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Abstract—Energy conservation on mobile devices is now more vices. Most approaches focus exclusively on certain sub-
important than ever due to the increasing benefits that smart- systems of the smartphone, such as the communication sys-
phones and tablets provide to our daily life. However, most tem [14], the sensing and classification system [6], [13],

existing power management approaches either focus narrowly . .
on a particular sub-system of the mobile device such as the the phone display [8] or the GPS [21], [15]. While these

sensor system, the LCD display, or the communication system, a@pproaches provide valuable techniques to improve theggner
or use heuristic approaches to maximize energy efficiency at efficiency of individual sub-components on mobile devices,
the cost of user experience. In this paper, we presenBoe, the main drawback of these approaches is that they provide

a context-aware global power management scheme for mobile \, g1ohal framework to prevent battery outage for end users
devicesBalancing battery outage and userexperience. To meet ; Lo -
while maximizing user experience.

the mobile device’'s expected battery life while sacrificing end ’ .
user experience as little as possibleBoe takes into account In particular, two problem scenarios are common among
the users’ phone usage patterns and activities to dynamically smartphone and tablet users: (i) the device’s battery eharg
adjust the device's global power management policy to minimize is depleted during the middle of the day and there is no
outage time and maximize user experience. We demonstrate our power outlet or Charger available to Charge the deVice,ibr (l

proposed technique by controlling display brightness level and . . . .
GPS sampling rate on smartphones. We evaluate our approach USErs receive a low battery warning, and immediately start

through real world smartphone data from 10 users over two turning off services, sensors, radios, and applicationsate@
months. Compared to the best fixed user experience policies, wepower for emergency situations. In this work, we focus on the
show that: (i) Boe eliminatesall frustrating battery outage events problem of reducing or completely eliminating such frusimg

for light, moderate, and heavy phone users, and (iipoeimproves  payery gutage events, while reducing the impact of theggner

user experience by 20% for light users, maintains the same user manacement on overall user experience. One of our main qoal
experience for moderate users, and degrades user experiencg b g v user exper : u In goals

23% for heavy smartphone users. is to mitigate the likelihood of users facing problems (idan
Index Terms—Context, Power Management, User Experience, (i) above, since these scenarios leave the smartphonélet ta
Energy Efficiency unavailable to perform important tasks for a significantioor
of the day.
I. INTRODUCTION In this paper, we presetog a smart context-aware global

Qwer management scheme f8alancing BatteryOutage

Modern mobile devices such as smartphones and tabl® > UserE . desianed t £ th bile device’
support a wide range of applications that benefit end use?g, serExperience), designed to meet the mobile device’s

including applications for telephony, gaming, web browsin gxpected bgttery life wh|le compromising end user exp?e-
location based services, health, email, office, and soegl n''c'c€ @S little as possible3oe takes mtq account users

working. The wealth of these applications on smartphonégp'ca_l phone usage and energy consumption patterns and use
improvements in computing power, network bandwidth, a perience preferences fo_r various smartphone components
overall user experience in modern smartphones and tabl e uses a Markov Decision Process model to control the

has resulted in a situation where these mobile devices ack utgnergy cpnsm;mt?tlon Oft varl?us coC:nponentsh(.)In sma.rtp.hpnes
more heavily than earlier generations of cell phones. Hewev 0 minimize batery outage Tor end users while maximizing

battery technology and energy efficiency has not yet adwhnc%n\?vuser: exptinen:c:fe ?.S much ?; p0_55|bll_e._ ting batt

to the point where users can make heavy use of their mobile € show fhe etiectiveness @oe In eliminating battery

devices, and still expect the battery charge to last dureg toutage while maximizing user experience by jointly control

entire dlaly ling the energy consumption of two major components on

Existing research has explored numerous approachess%artphoneS: the display and GP.S Iocatlop SEnsing compo-

maximize energy efficiency of smartphones and mobile dgt_ants. We evaluate the energy savingBoeusing real world
smartphone data collected from 10 users over two months.

This work was performed while Chenren Xu was working as a rebea Compfired to t_he_ best fixed user gxperience policies, we show
intern at Samsung Research America in 2013. that: (i) Boe eliminatesall frustrating battery outage events



for light, moderate, and heavy phone users, and Bide and battery life for battery management. Ferreira et al. [9]
improves user experience by 20% for light users, maintdies tstudied the battery charging pattern of 4000 participants a
same user experience for moderate users, and degrades jpiseiide some suggestions to avoid energy waste and oppor-
experience by 23% for heavy smartphone users. Moreovemistic processing based on users’ charging habits.
we show howBoe could easily scale to include new context However, the existing approaches discussed above suffer
information about user status and new power saving actioinlsm one or more of the following three drawbacks: (i) They
for controlling additional hardware. focus narrowly on individual sub-components of smartpisone
We make the following key contributions in this paper: and miss opportunities for optimizing energy consumptién o
o« We designed a context-aware g|oba| power managemm smartphone as a whole. For example, if the screen ieyrarel
scheme called®oeto minimize battery outage and max-used, a higher sampling rate may be used for the location

imize user experience. sensing to take advantage of the increased energy available
« We evaluate our energy management scheme using rde@m the battery. (ii) Also, the existing approaches do not
world smartphone data from 10 users. take into account different user preferences for user é&xpes

« We demonstrate thaBoe improves user experience androm different hardware components. For example, somesuser
eliminates battery outage events while jointly contrgjlinmay care about consistent screen brightness, while otlees us
energy consumption of display and GPS sensing systefdy care about smooth operation without any glitches due

« We show how our proposed approach is scalable enodghCPU energy optimization. (iii) Also, many approaches are
to handle additional hardware components and powepen loop approaches that maximize energy efficiency even
saving actions, new context information about end usetghen there is no need to do so based on the battery lifetime
and can also account for individual user preferences fexpected from end users. For example, if the battery level is
user experience from different components on the phorf% and the user typically charges the phone within 5 hours

every day there may be no need to save energy on many

hardware components on the phone.

Several existing researchers have focussed on identifyingDur proposed approacBoe addresses all 3 drawbacks
the major energy consumers on mobile devices. In particulabove. It provides an optimization framework to optimize
Shye et al observe that the powerdown time of a mobile devigaergy consumption of the mobile device as a whole; many
is highly dependent upon the individual user, but the screef the techniques proposed in related work such as chang-
and CPU tend to dominate the active power consumption [1#)g sampling rate of sensors, adjusting screen brightrass,
Carroll et al. [5] did a circuit level measurement on différe proving battery lifetime reminders may be incorporated as
hardware components on smartphones and demonstrated @t of our system as long as the tradeoff between energy
GSM is the dominating energy drain, followed by CPU andfficiency and user experience may be measiuBeécan take
graphics. Thus, several existing researchers have fatusse into account different user preferences for user expegi@m
improving the energy efficiency of individual sub-compotsen different hardware components, and also take into accdent t
on smartphones. Particular focus has been on saving enesggected battery lifetime while determining the need tcesav
for the phone screen, the location sensing system, the CRdergy, thus addressing both drawbacks (i) and (iii) above
and the communication system, since these four components
are the major energy consumers in modern smartphones. [1l. BOE DYNAMIC ENERGY MANAGEMENT SYSTEM

Anand et al. [3] proposed to use tone mapping function to DESIGN
dynamically brightening the image or content and dimming

. X . Boe dynamically adapts the power consumption of smart-
0,
the dlsplay, and_save up to 479% of the display power with r‘pchone components such as the GPS unit and the LCD display,
perceptible quality loss. Chameleon [8] reduces systenepo

V¥o achieve maximum user experience while ensuring that the
) 0 s
consumption of OLED smartphones by 41% for web broWS"‘lg]attery is not depleted before the expected user chargimeg ti

without introducing any user noticeable delay through Imwfﬁoeuses a Markov Decision Process (MDP) that takes as input

OF:TSZSS aﬁ?(lj?r:afitc:gﬁmfr?o:;ilg?ﬁesrg\l/lvirrl}k/’ r;;?c!t'tgeés éErl1 target battery lifetime and the user’s daily smartphorsges
prop y 9 P atterns. The MDP assigns a dynamic power level to each

energy consumption, while Chu et al [6] propose tgchmqu artphone component at each time instant to maximize user
to balance energy, latency, and accuracy for mobile contex

e . . ; €Xperience while ensuring that the target battery lifetise

classification. Trading off location sensing accuracy wsrs . : I
. . reachedBoehas a learning phase where the user’s longitudinal
energy efficiency on GPS also have been well studied, such Fne usage patterns are used to train the MDP model
achieving rate-adaptive sensing through other modaliiyeth P gep '
tqoth and'cellltower) [15], or software archlyecture opnqllon A. Markov Decision Process Overview
via substitution, suppression, piggybacking of applmadi o )
location-sensing requests [21]. A Markov Decision Process [4] (MDP) is represented as a
Other researchers have focussed on providing feedbackttéiPle (S, 4, P.(-,), R. (-)), where

end users to save energy. CABMAN [16] presented context-« S is a finite set of states.
aware prediction algorithms such as next charging oppitytun « A is a finite set of actions.

II. RELATED WORK



o P,(s,s") = Pr(s; =5'|s; =s,a; = a) is the probabil-  The state transition probability matrix is obtained fronclea
ity that actiona in states will lead to states’. user’s historical context data used for training the MDP elod

* Ba(s) is the immediate reward received after takln%attery level e denotes the remaining energy budget. We

iona in . . . -
actiona in states divide the total battery energy;.:.; into L uniform levels

The value of a state under policyr is the expected sum of 54 each battery level thus contains enefgy= E/L. The
the discounted rewards by following polieyunders, defined ansition of battery levels is determined by user actiorsch

as , , is defined in a composite form as well.
Ve = Ra(s) +7 Z Pre(s) (5,8") Vr (s7).- In our use case, an actienin the action space A is defined
s'eS .
as:
Once the parameters are all known, the optimal policy is a = (adisplay, Ggps) »

computed by solving the Bellman Equation:
P y g g whereagispiqy 1S @ set of predefined display brightness levels

andagy,s is @ set of GPS sampling intervals. Higher display
brightness levels and shorter GPS sampling intervals will
draw energy faster from the battery. We denote the power
B. Problem Formulation consumption for each actiom as

We describe below how we formulate the energy man-
agement problem on mobile devices as a Markov Decision
Process. Similar to the Jigsaw system [12], the probability of thet&at

1) State and Action Spacdn our problem, the objective level changing from the current level to the next level from
is to learn the appropriate power management actions (diime tick ¢; to ¢,y is calculated as
screen, increase GPS sampling rate) to take in differetéssta

V* (s) = argmax | R, (s) + Z P,(s,s"V (s

@ s'eS

power (a) = Powergisplay (@) + poweryys (a) .

: : . . power (a) T
(morning, user indoors) to ensure that we achieve high user p(a) = — B N
experience while maintaining enough battery charge to last N o T _ _
through the day. We model the transition probability efas a function of action
In our model, the composite state is defined as: a€ A
5;:(1570’6)’ 1 If ej:eizl
P, (ejle;) = p(a) !f ej =e;—1

wheret is the time of the daye is the context, ana is the G l—p(a) ifej=e=11€2]]
battery level. 0 otherwise

Time of the day t. We discretize the total amount of time ~ To reduce the complexity of the MDP, we assume that the
left before the phone is charged inié, ticks. For example, states;, u;, l;, m; e; are independent of each other. Thus, we
we have 24 ticks per day if the time intenval; is set to one define the overall system transition probability as,
:ﬁ;irr.rThe transition of strictly follows a degenerate Markov P (s5]55) = P (t;]t:) - P (c]ci) - P (e;]es) , where

1 it =t +1 P(CJ|CZ) P(“Jluz) PUJ“%) P(mjlmz)'

P(tit;) =< 1 if t; =t = Nr 2) Reward Function:The reward function is a key com-
0 otherwise ponent of the MDP as it determines the balance between
user experience and energy conservation; it encouragts bet

Context ¢ contains the user’s rich contextual informationhigher user experience when sufficient energy is availaiid,
which can be defined as a composite state with differe@bcourages power-saving actions when necessary to gearant
modalities. In this paper, we defireas: the target battery lifetime is reached. The ideal resulttfier
MDP would be to run out of battery right at the end of the
day by maximizing user experience with a bright display or

« u is a binary variable indicating whether the user is usinfy9h GPS sampling rate. _
a foreground application, 0 (display off) and 1 (display We define the reward function for each actieras:
On). R ( ) o _Routage if e; =1t <T,

« [ is a binary variable indicating whether the smartphone a (%) = fa,¢) otherwise.
is indoors (0) or outdoors (1), which can be potentially
. . . . The termR,
inferred from ambient light level, cellular signal strengt o . .

. . . . essary to ensure battery lifetime is reached while the term

or other information, as demonstrated in [20]; f(a, ¢;) rewards high user experience

o m indicates the device’s mobility level: 0 (none, e.g? * 9 P '
sitting or standing), 1 (low, e.g. walking or running), andnergy Savingactions to achieve the target battery lifetime is
2 (high, e.g. driving). achieved byR 4, Which penalizes the system by providing

¢ := (u,l,m),where

outage TEWArds power-saving actions when nec-



(a) Udisplay (b) ngs

a high negative reward to cancel the cumulative positive r

. . . . . _Brightness Indoor | Outdoor Sampling | Low High
wards gained from previous instances of h|gh user expezieng |oye| space | space interval | mobility | mobility
Larger values oRmm‘lge resultin a Iowerlllkellhood of bgttery 20% 1 o0 60 secs | 1 o0
outage, and result in more conservative power settings tha#0% 2 -00 30 secs | 3 -0
reduce user experience, as we will see in Section IV. 60% 3 1 10 secs | 5 1

80% 4 3 5secs | 5 3
User Experienceterm f (a, ¢;) quantifies the user experience|_100% S S 1 sec S S
for the GPS and display based on the current contexnd
actiona. We define: TABLE |
USER EXPERIENCE(A) FOR DIFFERENT DISPLAY BRIGHTNESS LEVELS

N ) ) ) ) UNDER INDOOR/OUTDOOR WHEN THE DISPLAY IS ON AND(B) FOR

fla,e) = Kd”playUd”play(a’ ci) + Kgpsngs(a’ ci). DIFFERENTGPSSAMPLING INTERVALS UNDER DIFFERENT MOBILITY

The weightsK 4;spiay @and K, are used to adaptively weight LEVELS WHEN USER IS NONSTATIONARY.

the relative priority between display and GPS user expeeen
for different users. GPS sampling interval

For the display, it is straightforward to directly relate [ Mobility Tevel T sec| 5secs| 10 secs| 30 secs| 60 secs
the user experienc&y;pq, t0 the display brightness level. | Low (1-3 m/s) Im | 5m 10m 30m 60 m
However, under strong environmental ambient light, such asHigh (10-30 m/s)| 10m | 50m | 100m | 300m | 600 m
in outdoor environments, the display brightness needs to be TABLE I
increased to improve user experience. The location infioma ~ AVERAGE POSITIONING R e DIFFERENGPSSAMPLING
enriches our model and refines the definition of user experi- '
ence under different light conditions. As defined in Tabi,|(
we set 60% as the minimum brightness level outddoasd

set oo for the reward when the brightness is below 60% tgction space and new context states if necessary into the
avoid choosing these actions. MDP framework; the key requirement is that the action space
For GPS,U,,, denotes the user experience for locationeontain different levels of power consumption, each with a
based applications or services, such as navigation, ot ifferent user experience which can be quantified in the réwa
for fitness, socialness, etc. Thi§,,, is negatively correlated fynction. Similarly, we can incorporate user feedback te th
to positioning error, which is determined by a user’s velfoci MDP by associating a potential energy reduction from each

v and the GPS sampling interval. During the sampling yser reminder or feedback and a corresponding drop in user
interval, the expected positioning error is the integratibthe  experience.

differences between the last known position to each unknown

position over the sampling interval, which is computed in IV. EVALUATION

Table 1l under different mobility levels. Even though GPS is

well-known to have positioning error, we assume here thia Datasets

GPS gives us accurate locations to approximate the loealizaWe evaluate the performance &oe through real-world

tion error due to higher sampling intervals for the purpossmartphone data traces collected from 10 users over 2 months
of defining user experience. We assume anilOaverage We collected timestamped data of user interaction with the
positioning error will be sufficient for most applications0] display and foreground applications, GPS locations, ard ba
such as daily life logging or location-based services. Wery levels. We deployed a data collection Android app dalle
define the user experience for each GPS sampling intervalEasyTrack to collect this data from the subjects in our study
Table I(b) under different mobility levels. For example, wé&asyTrack is based on the Funf Open Sensing Framework [2],
assign the same user experience (5) to those GPS sampliip the customized data probes and sampling rates detailed
intervals that are no more than 10 seconds (i.e., 1 sec, 5 sacTable Ill.

and 10 sec) when the user’'s mobility level is low. The reason

is that a 10m accuracy is sufficient for most location service8. Preprocessing

under low mobility [10]. When the user has high mobility, 0 14 acquire meaningful context data to train our Markov
ensure sufficient location accuracy, the reward is sesddor gecision process model, we preprocess the raw data and reor-
sampling intervals larger than 10 seconds and the highgst (anize it into daily context tables for each user. Each tible
for a 1 second sampling interval. indexed by time of day in minutes (1440 entries per day) with
C. Extensibility context information such as discretized battery levelpldis
on/off, indoor/outdoor, and mobility level. When preprosieg

As we mentioned earlieiBoe can be easily extended tothe raw data, we make several simplifying assumptions: (1).

incorporatg more hardware components by augmenting ng\% use simplifying assumptions to compute context data
power-saving actions corresponding to the hardware to t &tween sampling intervals, such as linear interpolatibn o

1We surveyed 10 participants who all had trouble readingftext Google battery_ levels between _15 minute sampling _intervals_,, and
maps or email outdoors when the display brightness level wisvb80%.  assuming constant velocity between two locations during 10




[ Probe [ Description [ Sampling ] (8) Powergispiay (b) Powergps

Battery Battery level and charging indicatof. Every 15 mins Brightness | Measured power| | Sample | Scaled power
Foreground | Foreground running apps with Always on, level consumption interval | consumption
Applications | starting point and duration in secs | passively listen 20% 246 MW 60 secs| 12 mwW
Location Location in longitude and latitude | Every 10 mins 20% 356 mW 30 secs| 24 mW
TABLE IlI 60% 466 mW 10 secs| 72 mW
DESCRIPTION AND SAMPLING STRATEGIES OF RELEVANT DATA PROBES 80% 576 mwW > secs | 144 mw
100% 686 mW 1 sec 370 mW
TABLE V
. L . POWER CONSUMPTION OF DISPLAY ANDGP SUNDER DIFFERENT
minute sampling intervals for GR$2). We use the estimated SETTINGS

velocity to infer motion state/mobility level. (3). We idified

being indoors or outdoors by checking device velocity: & th

velocity is less than 0.1 m/s, we assume indoors, and if great o

outdoors. We note that these simplifications may not t@llected for training and the second month of data coltecte

accurate; however, since our main goal is to evaluate otaglofor testing.

energy management approach, these simplifications pravidgraining: The goal of training is to estimate user's context
good approximation for real-world context data that we mighyansition probabilities as well as other system paranseter
observe. Existing approaches for indoor/outdoor det®¢#0] jointly determine the overall state-action transition tpabil-

and motion state detection [12] could be integrated into &mQties We setT” — 12 hours beginning from 8 am to 20 pm
complete system for future work. to ensure that users’ battery lasts the entire day when they
C. Power Profiling are typically away from home. We note th&tcan be learned

We also profile the power consumption of the display an%utomatmally in the future according to the individualsilg

GPS components for model building and evaluation. OEFhedme' We set each time tick to be 15 minutes and each

0, . .
measurement is based on Samsung Galaxy S3 model. The tgﬁﬁrgi/ tlev;:l 65.25 /toh Ftotal; Kd”tpl“y’ Kops ’b?r.‘d K” are text
battery energy i2100mAh x 3.8V — 28728.]. all’set to 1. Using these parameters, we obtain all contex

transition probabilities using frequency counts and aphby
Display: We developed a simple Android app to manuallypolicy Iteration algorithm [11] to learn the optimal policy
set different brightness levels and use the Monsoon poweisplay brightness level and GPS sampling rate). The dutpu
meter [1] for power measurements. We first measure justa 5-tupled lookup table. Each entry represents a state-
the baseline CPU power consumption by shutting down alttion pair which includes the state tupte ¢,u,l,m,e >
background services and turn off all other hardware corand the optimal policy (action) tuplec Qdisplays Agps >
ponents such as WiFi, GPRS, Bluetooth, GPS, etc. We thefe also empirically sef?outqqe = 75 to maximize the user
measure the power consumption of different brightnesddevexperience while guaranteeing that no outage time occurs
by subtract the baseline CPU power value. We report theross the training data. Since we demonstrate our approach
resulting power consumption measurements in Table V(a). by controlling only two hardware components, we set the tota

GPS: We also develop a simple Android app to turn on th§"€"9Y budget for the display and GPS to be 20% of the fully

GPS for positioning and turn off GPS immediately. We use gfrarged battery energy.

PowerTutor [19] software to measure the power consumptidasting: For each user and each day, we first extract the
for GPS sampling. We observed that if we continuously streagggments of time when the battery is discharging, and lookup
GPS locations, the power consumption is about 370 m\fie MDP policy table based on the observation tugle
which is similar to that reported in [15]. However, if wet v, 1,m,e > for every minute based on the learned the policy
turn off the GPS immediately after it returns the location;, = denotes the power setting for the GPS and display for
the whole process took about 4 seconds, and the averageh state during the discharging period. We replay the powe
power consumption is 144 mW, which agrees with circuitlevgetting of the MDP policy, resulting in a specific averageruse
measurements [5]. Thus, we mark 144 mW as the power c@ixperience and a gradual reduction in battery energy; when
sumption for 5-second sampling interval, and simply caitil the battery energy drained by GPS and display exceeds a pre-
the power consumption for longer sampling intervals asegmidefined budget for these two components, we define that an
that the total energy consumption remain the same whidgtage has occurred and record the timestamp when theybatter
only the sampling duration increases. The power consumptigutage first occurred.

results are listed in Table V(b). E Evaluation Metri
. Evaluation Metric

D. Evaluation Methodology To evaluate the performance Bbe we use the following
We follow a training-testing procedure for each user tgetrics:

evaluate the performance Bbe we use the first month of data | |jger experiencés defined as the average user experience

2We use standard Haversine formula to compute the distanceeettwo based on Tablg | for when either the display or the GPS
GPS locations sensors are being used.



Fixed policy @ Boe adaptive policy M Fixed policy @ Boe adaptive policy M Fixed policy @ Boe adaptive policy M

15 T T T T T 15 T T T T T 15

12 - 12 -

Monthly outage count
Monthly outage count
Monthly outage count

[ ]
o Py . o = . . o Py - 0 P = . . .
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Average user experience

(a) Aggregated four light phone users

Average user e)a)erience

Average user experience
(b) Aggregated four moderate phone users

(c) Aggregated two heavy phone users

Fig. 1. Boeoutperforms fixed user experience policies as it guaranteemitage count while maximize user experience from the agtgedd users’ data
divided into three categories.

User experience Average outage time (min) Maximum outage time)(mi
Users’ phone| Fixed Fixed Fixed Adaptive Fixed Fixed Fixed Adaptive FixedFixed Fixed Adaptive
usage level| max mid min Boe max mid min Boe max mid min Boe
Light users 5 3 1 3.6 82.6 5.0 0 0 275 5 0 0
Moderate user§ 5 3 1 2.9 323.3 59.0 0 0 684 96 0 0
Heavy users| 5 3 1 2.3 705.6 1855 0 0 750 475 0 0
TABLE IV

BOEOUTPERFORMS FIXED USER EXPERIENCE POLICIES AS IT GUARANTEENO OUTAGE TIME WHILE MAXIMIZE USER EXPERIENCE FROM THE
AGGREGATED 10 USERS DATA DIVIDED INTO THREE CATEGORIES

600 F. Results
8 ¢ 1 g 500 ¢ We evaluate the performance Bbeby replaying its policy
o = on real-world smartphone traces from 10 users. We use our
g 4re 1 2 a0l | evaluation metrics of user experience, outage count, aid ou
= ° *q:) age time to compare the performance Bde with a fixed
5 3Ff ° o . { 2 300} § user experience policy that sets three possible fixed, user
2 e 4 § experience values: min (1), mid (3) and max (5) with the
gLl TS 200 o 1 corresponding actions on display brightness and GPS based
g ] R on current context information (indoor/outdoor and motion
z g 1oor 1 state). We categorize our 10 users into three groups, namely
Ly 1 < ° light, moderate and heavy users based on thresholding the
: : : 0 o-o—o ; ; ; .
0 50 100 150 200 0 50 100 150 200 average outage time under fixed max user experience (5);

Penalty Routage Penalty Routage

Fig. 2. We can control the outage time and user experience tyyngathe
penalty termRoutage-

heavy users tend to use the phone more and have higher
motion states compared to light users. In this experimeat, w
set an equal user experience preference for the display and
GPS:Kdisplay = Kgps =1.

Figure 1 shows the monthly outage count for light, moderate
and heavy users for the three fixed user experience polingks a
Boe Table IV shows the corresponding average and maximum

« Outage countis calculated as the number afutage outage time for outage events for the three categories of
events where each outage event happens whenever tigers. Firstly, in Figure 1(a), we see that light users have
energy budget for the GPS and display is exceeded befaignost no outage events with mid level user experience of 3.
the end of the battery discharging period. We compute thtowever,Boe achieves zero outage as well but also improves
outage count on a monthly basis. the average user experience to 3.6, an improvement of 20%

« Outage timefor each outage event is calculated as thie user experience. For a higher user experience of 5, we
time duration between when an outage event happens &aye more than 4 outage events per month; Table IV shows
the user charges the battery next. For example, if a battéhat even light users with a high user experience of 5 see
budget outage happens at 7 PM and the user chargesahbtages averaging 82.6 minutes, with a maximum outage time
phone only at 8:30 PM, the outage time for the event &f more than 4.5 hours per user. Secondly, for moderate phone
90 minutes. We measure both the average and maximusers in Figure 1(b)Boe achieved almost the same average
outage time for each user. user experience as the fixed mid policy while eliminating

the 2 outage events that happen per month; these outages
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assigning different weights for each component.
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are quite frustrating since they range from 1 to 1.5 hourss 4 f "E. V' @ oo % %® o 1
as seen in Table IV. Finally, for heavy users in Figure 1(c),3 A T
Boe eliminates all the 4 outage events seen with the fixeqﬁ 3re o o .0... .. .0'. ° .
mid policy but achieves an average user experience of 2.%_ : ® :', ® '. ° .'. °
which is 23% lower than the fixed mid policy; however, we g 2t ° s ° ° ® -
argue that the loss in user experience could be more to&erablgs ° ° °
to users compared to the frustratingly high outage times o 1| o = ©® H ]
3-8 hours seen for heavy users in Table IV. OverBlbe ‘

eliminates all outage events and tries to achieves as higha 0 50 100 150 200 250 300 350 400
user experience as possible while satisfying the battistjrfie Walking/driving (min)

. . (b) User experience on GPS
requirements. OverallBoe does a better job than the three
fixed user experience policies because it is aware of how . .

. ig. 4. User experience for each component as the user spendstime

much energy the user typically consumes compared to hg}&that component.
much energy is left and adjusts user experience accordingly
we noticed that especially for the cases when the phone is

charged multiple times during the daBpe maximizes user ihe display, for example, 5 times as much as GPS. A larger
egperience at discharging periods where the battery leasl Wweight (K gipiay = 10) will favor better user experience for the
high. display. In future work, we plan to adjust the user expemenc
In our systemBog the penalty termR,,..q4. for battery weights automatically based on the energy consumption of
outage plays a critical role in controlling the user experee each component.
and outage time. Figure 2 shows the relationship betweerrinally, we show the user experience on individual days for
Routage, OUtage time, and user experience across all uses.users. We empirically ChOOSE 4 spiay = 5 and K yps = 1
In Figure 2, we see that wheR,,:qe = 0, Boe degenerates from the result of Figure 3. We show the display on-duration
to the fixed max policy with average user experience of 5 aRd. user experience on display, and the non-stationaryomoti
503 minutes outage time. AB,,.q4. iNcreases, we see thatduration vs. user experience on GPS for all days across all
both average user experience and outage time decrease. Whgfts in Figure 4 as a scatter plot. In general, we obserte tha
Routage = 75, we achieve the approximate optimal result: weye have lower user experience on the component that is used
have no outage at all while maximizing the user experience fgore heavily. However, we also notice a few interesting soin
2.9. the points shown in the left bottom area are the rare occasion
We show that we are able to assign different user experiengken the user forgets to charge the phone at night and only
preferences for different components in Figure 3, in whidhmas very limited energy at the beginning of the day. In gdnera
each point shows the average user experience on display amdstill see some points with high user experience even if the
GPS for each user. By default, when we assign an equal weigktge duration is high due to the advantage of global power
for Kaispiay and Kgps, users have a higher user experienc@anagementgven if one component is used heavily, if the
on GPS than on display because the power consumptionotifier component is used rarely a high average user expegienc
the GPS is less than that of the display. To balance the usan still be achieved by taking a global approach to power
experience on both sides, we can assign a larger weightntanagementThe slope of GPS plot is smaller than in that



of display plot because of the high power consumption &. Extensibility

the display and the user experience on GPS is still favored|, section I1l, we mentioned th@oecan be easily extended
even with our current parameter setting &fsp.ay = 5 and g incorporate more hardware components as long as there
Kops = 1). are trades-offs exist between energy consumption and user
experience. However, there are still some open problems
regarding the definition of the user experience. For example
In this section, we discuss the limitations and a few fututénderclocking is the most straightforward way to reduce the

V. LIMITATIONS AND FUTURE WORK

directions of this work. energy consumption of the CPU. However, it might only
work for non-CPU bound task such as text processing, but
A. User Experience will significantly degrade user experience at an unknowa rat

A key challenge to our power management problem is tﬁ%r gfammgt or \:ld(_eohtsftream:jn? JObds' Ret%ardlng the network
predefined user experience value because it trades off W@r ace, 1L 1s straightiorward fo reduce the energy camsu

energy consumption for user experience at different stagggn _by increasing network polling .pe”Od for a backgroupd
In Table I, we propose a simple scheme to quantize t grvice task. However, for streaming tasks, the bandwidth

user experience for the phone’s display and location servi ser experience) is generally afiected py the receivedgi;ig
under different contexts. We interviewed 20 participarista strength and hence there are not any options to be ma.mdulate
our user experience quantization. 18 participants agretd w" the dgwce to trade off energy usage and USEr EXperence. A
our quantization, and two of them disagreed because th d'eq n .[7]’ energy consumphon.on network mterface's' (3
believed that human perception does not follow a linearesc d W'F')_'S p05|_t|ve_ly co_rrelated \.N'th the network ba”d“_’"d
However, they did agree that in general, human gains hig t negatively with its wireless signal strength. Therefat

user experience with brighter display and higher accuraicyI desirable FO ?d? athmodlule Wh'iﬂ ctan automatlc?ll)ﬁrg]el?
location estimation. Also, they pointed out that they woul € user navigate 1o the places with stronger signal sieng

prefer a fixed dim level (70% or so) in completely darf© simultangously reduce energy consumption and gain highe
environment to avoid stimulating eyes. These lessons gelarrt>C" EXPErence.
will collectively help us to improve this context-basedioml D. Battery Outage and Opportunistic Charging

user experience design in our future work. Meanwhile, a

i ) ) As mentioned earlierBoe is designed to minimize the
comprehensive user study will be conducted in the fUtuFﬁmeer of battery outage events. However, we note that it

0 e;timate the perceived user experience for diﬁerentefnov‘éannot guarantee the absence of outage events. Scenarios
settings. such as watching long online videos watch and long phone
conversations are hard to optimize for. Rather than noiifyi
the remaining battery level when there is only 10% or 20%,
In Section 1V, we use the first month of the users’ data faf will be more useful to provide an estimation of when the
training the MDP model and test the model's effectivenesgttery will run out to keep the users aware of the remaining
with the second month's data. We achieved good resubiattery life through this feedback channel. On the othedhan
because in our collected data, the users’ behavior is densis it will be valuable to incorporate a opportunistic charging
In other words, their phone usage and mobility patterns gdemainder module into the system. This module will collect
not exhibit large variation across different days. Howetles  the locations where all the phone charging events took place
consistent pattern may not work for all the cases. Usersicodind remind users to proactively charge their phones when the
have a progressive behavior changing due to sporadic lifgit the same places. By doing so, it will be particularlgfus
events (e.g. paper deadline, vacation), which our curr@deh for the cases when the system predicts that the battery will
is not able to capture and adaptive to. In the future, we willeplete before the end of day.
implementBoerunning as a background service to capture this
temporally changing behavior. Similar to MobileMiner [18] VI. CONCLUSIONS
the service will periodically mine the phone usage patternsin this paper, we present&be a Markov Decision Process
and determine the optimal period to update the model bagddDP) based global power management scheme balancing
on most recent data. For example, to avoid sacrificing usgser experience and energy saving for mobile devices. We
experience and battery life, the model refresh could happevaluatedBoethrough a field study with smartphone data from
when the phone is being charged at night. However, w® users over 2 months and demonstrate that it outperforms
acknowledge that it is still very challenging for historyfixed policies by eliminating battery outage time and also
based models to capture those non-progressive outliees (ueschieving as high a user experience as possible. Compared
pattern significantly deviates from the average case) atgh ofto the best fixed user experience policies, we show that: (i)
results in battery outage. Nevertheless, if these charagebe Boe eliminatesall frustrating battery outage events for light,
predicted by some clues such as from personal calendar, itriederate, and heavy phone users, andB@gimproves user
still promising to improve the model accordingly to miniraiz experience by 20% for light users, maintains the same user
the number of battery outages. experience for moderate users, and degrades user exgmgerienc

B. User Model Training



by 23% for heavy smartphone users. Moreover, we show hqe]

Boe could easily scale to include new context informatio

about user status, new power saving actions for controlli
additional hardware.
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