that allows different covariance matrices. Such
a generalization results in more flexible quadratic decision bound-
aries comparing to the linear decision boundaries from LDA. The
resulting discriminant function is

δk(x) = −
1

2
log |Σk| −

1

2
(x− µk)

TΣ−1

k (x− µk) + log πk.

The flexibility of QDA comes with the cost of estimating the
different covariance matricesΣk. When the dimensionality ofx is
high, this amounts to a huge increase on the number of parameters
to be estimated. Thus in practice, with limited sample size, the
simpler LDA is preferable.

3.2.4 Dimension Reduction
In practice, parameter estimation can be challenging even for

LDA when data dimension is high. One way to address this prob-
lem is through feature selection or dimension reduction. Herein we
adopt the linear projection scheme so that theL dimensional vector
x can be projected to aq dimensional space viaz = Wx, where
W is aq × L matrix andq < L. For a fixedq, the optimalW is
computed by maximizing

J(W ) =
WTSBW

WTSWW
,

where the within class scatter matrix is

SW =
∑

k

(µk − µ̄)(µk − µ̄)T ,

and the between class scatter matrix is

SB =
∑

k

∑

i∈class k

(xi − µk)(xi − µk)
T .

Here µ̄ is the overall mean ofx, andµk is the mean of thekth
class. This leads to solving an eigenvalue problem whose solution
isWl = S

−1/2
B vl, wherevl is thelth eigenvector ofS1/2

B S−1

W S
1/2
B .

The resultingz is a compact representation ofx in a lower dimen-
sional space by projecting the original data to thefirst q principal
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Figure 5: Three histograms for typical experimental RSS
change measurements from an arbitrary link when a subject
moves randomly within an arbitrary cell. The smooth curve is
a log-normal density distribution.

discriminant components. In this way, we can minimize the local-
ization error, reduce the computational cost and prevent the poten-
tial over-fitting and singularity problem.

3.3 Gaussian Approximation
In LDA and QDA, we assume that the conditional density given

the class label is multivariate Gaussian. In this section, we first
present experimental data to support this assumption, and then pro-
vide theoretical discussions on why our problem can be approxi-
mated by the Gaussian distribution.

Figures 5(a)-(c) show representative histograms for those links
with RSS stable (a), attenuated (b) and increased (c). We observe
that most of the links fit the log-normal distribution well enough
to produce an acceptable fit. As a result, treating RSS values (in
power) as Gaussian is a valid assumption. The fact that our results
based upon this assumption achieve good classification accuracies
(as high as 97% shown in Section 5) is a further support for this
assumption.

Next, we explain why we expect that a Gaussian model approx-
imation would work as a first approximation in our classification
problem. First, we note that the problem we are addressing is not
a typical problem discussed in the literature [11], where the statis-
tics of the multi-path signals at the receiver are considered when
either the transmitter or receiver are moved, like in active RF-based
localization problems. In passive localization, all the path lengths
remain fixed, but the presence of a subject introduces attenuation,
scattering, or diffraction of a subset of the multi-path signals. Based
upon the geometry of the experimentation room and some simple
measurements, we can make analogies, though, to the more typical
multipath problem.

In Figure 7(b), it is clear that the major fraction of the links be-
tween transmitters and receivers have a substantially clear LoS or
at most are obstructed by one relatively transparent interior parti-
tion wall. Because of the dominance of the large planar and often
perpendicular reflecting surfaces (floor, walls, ceiling), one would
expect the multi-path signals to be dominated by LoS and a few,
relatively strong components, as seen in [2], along with many com-
ponents so much smaller than the LoS component that they are in-
significant. Finally, we note that in moving around, even a subject
that is completely out of the LoS can cause a change in RSS of
10-20 db. This is consistent with a situation in which there are
only a small number of multipath components of a magnitude large
enough that they could add up constructively and cancel the LoS
component to within 10% in amplitude, resulting in a 20db change
in energy.

Extending a simplified Rician model [11] to our model would re-
sult a dominant LoS signal and a limited number of important mul-

(a)

(b)

Figure 6: (a) Wireless transmitter. (b) Wireless receiver with
USB.

tipath signals whose energy was somewhat smaller in total. This
would be the Rician limit where the statistics of the signal are ap-
proximately Gaussian, as we have seen. Our results show that this
approximation is adequate for our environments.

4. EXPERIMENTAL METHODOLOGY
In our experiments we will show that one or more subjects can be

successfully localized in a home/office environment using our PC-
DfP method. The system was deployed in two environments: a one
bedroom apartment with home furniture and a commercial office
space with cubicles and offices. Since most of the experiments
were conducted in the first setting, we will focus on the first setting
(i.e., the one-bedroom apartment) in the rest of the paper unless
otherwise noted. The apartment pictures are shown in Figures 7(a).
The apartment is below ground level with a floor area of 5× 8 m
and a height of 3m. The floor is concrete, the walls are wallboard
on wooden studs, and the ceiling is acoustic tile.

Our experimental setup consists of a host PC (Intel i7-640LM
2.13GHz, 3GB RAM) serving as the centralized system, and eight
transmitters and eight receivers. Receivers are connected to the
PC through a (wireless) USB hub. In our system, each transmitter
broadcasts a 10-byte packet every 100 milliseconds. The receivers
will forward received packets to the host PC for data collection and
analysis. In Section 5, we show that we can reduce the number of
radio devices while maintaining good localization results.

4.1 Hardware Description
The radio devices used in our experiments contain a Chipcon

CC1100 radio transceiver and a 16-bit Silicon Laboratories C8051-
F321 microprocessor powered by a 20 mm diameter lithium coin
cell battery, the CR2032. The receivers have a USB connector for
loss-free data collection but are otherwise identical to the transmit-
ters. In our experiments, the radio operates in the unlicensed bands
at 433.1 MHz or 909.1 MHz. Transmitters use MSK modulation,
a 250kbps data rate, and a programmed output power of 0dBm.
Each transmitter periodically broadcasts a 10-byte packet (8 bytes
of sync and preamble and 2 bytes of payload consisting of transmit-
ter’s id and sequence number) ten times per second. When the re-



ceiver receives a packet, it measures the RSS values and wraps the
transmitter id, receiver id, RSS, timestamp (on the receiver side)
into a “data packet”. This packet is sent to the centralized system
over direct USB connection or through network hub for data anal-
ysis. The transmitter and receiver are shown in Figure 6.

4.2 Experimental Setup
Transmitters and receivers are deployed alternatively one by one

along the periphery of the wall depicted in Figure 7(b). Eight trans-
mitters and eight receivers provide 64 independent radio links in
total. We virtually partition the room into 32 cells, each roughly
0.75× 0.75m in size. We choose 0.75 m because it is the typical
walking step size for adults.

Data Collection: Our method consist of the following two phases:

• Off-line training phase. In the training phase, we will con-
struct the radio map of the room by making 100 measure-
ments in each cell (10 seconds) to determine the RSS foot-
print. We consider two training strategies. In the first case
(training case A), the subject will stand at the center of each
cell and spin around so that the resulting training data will
focus on the cell center but involve different orientations. In
the second case (training case B), the subject will walk ran-
domly within the cell. Thus, the resulting training data treat
all the voxels within that specific cell uniformly and includes
all possible orientations.

• On-line testing phase. In the testing phase, the subject (who
is different from the subject in the training phase in height
and weight) will appear in a random location with a random
orientation. In our experiments, we have 100 test locations in
each cell, resulting in a total of 3200 test locations. Among
the 100 test locations within each cell, 25 of them are the cell
center, 25 of them are 0.13 m from the center, 25 of them are
0.25 m from the center, and the other 25 are 0.38 m from the
center. For each test location, we take 10 RSS measurements
and compute the median value for all the 64 radio links.

4.3 Deployment Cost
Unlike [16, 23], our localization algorithm does not require prior

information about the locations of all the radio nodes. Transmit-
ters and receivers can be deployed at random locations. This prop-
erty enables that PC-DfP can be applied in an environment with no
changes to the existing infrastructure. In our experiments, it takes
10 seconds to collect 100 training measurements. Even considering
the extra overhead of moving and turning, 30 seconds are sufficient
for each cell.Usually we spend around 15 minutes training the
whole deployed region. Given 32 cells and 100 RSS training mea-
surements for each cell in a 64 dimensional space, it takes 0.044
seconds to estimate the parameters of the classification algorithm,
and takes only 0.007 second to estimate the subject location.

Overall, the runtime cost of our method is rather modest. In the
results section, we discuss ways of further reducing this cost while
maintaining high localization accuracies.

5. RESULTS
In this section, we first discuss performance metrics, and then

present detailed experimental results.

5.1 Performance Metrics
The objective of a localization system is to maximize the likeli-

hood of correctly estimating a subject’s location and minimize the
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Figure 7: In (a), we show a rather cluttered one-bedroom
deployment region. In (b), we show the experimental topol-
ogy. The one-bedroom deployment region is partitioned into 32
cells. The center of each cell is marked in the picture. Eight
transmitters and eight receivers are deployed. We only show
the 64 LoS links here.

average distance between the estimated location and the actual lo-
cation. For a specific testi, suppose a subject is actually located
in cell yi, and the estimated cell ID iŝyi by PC-DfP. Further sup-
pose we haveNtst tests. We thus define the following performance
metrics:

• Cell Estimation Accuracyis defined as the ratio of successful
cell estimations with respect to the total number of estima-

tions, i.e.,
Ntst
∑

i=1

I(yi = ŷi)/Ntst. In our system, we consider

a test successful if the estimated cell is the same as the oc-
cupied cell. If the subject is located on the shared boundary



between two adjacent cells, the test is considered successful
if the estimated cell is either one of the two bordering cells.

• Average localization error distanceis defined as the average
distance between the actual point location of the subject and
the estimated point location (i.e., the center of the estimated
cell).

Table 1 summarizes the important parameters used in our ex-
periments. To reiterate, our experiments were conducted in a one-
bedroom apartment with the total area of 5× 8m, which is divided
into 32 cells (size of each cell being 0.75× 0.75m). We have 8
transmitters and 8 receivers, resulting in 64 links in total. We note
that this number can be made smaller with minimal impact on our
localization results. We also note that we anticipate a reasonably
large number of sensors/radio devices will be existing in a “smart”
home environment. In the training phase, the first author stood in
each of these 32 cells, and took 100 RSS measurements. The entire
training was finished within 15 minutes by one person.

5.2 Comparing Three Discriminant Analysis
Methods

We first compare the results of the three discriminant analysis
methods, namely MED, LDA, and QDA. In this set of experiments,
the radio frequency is set to 433.1 MHz, and we adopt the training
case A. The results are summarized in Table 2.

We observe that LDA performs the best among the three. We ex-
pected LDA to outperform MED because it takes into consideration
the property of radio propagation. The fact that QDA is the worst
of all three, however, is somewhat counter intuitive. After some
deliberation, we find out the reason is that QDA requires the esti-
mation of separate covariance matrices for each class, which can
lead to over-fitting, especially with a rather limited sample size.
The same trend is demonstrated in Figure 8 through the CDF of er-
ror distances for the three methods. (We note that QDA does have
a slightly shorter tail than LDA.)

In the rest of the performance section, we will thus focus our
discussion on LDA.

5.3 Mitigating Multipath Effect
We have mentioned that the multipath effect has an adverse im-

pact on indoor localization, and in this paper, we have devised ap-
proaches to mitigate its impact for improved localization results.
Specifically, due to multipath, when a subject moves around, we
will observe large and abrupt RF variations, even within a cell.
Therefore, accurately estimating cell ID based upon the observed
RF readings becomes a daunting task. To mitigate this impact, we
take the following measures to smooth out the RF variations within
a cell.

First, we operate our radios at the unlicensed frequency of 433.1
MHz instead of 909.1 MHz. Intuitively, the wavelength at 433.1
MHz is larger than that at 909.1 MHz, and thus the RF signal has a

Parameter Default value Meaning

K 32 Number of cells
L 64 Number of radio links
Ntrn 100 Number of training RSS

vector per cell
Ntst 100 Number of testing RSS vec-

tor per cell

Table 1: System parameters.
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Figure 8: Comparing the CDF of error distances with differ-
ent discriminant analysis algorithms (MED, LDA, and QDA)
at 433.1 MHz.

smoother variation when the subject is moving. We have conducted
an experiment to demonstrate this idea. Figure 1(a) shows the ex-
perimental setup, and Figures 1(b) and Figures 1(c) shows the RF
variation is much smaller at 433.1 MHz than at 909.1 MHz.

Second, in the training phase, instead of standing still at a spe-
cific point within a cell and using the measurement at that point to
represent the entire cell (as in training case A), we make random
movements within that cell, take multiple measurements, and use
them collectively for classification, as in training case B in Sec-
tion 4. In this way, we sample the data for all the voxels with dif-
ferent orientations to average out the multipath effect within each
cell.

Table 3 summarizes the LDA results with and without these two
optimizations. We also varied the test location in these experi-
ments. In general training case B gives better cell estimation ac-
curacies than training case A. Within each training case, radio fre-
quency of 433.1 MHz gives better results than 909.1 MHz with the
node layout shown in Figure 7(b).In summary, our cell estimation
accuracy is as high as 97.2% with the average localization error
distance of 0.36 meters.

5.4 Reducing Training/Testing Overhead
Here we investigate methods for reducing the computing over-

head for our algorithm. In this study, we formulate the localization
problem as a classification problem that involves a training phase
and a testing phase. Suppose we haveN training data ofL di-
mensions andK classes, whereN is the number of measurements
taken in each cell in the training phase,L is the number of radio
links in the environment, andK is the number of the cells in the
environment. In our default setting, we haveN = 100, L = 64,
andK = 32.

Discriminant Cell Estimation Average Localization
Analysis Method Accuracy (%) Error Distance (m)

MED 81.7 0.55
LDA 90.1 0.44
QDA 81.1 0.53

Table 2: Comparison of the three discriminant analysis meth-
ods: MED, LDA, and QDA in training case A.
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Figure 12: Cell estimation accuracies over one month after
the training with different correction approaches.

For LDA, the algorithmic complexity isO(KNL +K3) in the
training phase andO(KL2) in the testing phase. AsK is fixed in
our algorithm, we can try to use a smallerN and/orL to reduce the
overhead.

First, we look at the possibility of having a smallerN , i.e., fewer
training samples. Figure 9 shows the localization results with dif-
ferent training data sizes. We observe that we achieve a cell es-
timation accuracy of 90% by using 16 training measurements in
each cell, and achieve a cell estimation accuracy as high as 90% by
only using 8 training measurements in each cell. This will lead to a
significant reduction of the training overhead.

Next, we look at the possibility of having a smallerL, i.e., smaller

433.1 MHz 909.1 MHz
Training case A 90.1% 82.9%
Training case B 97.2% 93.8%

Table 3: LDA cell estimation accuracies improve when the ra-
dios work on 433.1 MHz, and adopt the training case B.

data dimensions. To do so, we adopt the optimization technique
discussed in Section 3 to select the principal discriminant com-
ponents for classification purpose. Figure 10 shows that we can
achieve the same level of cell estimation accuracy when using only
the first 28 principal discriminant components. Such a reduction
on data dimension can lead to significant improvement on compu-
tation efficiency. If we are willing to relax the requirements for the
cell estimation accuracy from 97% down to 90%, then choosing the
10 most principal discriminant components will be sufficient.

5.5 Localizing Subjects with Minimum Num-
ber of Radio Nodes

Next, we need to test whether our system can still function if we
lose one or more radios. In the experiments, we use a subset of the
radio nodes and derive the corresponding localization results, and
investigate at what point the cell estimation accuracy will drop be-
low a tolerable level. For example, if we would like to find out the
results using 10 radio devices out of the default 16 (8 transmitters
and 8 receivers), we would randomly remove 6 devices, and plot the
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Figure 13: Two mobility paths: (a) a line path, and (b) a real-life path.

localization results for all the possible combinations of transmitters
and receivers.

These results are shown in Figure 11. We find that our algorithm
can deliver a cell estimation accuracy of 90% when we remove 3
transmitters and 3 receivers in the process. Finally, we note that
our system can achieve an even better accuracy (than having all
16 nodes), 99.4%, when three particular devices (i.e., T7, R4 and
R6) are removed. Note that we do not reposition the remaining
nodes to optimize the results, so this is an overestimate of the num-
ber of nodes needed for a given accuracy. Optimizing localization
results by systematically removing radio devices (as well as the
corresponding links) is a topic for further investigation.

5.6 Using the Same Training Set Over a Long
Testing Period

All the results shown above have the testing phase done within
three days after training the system. In reality, we are also inter-
ested in knowing how well our system will perform if the testing
occurs much later in time, which could lead to performance degra-
dation because of changes in the environment or drift in the radio.
Different subjects or changes in the same subject could also affect
the results.

All the above factors can change the relevance of the original
RSS calibration and training. Thus, we need to find an effective
correction technique to extend the accuracy of an original calibra-
tion over weeks or months. The basic idea is that before each exper-
iment, be it training or testing, we always collect the environmental
RSS vectorRSSE when the room is unoccupied. We refer to this
vector asRSStrn

E andRSStst
E for the training and testing phase

respectively. This information provides the correction basis for the
test data. We can determine when to collectRSStst

E based upon
the subject’s life style. For example, it can be collected at noon if
he/she works regularly, or at midnight if he/she stays home most of
the time.

Using the environmental RSS vector, we propose the following
two correction approaches:

• Naive correction: For a simple correction of change over
time, we first compute the pairwise difference between the
RSStrn

E andRSStst
E , and record the vector asRSSbias

E .
Then we add this bias vector to each RSS vector as the com-
pensation and construct the new test data.

• Truncated correction: We computeRSSbias
E as with naive

correction and set an empirical thresholdτ . Then we com-
pare theith entry RSSbias

E i with τ for i ∈ 1, ..., L. If
| RSSbias

E i |≥ τ , then we eliminate that feature (link) from
both training data and test data. Otherwise, we compensate
the test data for that feature as in naive correction. The ratio-
nale behind this approach is that we want to eliminate those
links that have experienced a large variation due to envi-
ronmental instabilities. Since our earlier results (Figure 11)
show that our system is robust against missing a few links,
we believe removing these links with large fluctuation will
not significantly degrade the performance.

We summarize the results in Figure 12. In the case without cor-
rection, we do not subtract the environmental RSS from the train-
ing/test data. The results show that cell estimation accuracies drop
significantly one week after training the system without any cor-
rection. With naive correction, we can achieve a cell estimation
accuracy of 80% after one month, and truncated correction pro-
vides 90% cell estimation accuracy after one month, which is the
best among all three.

5.7 Tracking a Moving Subject
Our approach can also be used to track a moving subject. In this

set of experiments, the subject moves in the apartment, and we try
to estimate which cells he passes during the movement. We choose
the longest straight line path and a zigzag path as representatives
to test PC-DfP’s tracking performance. Specifically, the subject
adopted the following two mobility patterns: (1)line path, in which
the subject walked along a straight line at an average speed of about
3 meters per second (illustrated in Figure 13(a)), and (2)real-life
path, in which the subject followed a path similar to the path taken
in his real life, e.g., he might choose to walk to the bed and lie on
the bed for a few seconds, and then walk to the couch and sit down
on the couch for a few seconds (illustrated in Figure 13(b)). When
the subject moved in the room, we continued to take measurements
and estimated which cell he occupied.

We show the localization results in these two cases in Table 4.
As expected, when the subject moves along a line path, he can be
localized almost as well as when he is stationary, with an cell es-
timation accuracy of 99.1% and a localization accuracy of 0.3 m.
The results for the real-life path are slightly worse (cell estimation
accuracy being 91.1%) because there are more complicated move-
ments including walking, lying down, getting up, and sitting. As a



result, more uncertainties are introduced. In particular, the cell esti-
mation accuracy is 86.1% when subject is moving and 98.6% when
the subject stays still on bed, chair or sofa. We, however, would
like to point out that the average localization error distance in this
case, 0.37 m, is still rather good. We note that different paths will
lead to varying accuracies as different cells have exhibited different
classification accuracies.

In this study, we directly apply our approach to the mobile case
without any modification. In our next step, we would like to inves-
tigate more sophisticated methods such as taking into consideration
the trajectory information.

5.8 Localizing Multiple Subjects When Sub-
ject Count Is Known

Next, we extend our method to localizing multiple subjects that
coexist in a room if we know the number of subjects. Here, we do
not need to do any additional training, and the original training data
is sufficient.

In our method, we plug the measured data into the classifier, and
retrieve the class label which gives the maximum value from the
discriminant functions to estimate the cell number. Similarly, to
localizen subjects, we just simply pickn class labels which have
the firstn maximum values. For multiple subjects localization, we
define the cell estimation accuracy as the ratio of the number of the
occupied cells that are correctly estimated to the number of sub-
jects. For instance, if there are three subjects and only two of their
three cells are correctly estimated, then the cell estimation accuracy
will be 66.7%.

We perform 32 independent tests, and show our results in table 5.
As expected, the cell estimation accuracy decreases when the num-
ber of people increases because more people will cause a higher
degree of uncertain interference with radio signals.

5.9 Deploying Our Method to a Larger Office
Environment

We have shown that our localization method works well in a
home environment where radio devices are installed on the walls.
Next, we apply our method to a larger office environment to show
that it can easily scale to a different setting. In our experiments, we
deploy 13 transmitters and 9 receivers in the first author’s office,
which is 10× 15 m in size. In such an environment, localizing
subjects at a 0.75× 0.75m cell granularity is not needed; instead,
a cubicle-size cell should be sufficient. Thus, we can still partition
the deployed area into 32 cells, as shown in figures 14(a) and 14(b).
This deployment has two main differences compared to our origi-
nal deployment: heterogeneous cell sizes and random radio posi-
tions (i.e., not always on the walls). Using the same method, our
cell estimation accuracy is 93.8% and the average localization error
distance is 1.4 m. This degradation compared to the performance
in the one-bedroom apartment can be explained as follows. Intu-
itively, a larger cell involves more voxels, which result in a large
variance for each class. Therefore, for all the classes, there is a
higher probability that each pair-wise class will have a larger inter-
section area, which leads to more classification error.

Different Mobility Cell Estimation Average Localization
Path Accuracy (%) Error Distance (m)

Line 99.1 0.3
Real-life 91.1 0.37

Table 4: Localization results with two different mobility paths.
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Figure 14: In (a), we show the first author’s lab in which we
deployed our system. In (b), we show the experimental topol-
ogy. The office deployment region is partitioned into 32 cubicle-
sized cells. Thirteen transmitters and nine receivers are de-
ployed. We show the cell boundaries in this plot.

6. RELATED WORK
In this section, we discuss the related work in device-free pas-

sive localization (for stationary subjects) and tracking (for mobile
subjects).

Device-free Passive (DfP) Localization:Several DfP approaches
have been proposed in the literature. In [21, 13], DfP localization

Number Cell Estimation Average Localization
of People Accuracy (%) Error Distance (m)

1 97.2 0.36
2 89.5 0.82
3 83.5 0.89

Table 5: Localization results with respect to number of people
in the room when the number is known.



is done through fingerprint matching. A passive radio map is con-
structed during the training phase by recording RSS measurements
with a subject standing at pre-determined locations. During the
testing phase, the subject appears in one of these locations, and the
system can match the observed RSS readings to the RSS readings
from one of the trained locations based upon minimum Euclidean
distance. Our method shares the same philosophy with [21, 13]
in that multipath is so complex that we cannot understand the di-
rect relationship between a subject’s location and the radio signal
changes. Instead, we have to train the system first. However, min-
imum Euclidean distance is shown not to be as efficient as LDA
in classification in our study. Further, we have taken special care
in the training phase to minimize the RF signal variation within
short distances to mitigate the multipath effect. These measures are
based upon our in-depth understanding of the radio propagation
properties and can lead to much improved localization results.

Radio tomography imaging [16] is a technique to reconstruct the
tomographic image for localizing device-free subjects. Here, the
authors assume that the relationship between a subject’ location and
the radio signal variation can be mathematically modeled. In [16,
3], based upon the shadowing effect (RSS is attenuated when the
LoS is blocked) caused by the subject, a linear attenuation model
and a Sequential Monte Carlo model are proposed respectively.
This technique is unlikely to fare well in a cluttered indoor envi-
ronment because we observed that a person blocking the LoS can
only attenuate the RSS with a 50% probability (Section 2).

Device-free Passive Tracking:Several techniques have been pro-
posed to track a moving subject in a passive fashion. In [23, 24], a
grid sensor array is deployed on the ceiling for the tracking purpose.
An “influential” link is one whose RSS change exceeds a empirical
threshold. The authors calculate a subject’s location based upon
the observation that these influential links tend to cluster around
the subject. This work is extended in [22] with triangle sensor ar-
ray deployment and training information. In VRTI [17], the authors
leverage the RSS dynamics caused by the moving subject to gener-
ate a radio tomographic imaging for tracking.

Finally, we would like to point out not only fingerprint-based
schemes (including ours) need a training phase, but other schemes
such as radio tomography and grid sensor array also need a training
phase to determine a suitable threshold value to detect if a subject
is on the radio LoS.

7. CONCLUSION
In this paper, we present the design, implementation, and evalu-

ation of a device-free passive localization method based on proba-
bilistic classification. We compare three discriminant analysis tech-
niques and find that linear discriminant analysis (LDA) yields much
better localization results than minimum Euclidean distance (MED)
and quadratic discriminant analysis (QDA). We also propose ways
of mitigating the error caused by multipath effect for better local-
ization results, and approaches for correcting training data to facil-
itate tests much later than the original training. We evaluate our
method in a real home environment, rich in multipath. We show
that our system can successfully localize a subject with 97% cell
estimation accuracy within 0.36 m error distance. Through detailed
experiments, we demonstrate that our method can achieve a basic
accuracy of over 97%. More importantly, it can maintain an accu-
racy of over 90% with a substantial reduction in number of radio
devices (from 16 down to 10), with far fewer training samples (from
100 to only 16 per cell), or the use of a training set taken a month
before testing. In addition, the basic system, without modification,
can also be used to track a moving subject or localize multiple sub-

jects. Though originally tested in a small apartment, it performs
well in a larger commercial office space.
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