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Abstract—Energy conservation on mobile devices is now more
important than ever due to the increasing benefits that smart-
phones and tablets provide to our daily life. However, most
existing power management approaches either focus narrowly
on a particular sub-system of the mobile device such as the
sensor system, the LCD display, or the communication system,
or use heuristic approaches to maximize energy efficiency at
the cost of user experience. In this paper, we presentBoe,
a context-aware global power management scheme for mobile
devicesBalancing battery outage and userexperience. To meet
the mobile device’s expected battery life while sacrificing end
user experience as little as possible.Boe takes into account
the users’ phone usage patterns and activities to dynamically
adjust the device’s global power management policy to minimize
outage time and maximize user experience. We demonstrate our
proposed technique by controlling display brightness level and
GPS sampling rate on smartphones. We evaluate our approach
through real world smartphone data from 10 users over two
months. Compared to the best fixed user experience policies, we
show that: (i) Boe eliminatesall frustrating battery outage events
for light, moderate, and heavy phone users, and (ii)Boe improves
user experience by 20% for light users, maintains the same user
experience for moderate users, and degrades user experience by
23% for heavy smartphone users.

Index Terms—Context, Power Management, User Experience,
Energy Efficiency

I. I NTRODUCTION

Modern mobile devices such as smartphones and tablets
support a wide range of applications that benefit end users,
including applications for telephony, gaming, web browsing,
location based services, health, email, office, and social net-
working. The wealth of these applications on smartphones,
improvements in computing power, network bandwidth, and
overall user experience in modern smartphones and tablets
has resulted in a situation where these mobile devices are used
more heavily than earlier generations of cell phones. However,
battery technology and energy efficiency has not yet advanced
to the point where users can make heavy use of their mobile
devices, and still expect the battery charge to last during the
entire day.

Existing research has explored numerous approaches to
maximize energy efficiency of smartphones and mobile de-

This work was performed while Chenren Xu was working as a research
intern at Samsung Research America in 2013.

vices. Most approaches focus exclusively on certain sub-
systems of the smartphone, such as the communication sys-
tem [14], the sensing and classification system [6], [13],
the phone display [8] or the GPS [21], [15]. While these
approaches provide valuable techniques to improve the energy
efficiency of individual sub-components on mobile devices,
the main drawback of these approaches is that they provide
no global framework to prevent battery outage for end users
while maximizing user experience.

In particular, two problem scenarios are common among
smartphone and tablet users: (i) the device’s battery charge
is depleted during the middle of the day and there is no
power outlet or charger available to charge the device, or (ii)
users receive a low battery warning, and immediately start
turning off services, sensors, radios, and applications tosave
power for emergency situations. In this work, we focus on the
problem of reducing or completely eliminating such frustrating
battery outage events, while reducing the impact of the energy
management on overall user experience. One of our main goals
is to mitigate the likelihood of users facing problems (i) and
(ii) above, since these scenarios leave the smartphone or tablet
unavailable to perform important tasks for a significant portion
of the day.

In this paper, we presentBoe, a smart context-aware global
power management scheme forBalancing BatteryOutage
and UserExperience), designed to meet the mobile device’s
expected battery life while compromising end user expe-
rience as little as possible.Boe takes into account users’
typical phone usage and energy consumption patterns and user
experience preferences for various smartphone components.
Boe uses a Markov Decision Process model to control the
energy consumption of various components on smartphones
to minimize battery outage for end users while maximizing
end user experience as much as possible.

We show the effectiveness ofBoe in eliminating battery
outage while maximizing user experience by jointly control-
ling the energy consumption of two major components on
smartphones: the display and GPS location sensing compo-
nents. We evaluate the energy savings ofBoeusing real world
smartphone data collected from 10 users over two months.
Compared to the best fixed user experience policies, we show
that: (i) Boe eliminatesall frustrating battery outage events



for light, moderate, and heavy phone users, and (ii)Boe
improves user experience by 20% for light users, maintains the
same user experience for moderate users, and degrades user
experience by 23% for heavy smartphone users. Moreover,
we show howBoe could easily scale to include new context
information about user status and new power saving actions
for controlling additional hardware.

We make the following key contributions in this paper:

• We designed a context-aware global power management
scheme calledBoe to minimize battery outage and max-
imize user experience.

• We evaluate our energy management scheme using real-
world smartphone data from 10 users.

• We demonstrate thatBoe improves user experience and
eliminates battery outage events while jointly controlling
energy consumption of display and GPS sensing system.

• We show how our proposed approach is scalable enough
to handle additional hardware components and power
saving actions, new context information about end users,
and can also account for individual user preferences for
user experience from different components on the phone.

II. RELATED WORK

Several existing researchers have focussed on identifying
the major energy consumers on mobile devices. In particular,
Shye et al observe that the powerdown time of a mobile device
is highly dependent upon the individual user, but the screen
and CPU tend to dominate the active power consumption [17].
Carroll et al. [5] did a circuit level measurement on different
hardware components on smartphones and demonstrated that
GSM is the dominating energy drain, followed by CPU and
graphics. Thus, several existing researchers have focussed on
improving the energy efficiency of individual sub-components
on smartphones. Particular focus has been on saving energy
for the phone screen, the location sensing system, the CPU,
and the communication system, since these four components
are the major energy consumers in modern smartphones.

Anand et al. [3] proposed to use tone mapping function to
dynamically brightening the image or content and dimming
the display, and save up to 47% of the display power with no
perceptible quality loss. Chameleon [8] reduces system power
consumption of OLED smartphones by 41% for web browsing
without introducing any user noticeable delay through power-
optimized color schemes design. Similarly, multinets [14]
proposes automatically choosing the network radio to optimize
energy consumption, while Chu et al [6] propose techniques
to balance energy, latency, and accuracy for mobile context
classification. Trading off location sensing accuracy versus
energy efficiency on GPS also have been well studied, such as
achieving rate-adaptive sensing through other modality (blue-
tooth and celltower) [15], or software architecture optimization
via substitution, suppression, piggybacking of applications’
location-sensing requests [21].

Other researchers have focussed on providing feedback to
end users to save energy. CABMAN [16] presented context-
aware prediction algorithms such as next charging opportunity

and battery life for battery management. Ferreira et al. [9]
studied the battery charging pattern of 4000 participants and
provide some suggestions to avoid energy waste and oppor-
tunistic processing based on users’ charging habits.

However, the existing approaches discussed above suffer
from one or more of the following three drawbacks: (i) They
focus narrowly on individual sub-components of smartphones
and miss opportunities for optimizing energy consumption of
the smartphone as a whole. For example, if the screen is rarely
used, a higher sampling rate may be used for the location
sensing to take advantage of the increased energy available
from the battery. (ii) Also, the existing approaches do not
take into account different user preferences for user experience
from different hardware components. For example, some users
may care about consistent screen brightness, while other users
may care about smooth operation without any glitches due
to CPU energy optimization. (iii) Also, many approaches are
open loop approaches that maximize energy efficiency even
when there is no need to do so based on the battery lifetime
expected from end users. For example, if the battery level is
80% and the user typically charges the phone within 5 hours
every day there may be no need to save energy on many
hardware components on the phone.

Our proposed approachBoe addresses all 3 drawbacks
above. It provides an optimization framework to optimize
energy consumption of the mobile device as a whole; many
of the techniques proposed in related work such as chang-
ing sampling rate of sensors, adjusting screen brightness,or
proving battery lifetime reminders may be incorporated as
part of our system as long as the tradeoff between energy
efficiency and user experience may be measured.Boecan take
into account different user preferences for user experience on
different hardware components, and also take into account the
expected battery lifetime while determining the need to save
energy, thus addressing both drawbacks (ii) and (iii) above.

III. B OE DYNAMIC ENERGY MANAGEMENT SYSTEM

DESIGN

Boe dynamically adapts the power consumption of smart-
phone components such as the GPS unit and the LCD display,
to achieve maximum user experience while ensuring that the
battery is not depleted before the expected user charging time.
Boeuses a Markov Decision Process (MDP) that takes as input
a target battery lifetime and the user’s daily smartphone usage
patterns. The MDP assigns a dynamic power level to each
smartphone component at each time instant to maximize user
experience while ensuring that the target battery lifetimeis
reached.Boehas a learning phase where the user’s longitudinal
phone usage patterns are used to train the MDP model.

A. Markov Decision Process Overview

A Markov Decision Process [4] (MDP) is represented as a
4-tuple (S,A, P. (·, ·) , R. (·)) , where

• S is a finite set of states.
• A is a finite set of actions.



• Pa (s, s
′) = Pr (sj = s′|si = s, ai = a) is the probabil-

ity that actiona in states will lead to states′.
• Ra (s) is the immediate reward received after taking

actiona in states.

The value of a states under policyπ is the expected sum of
the discounted rewards by following policyπ unders, defined
as

Vπ = Ra (s) + γ
∑

s′∈S

Pπ(s) (s, s
′)Vπ (s

′) .

Once the parameters are all known, the optimal policy is
computed by solving the Bellman Equation:

V ∗ (s) = argmax
a

[

Ra (s) + γ
∑

s′∈S

Pa (s, s
′)V (s′)

]

.

B. Problem Formulation

We describe below how we formulate the energy man-
agement problem on mobile devices as a Markov Decision
Process.

1) State and Action Space:In our problem, the objective
is to learn the appropriate power management actions (dim
screen, increase GPS sampling rate) to take in different states
(morning, user indoors) to ensure that we achieve high user
experience while maintaining enough battery charge to last
through the day.

In our model, the composite state is defined as:

s := (t, c, e) ,

wheret is the time of the day,c is the context, ande is the
battery level.

Time of the day t. We discretize the total amount of timeT
left before the phone is charged intoNT ticks. For example,
we have 24 ticks per day if the time intervalNT is set to one
hour. The transition oft strictly follows a degenerate Markov
chain:

P (tj |ti) =







1 if tj = ti + 1
1 if tj = ti = NT

0 otherwise

Context c contains the user’s rich contextual information,
which can be defined as a composite state with different
modalities. In this paper, we definec as:

c := (u, l,m) ,where

• u is a binary variable indicating whether the user is using
a foreground application, 0 (display off) and 1 (display
on).

• l is a binary variable indicating whether the smartphone
is indoors (0) or outdoors (1), which can be potentially
inferred from ambient light level, cellular signal strength,
or other information, as demonstrated in [20];

• m indicates the device’s mobility level: 0 (none, e.g.
sitting or standing), 1 (low, e.g. walking or running), and
2 (high, e.g. driving).

The state transition probability matrix is obtained from each
user’s historical context data used for training the MDP model.

Battery level e denotes the remaining energy budget. We
divide the total battery energyEtotal into L uniform levels
and each battery level thus contains energyE0 = E/L. The
transition of battery levels is determined by user actions,which
is defined in a composite form as well.

In our use case, an actiona in the action space A is defined
as:

a := (adisplay, agps) ,

whereadisplay is a set of predefined display brightness levels
and agps is a set of GPS sampling intervals. Higher display
brightness levels and shorter GPS sampling intervals will
draw energy faster from the battery. We denote the power
consumption for each actiona as

power (a) = powerdisplay (a) + powergps (a) .

Similar to the Jigsaw system [12], the probability of the battery
level changing from the current level to the next level from
time tick ti to ti+1 is calculated as

p (a) =
power (a)

E0

T

NT

.

We model the transition probability ofe as a function of action
a ∈ A:

Pa (ej |ei) =















1 if ej = ei = 1
p (a) if ej = ei − 1

1− p (a) if ej = ei = l, l ∈ [2, L]
0 otherwise

To reduce the complexity of the MDP, we assume that the
statesti, ui, li, mi ei are independent of each other. Thus, we
define the overall system transition probability as,

Pa (sj |si) = P (tj |ti) · P (cj |ci) · Pa (ej |ei) ,where

P (cj |ci) = P (uj |ui) · P (lj |li) · P (mj |mi) .

2) Reward Function:The reward function is a key com-
ponent of the MDP as it determines the balance between
user experience and energy conservation; it encourages better
higher user experience when sufficient energy is available,and
encourages power-saving actions when necessary to guarantee
the target battery lifetime is reached. The ideal result forthe
MDP would be to run out of battery right at the end of the
day by maximizing user experience with a bright display or
high GPS sampling rate.

We define the reward function for each actiona as:

Ra (si) =

{

−Routage if ei = 1, ti < T,
f (a, ci) otherwise.

The termRoutage rewards power-saving actions when nec-
essary to ensure battery lifetime is reached while the term
f (a, ci) rewards high user experience.

Energy Savingactions to achieve the target battery lifetime is
achieved byRoutage, which penalizes the system by providing



a high negative reward to cancel the cumulative positive re-
wards gained from previous instances of high user experience.
Larger values ofRoutage result in a lower likelihood of battery
outage, and result in more conservative power settings that
reduce user experience, as we will see in Section IV.

User Experienceterm f (a, ci) quantifies the user experience
for the GPS and display based on the current contextci and
actiona. We define:

f (a, ci) = KdisplayUdisplay(a, ci) +KgpsUgps(a, ci).

The weightsKdisplay andKgps are used to adaptively weight
the relative priority between display and GPS user experience
for different users.

For the display, it is straightforward to directly relate
the user experienceUdisplay to the display brightness level.
However, under strong environmental ambient light, such as
in outdoor environments, the display brightness needs to be
increased to improve user experience. The location information
enriches our model and refines the definition of user experi-
ence under different light conditions. As defined in Table I(a),
we set 60% as the minimum brightness level outdoors1 and
set -∞ for the reward when the brightness is below 60% to
avoid choosing these actions.

For GPS,Ugps denotes the user experience for location-
based applications or services, such as navigation, location log
for fitness, socialness, etc. Thus,Ugps is negatively correlated
to positioning error, which is determined by a user’s velocity
v and the GPS sampling intervalτ . During the sampling
interval, the expected positioning error is the integral ofall the
differences between the last known position to each unknown
position over the sampling interval, which is computed in
Table II under different mobility levels. Even though GPS is
well-known to have positioning error, we assume here that
GPS gives us accurate locations to approximate the localiza-
tion error due to higher sampling intervals for the purpose
of defining user experience. We assume a 10-m average
positioning error will be sufficient for most applications [10]
such as daily life logging or location-based services. We
define the user experience for each GPS sampling interval in
Table I(b) under different mobility levels. For example, we
assign the same user experience (5) to those GPS sampling
intervals that are no more than 10 seconds (i.e., 1 sec, 5 sec,
and 10 sec) when the user’s mobility level is low. The reason
is that a 10-m accuracy is sufficient for most location services
under low mobility [10]. When the user has high mobility, to
ensure sufficient location accuracy, the reward is set to -∞ for
sampling intervals larger than 10 seconds and the highest (5)
for a 1 second sampling interval.

C. Extensibility

As we mentioned earlier,Boe can be easily extended to
incorporate more hardware components by augmenting new
power-saving actions corresponding to the hardware to the

1We surveyed 10 participants who all had trouble reading textfrom Google
maps or email outdoors when the display brightness level was below 60%.

(a) Udisplay

Brightness Indoor Outdoor
level space space

20% 1 -∞
40% 2 -∞
60% 3 1
80% 4 3
100% 5 5

(b) Ugps

Sampling Low High
interval mobility mobility

60 secs 1 -∞
30 secs 3 -∞
10 secs 5 1
5 secs 5 3
1 sec 5 5

TABLE I
USER EXPERIENCE(A) FOR DIFFERENT DISPLAY BRIGHTNESS LEVELS

UNDER INDOOR/OUTDOOR WHEN THE DISPLAY IS ON AND(B) FOR

DIFFERENTGPSSAMPLING INTERVALS UNDER DIFFERENT MOBILITY

LEVELS WHEN USER IS NON-STATIONARY.

GPS sampling interval
Mobility level 1 sec 5 secs 10 secs 30 secs 60 secs

Low (1-3 m/s) 1 m 5 m 10 m 30 m 60 m
High (10-30 m/s) 10 m 50 m 100 m 300 m 600 m

TABLE II
AVERAGE POSITIONING ERROR UNDER DIFFERENTGPSSAMPLING

INTERVALS.

action space and new context states if necessary into the
MDP framework; the key requirement is that the action space
contain different levels of power consumption, each with a
different user experience which can be quantified in the reward
function. Similarly, we can incorporate user feedback to the
MDP by associating a potential energy reduction from each
user reminder or feedback and a corresponding drop in user
experience.

IV. EVALUATION

A. Datasets

We evaluate the performance ofBoe through real-world
smartphone data traces collected from 10 users over 2 months.
We collected timestamped data of user interaction with the
display and foreground applications, GPS locations, and bat-
tery levels. We deployed a data collection Android app called
EasyTrack to collect this data from the subjects in our study.
EasyTrack is based on the Funf Open Sensing Framework [2],
with the customized data probes and sampling rates detailed
in Table III.

B. Preprocessing

To acquire meaningful context data to train our Markov
decision process model, we preprocess the raw data and reor-
ganize it into daily context tables for each user. Each tableis
indexed by time of day in minutes (1440 entries per day) with
context information such as discretized battery level, display
on/off, indoor/outdoor, and mobility level. When preprocessing
the raw data, we make several simplifying assumptions: (1).
We use simplifying assumptions to compute context data
between sampling intervals, such as linear interpolation of
battery levels between 15 minute sampling intervals, and
assuming constant velocity between two locations during 10



Probe Description Sampling

Battery Battery level and charging indicator. Every 15 mins
Foreground Foreground running apps with Always on,
Applications starting point and duration in secs passively listen
Location Location in longitude and latitude Every 10 mins

TABLE III
DESCRIPTION AND SAMPLING STRATEGIES OF RELEVANT DATA PROBES.

minute sampling intervals for GPS2.(2). We use the estimated
velocity to infer motion state/mobility level. (3). We identified
being indoors or outdoors by checking device velocity: if the
velocity is less than 0.1 m/s, we assume indoors, and if greater,
outdoors. We note that these simplifications may not be
accurate; however, since our main goal is to evaluate our global
energy management approach, these simplifications providea
good approximation for real-world context data that we might
observe. Existing approaches for indoor/outdoor detection [20]
and motion state detection [12] could be integrated into a more
complete system for future work.

C. Power Profiling

We also profile the power consumption of the display and
GPS components for model building and evaluation. Our
measurement is based on Samsung Galaxy S3 model. The total
battery energy is2100mAh× 3.8V = 28728J .

Display: We developed a simple Android app to manually
set different brightness levels and use the Monsoon power
meter [1] for power measurements. We first measure just
the baseline CPU power consumption by shutting down all
background services and turn off all other hardware com-
ponents such as WiFi, GPRS, Bluetooth, GPS, etc. We then
measure the power consumption of different brightness levels
by subtract the baseline CPU power value. We report the
resulting power consumption measurements in Table V(a).

GPS: We also develop a simple Android app to turn on the
GPS for positioning and turn off GPS immediately. We use the
PowerTutor [19] software to measure the power consumption
for GPS sampling. We observed that if we continuously stream
GPS locations, the power consumption is about 370 mW,
which is similar to that reported in [15]. However, if we
turn off the GPS immediately after it returns the location,
the whole process took about 4 seconds, and the average
power consumption is 144 mW, which agrees with circuit-level
measurements [5]. Thus, we mark 144 mW as the power con-
sumption for 5-second sampling interval, and simply calculate
the power consumption for longer sampling intervals assuming
that the total energy consumption remain the same while
only the sampling duration increases. The power consumption
results are listed in Table V(b).

D. Evaluation Methodology

We follow a training-testing procedure for each user to
evaluate the performance ofBoe: we use the first month of data

2We use standard Haversine formula to compute the distance between two
GPS locations

(a) Powerdisplay

Brightness Measured power
level consumption

20% 246 mW
40% 356 mW
60% 466 mW
80% 576 mW
100% 686 mW

(b) Powergps

Sample Scaled power
interval consumption

60 secs 12 mW
30 secs 24 mW
10 secs 72 mW
5 secs 144 mW
1 sec 370 mW

TABLE V
POWER CONSUMPTION OF DISPLAY ANDGPSUNDER DIFFERENT

SETTINGS.

collected for training and the second month of data collected
for testing.

Training: The goal of training is to estimate user’s context
transition probabilities as well as other system parameters to
jointly determine the overall state-action transition probabil-
ities. We setT = 12 hours beginning from 8 am to 20 pm
to ensure that users’ battery lasts the entire day when they
are typically away from home. We note thatT can be learned
automatically in the future according to the individual’s daily
schedule. We set each time tick to be 15 minutes and each
energy level as 25% ofEtotal; Kdisplay, Kgps, and K are
all set to 1. Using these parameters, we obtain all context
transition probabilities using frequency counts and applythe
Policy Iteration algorithm [11] to learn the optimal policy
(display brightness level and GPS sampling rate). The output
is a 5-tupled lookup table. Each entry represents a state-
action pair which includes the state tuple< t, u, l,m, e >
and the optimal policy (action) tuple< adisplay, agps >.
We also empirically setRoutage = 75 to maximize the user
experience while guaranteeing that no outage time occurs
across the training data. Since we demonstrate our approach
by controlling only two hardware components, we set the total
energy budget for the display and GPS to be 20% of the fully
charged battery energy.

Testing: For each user and each day, we first extract the
segments of time when the battery is discharging, and lookup
the MDP policy table based on the observation tuple<
t, u, l,m, e > for every minute based on the learned the policy
π. π denotes the power setting for the GPS and display for
each state during the discharging period. We replay the power
setting of the MDP policy, resulting in a specific average user
experience and a gradual reduction in battery energy; when
the battery energy drained by GPS and display exceeds a pre-
defined budget for these two components, we define that an
outage has occurred and record the timestamp when the battery
outage first occurred.

E. Evaluation Metric

To evaluate the performance ofBoe, we use the following
metrics:

• User experienceis defined as the average user experience
based on Table I for when either the display or the GPS
sensors are being used.
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(a) Aggregated four light phone users
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(b) Aggregated four moderate phone users
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(c) Aggregated two heavy phone users

Fig. 1. Boeoutperforms fixed user experience policies as it guarantees no outage count while maximize user experience from the aggregated 10 users’ data
divided into three categories.

User experience Average outage time (min) Maximum outage time (min)
Users’ phone Fixed Fixed Fixed Adaptive Fixed Fixed Fixed Adaptive FixedFixed Fixed Adaptive

usage level max mid min Boe max mid min Boe max mid min Boe
Light users 5 3 1 3.6 82.6 5.0 0 0 275 5 0 0

Moderate users 5 3 1 2.9 323.3 59.0 0 0 684 96 0 0
Heavy users 5 3 1 2.3 705.6 185.5 0 0 750 475 0 0

TABLE IV
BoeOUTPERFORMS FIXED USER EXPERIENCE POLICIES AS IT GUARANTEES NO OUTAGE TIME WHILE MAXIMIZE USER EXPERIENCE FROM THE

AGGREGATED10 USERS’ DATA DIVIDED INTO THREE CATEGORIES.
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Fig. 2. We can control the outage time and user experience by varying the
penalty termRoutage.

• Outage countis calculated as the number ofoutage
events, where each outage event happens whenever the
energy budget for the GPS and display is exceeded before
the end of the battery discharging period. We compute the
outage count on a monthly basis.

• Outage timefor each outage event is calculated as the
time duration between when an outage event happens and
the user charges the battery next. For example, if a battery
budget outage happens at 7 PM and the user charges the
phone only at 8:30 PM, the outage time for the event is
90 minutes. We measure both the average and maximum
outage time for each user.

F. Results

We evaluate the performance ofBoeby replaying its policy
on real-world smartphone traces from 10 users. We use our
evaluation metrics of user experience, outage count, and out-
age time to compare the performance ofBoe with a fixed
user experience policy that sets three possible fixed, user
experience values: min (1), mid (3) and max (5) with the
corresponding actions on display brightness and GPS based
on current context information (indoor/outdoor and motion
state). We categorize our 10 users into three groups, namely
light, moderate and heavy users based on thresholding the
average outage time under fixed max user experience (5);
heavy users tend to use the phone more and have higher
motion states compared to light users. In this experiment, we
set an equal user experience preference for the display and
GPS:Kdisplay = Kgps = 1.

Figure 1 shows the monthly outage count for light, moderate
and heavy users for the three fixed user experience policies and
Boe. Table IV shows the corresponding average and maximum
outage time for outage events for the three categories of
users. Firstly, in Figure 1(a), we see that light users have
almost no outage events with mid level user experience of 3.
However,Boeachieves zero outage as well but also improves
the average user experience to 3.6, an improvement of 20%
in user experience. For a higher user experience of 5, we
have more than 4 outage events per month; Table IV shows
that even light users with a high user experience of 5 see
outages averaging 82.6 minutes, with a maximum outage time
of more than 4.5 hours per user. Secondly, for moderate phone
users in Figure 1(b),Boe achieved almost the same average
user experience as the fixed mid policy while eliminating
the 2 outage events that happen per month; these outages
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Fig. 3. We can control the user experience on different components by
assigning different weights for each component.

are quite frustrating since they range from 1 to 1.5 hours
as seen in Table IV. Finally, for heavy users in Figure 1(c),
Boe eliminates all the 4 outage events seen with the fixed
mid policy but achieves an average user experience of 2.3
which is 23% lower than the fixed mid policy; however, we
argue that the loss in user experience could be more tolerable
to users compared to the frustratingly high outage times of
3-8 hours seen for heavy users in Table IV. Overall,Boe
eliminates all outage events and tries to achieves as high a
user experience as possible while satisfying the battery lifetime
requirements. Overall,Boe does a better job than the three
fixed user experience policies because it is aware of how
much energy the user typically consumes compared to how
much energy is left and adjusts user experience accordingly;
we noticed that especially for the cases when the phone is
charged multiple times during the day,Boe maximizes user
experience at discharging periods where the battery level was
high.

In our systemBoe, the penalty termRoutage for battery
outage plays a critical role in controlling the user experience
and outage time. Figure 2 shows the relationship between
Routage, outage time, and user experience across all users.
In Figure 2, we see that whenRoutage = 0, Boe degenerates
to the fixed max policy with average user experience of 5 and
503 minutes outage time. AsRoutage increases, we see that
both average user experience and outage time decrease. When
Routage = 75, we achieve the approximate optimal result: we
have no outage at all while maximizing the user experience to
2.9.

We show that we are able to assign different user experience
preferences for different components in Figure 3, in which
each point shows the average user experience on display and
GPS for each user. By default, when we assign an equal weight
for Kdisplay and Kgps, users have a higher user experience
on GPS than on display because the power consumption of
the GPS is less than that of the display. To balance the user
experience on both sides, we can assign a larger weight to
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Fig. 4. User experience for each component as the user spends more time
on that component.

the display, for example, 5 times as much as GPS. A larger
weight (Kdisplay = 10) will favor better user experience for the
display. In future work, we plan to adjust the user experience
weights automatically based on the energy consumption of
each component.

Finally, we show the user experience on individual days for
all users. We empirically chooseKdisplay = 5 andKgps = 1
from the result of Figure 3. We show the display on-duration
vs. user experience on display, and the non-stationary motion
duration vs. user experience on GPS for all days across all
users in Figure 4 as a scatter plot. In general, we observe that
we have lower user experience on the component that is used
more heavily. However, we also notice a few interesting points:
the points shown in the left bottom area are the rare occasions
when the user forgets to charge the phone at night and only
has very limited energy at the beginning of the day. In general,
we still see some points with high user experience even if the
usage duration is high due to the advantage of global power
management;even if one component is used heavily, if the
other component is used rarely a high average user experience
can still be achieved by taking a global approach to power
management. The slope of GPS plot is smaller than in that



of display plot because of the high power consumption of
the display and the user experience on GPS is still favored
even with our current parameter setting of (Kdisplay = 5 and
Kgps = 1).

V. L IMITATIONS AND FUTURE WORK

In this section, we discuss the limitations and a few future
directions of this work.

A. User Experience

A key challenge to our power management problem is the
predefined user experience value because it trades off the
energy consumption for user experience at different stages.
In Table I, we propose a simple scheme to quantize the
user experience for the phone’s display and location service
under different contexts. We interviewed 20 participants about
our user experience quantization. 18 participants agreed with
our quantization, and two of them disagreed because they
believed that human perception does not follow a linear scale.
However, they did agree that in general, human gains higher
user experience with brighter display and higher accuracy of
location estimation. Also, they pointed out that they would
prefer a fixed dim level (70% or so) in completely dark
environment to avoid stimulating eyes. These lessons learned
will collectively help us to improve this context-based optimal
user experience design in our future work. Meanwhile, a
comprehensive user study will be conducted in the future
to estimate the perceived user experience for different power
settings.

B. User Model Training

In Section IV, we use the first month of the users’ data for
training the MDP model and test the model’s effectiveness
with the second month’s data. We achieved good results
because in our collected data, the users’ behavior is consistent.
In other words, their phone usage and mobility patterns do
not exhibit large variation across different days. However, this
consistent pattern may not work for all the cases. Users could
have a progressive behavior changing due to sporadic life
events (e.g. paper deadline, vacation), which our current model
is not able to capture and adaptive to. In the future, we will
implementBoerunning as a background service to capture this
temporally changing behavior. Similar to MobileMiner [18],
the service will periodically mine the phone usage patterns
and determine the optimal period to update the model based
on most recent data. For example, to avoid sacrificing user
experience and battery life, the model refresh could happen
when the phone is being charged at night. However, we
acknowledge that it is still very challenging for history-
based models to capture those non-progressive outliers (user
pattern significantly deviates from the average case) and often
results in battery outage. Nevertheless, if these changes can be
predicted by some clues such as from personal calendar, it is
still promising to improve the model accordingly to minimize
the number of battery outages.

C. Extensibility

In Section III, we mentioned thatBoecan be easily extended
to incorporate more hardware components as long as there
are trades-offs exist between energy consumption and user
experience. However, there are still some open problems
regarding the definition of the user experience. For example,
underclocking is the most straightforward way to reduce the
energy consumption of the CPU. However, it might only
work for non-CPU bound task such as text processing, but
will significantly degrade user experience at an unknown rate
for gaming or video streaming jobs. Regarding the network
interface, it is straightforward to reduce the energy consump-
tion by increasing network polling period for a background
service task. However, for streaming tasks, the bandwidth
(user experience) is generally affected by the received signal
strength and hence there are not any options to be manipulated
on the device to trade off energy usage and user experience. As
studied in [7], energy consumption on network interfaces (3G
and WiFi) is positively correlated with the network bandwidth
but negatively with its wireless signal strength. Therefore, it
is desirable to add a module which can automatically help
the user navigate to the places with stronger signal strength
to simultaneously reduce energy consumption and gain higher
user experience.

D. Battery Outage and Opportunistic Charging

As mentioned earlier,Boe is designed to minimize the
number of battery outage events. However, we note that it
cannot guarantee the absence of outage events. Scenarios
such as watching long online videos watch and long phone
conversations are hard to optimize for. Rather than notifying
the remaining battery level when there is only 10% or 20%,
it will be more useful to provide an estimation of when the
battery will run out to keep the users aware of the remaining
battery life through this feedback channel. On the other hand,
it will be valuable to incorporate a opportunistic charging
remainder module into the system. This module will collect
the locations where all the phone charging events took place,
and remind users to proactively charge their phones when they
visit the same places. By doing so, it will be particularly useful
for the cases when the system predicts that the battery will
deplete before the end of day.

VI. CONCLUSIONS

In this paper, we presentedBoe, a Markov Decision Process
(MDP) based global power management scheme balancing
user experience and energy saving for mobile devices. We
evaluatedBoethrough a field study with smartphone data from
10 users over 2 months and demonstrate that it outperforms
fixed policies by eliminating battery outage time and also
achieving as high a user experience as possible. Compared
to the best fixed user experience policies, we show that: (i)
Boe eliminatesall frustrating battery outage events for light,
moderate, and heavy phone users, and (ii)Boe improves user
experience by 20% for light users, maintains the same user
experience for moderate users, and degrades user experience



by 23% for heavy smartphone users. Moreover, we show how
Boe could easily scale to include new context information
about user status, new power saving actions for controlling
additional hardware.
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