Building a Practical Sensing System

Robert S. Moorg, Bernhard Firndr, Chenren Xil, Richard Howard, Yanyong Zhang Richard P. Martit
*{romoore, rmartin}@cs.rutgers.edifbfirner, lendlice, reh, yyzhang}@winlab.rutgers.edu
*Department of Computer Science, Rutgers University, Raseay, NJ, USA
TWINLAB, Rutgers University, North Brunswick, NJ, USA

Abstract—Developing Internet of Things (loT) applications ~ or assumptions made about items or which attributes they
can be a complex task for many developers, requiring knowledge possess. This stands in contrast to location-based systarhs
of sensor hardware, deployment characteristics, network limita- gs BAT [7] and SenseWeb [12] which focus on location-based
tions, and multiple protocols. Because of this, IoT development geryices and queries. Instead, the Owl Platform world model
has been largely centered around research scientists and domain focuses on implicit relationships based upon a hierarthica
experts, with only a limited number of simple applications coming name space (e.g. the names of all lights in a building begiin wi

from the broader community. We present a software architectue <building> liaht licit relati hi based e
that seeks to simplify and accelerate the development of loT uilding>.light) or explicit relationships based upomé-

applications, making them accessible to a larger community of Varying item attributes. This approach is similar in sptot
developers. To keep the system simple vyet flexible, it focuses on LDAP [10] or SNMP servers [16] and provides the flexibility
a limited number of abstractions, relying on the developers and t0 store and distribute abstract information, rather thish jaw
administrators to enforce additional constraints where necesss sensor data.

We present a model system and a prototype implementation, o
along with experiences developing applications. The second Iayer of abstraction is the Owl Platfaarggre—

gator. The aggregator hides the low-level details of individual
sensors from the application developer while also hidirgy th
high-level details of a sensor's use from a person deploying
The Internet of Things may prove to be a powerful andsensors. This approach allows sensor designers and djuplica
disruptive conceptthat can improve the way people live bydevelopers to work separately by giving them both a simple
creating new ways to perform environmental monitoring, Bom standard to work with. For example, a developer who designs
automation, power conservation, health care, and work flovand deploys simple switch and temperature sensors onlysneed
optimization. For most developers, however, these systems to worry about communication with the aggregator. Likewise
by and large inaccessible, due in large part to the difficultysomeone with application knowledge can use these sensors
of deploying and managing these systems. This is a seriousithout sensor-specific knowledge; combining the apglcat
bottleneck for the adoption of the Internet of Things. Insthi code in the sensor would only complicate the design and slow
work we address complexity of use and development in loTthe process of building sensors.
systems. The goal of this research is to make application

development accessible to the vast majority of developers. Owl Platform advances the state of the art in loT systems
by providing simple, flexible interfaces that enable rapastal-

We begin by describing the design and deployment ofpment, deployment, and management of novel applications.
a new software architectur®wl Platform that eases the We also demonstrate that it supports a wide range of sensing-
burden of developing loT applications. Owl Platform allows hased applications and fosters creative and novel apipiisat

someone with modest programming knowledge (1-2 years oy making these systems available to a larger community of
programming coursework) and no previous experience witljevelopers.

sensor networks the ability to design and deploy meaningful)) .
loT applications. We qualitatively demonstrate our clainys In this paper we survey related work in middleware and
experimenting with a dynamica”y growing sensor dep|0ytnenserV|Ce-0r|ented SyStemS in Sectioh I, and discuss thé add

in an office environment with offices, eating, meeting, andtional features required to create multi-user systems doat
storage areas. not require specialized domain knowledge in Secfioh Ill. In

,) .) Section[1V, we present our proposed system, detailing how
A primary conclusion of our experiences is that a clearine world model and aggregator abstractions work to simplif
separation of concerns between the roles of users, applicgteraction with the system without sacrificing flexibilitye
tion developers, sensor designers, and system admioistrat eyajyate the performance of our system during a year-long

reduces the complexity of application development and sengeployment supporting smart office applications in Sedfbn
sor deployment. Separating these concerns allowed novice

programmers to develop applications with only intermesdiat
levels of knowledge in a single area of the deployment. This Il. RELATED WORK
separation of concerns is supported through two abstrestio
layers, pictured in Figurgl 1.

I. INTRODUCTION

Modern middleware systems are designed to aggregate
data from many sensors and sensor networks into a common
The first abstraction layer, called thweorld mode] is a interface, often in the form of a software Application Pro-
virtual representation of a physical space, the items i thagramming Interface (API). Systems like SenseWeb [12] and
space, and those items’ attributes. Items may be physical @lobal Sensor Network (GSN)][3] are effective at providing
chair) or abstract (a meeting) and there are no constrainis neutral platform for many different sensors. Unfortuhate

TR T T T | projects, like Common Sensé_[17], have involved the user
! @ ! cpm_munity to impr_ove the system. In this case _the resgaascher
| @ 6 @ | distributed air quality sensors to users who carried therindu
6 & I their daily activities. The users were able to gather, ameot
1 and discuss the data, but were not able to interact more fully
} with the data or modify the system to suit their own needs.
S |
N ! Data Pub/Sub Creating a user base or community around a sensor network
| | platform opens up many new possibilities. For the Interriet o
I I Things, providing a flexible and simple API enables users to
1 G @ l add new functionality to the system, adapt it to their own
} | needs, or even provide additional interfaces to the system.
} } Separating the data gathering platform from the analysit pl

b World Data form means that multiple sensor networks can coexist withou
r ! Feedback Loop interference. Additionally, users can keep their own asialy

| |

} } systems running separately from the “official” system run by
! ! researchers or sponsors. This avoids data contamination fo
! ! researchers, since their systems are unchanged, but ahews

| |

| |

system to grow to suit the needs of new communities of users.
This in turn can provide the same researchers with powerful
Data Pub/Sub new tools or ideas that they can use to improve the system.

Ill. SYSTEM REQUIREMENTS

Al-Jaroodi and Mohamed [4] performed a survey of mul-
) tiple service-oriented middleware systems and identifisgta

Sensor Data of nine requirements considered important. These reqeinésn
Stream are: creating, publishing, and discovering informatiamport-

| | . . .

| Traditional | ing heterogeneous systems, integration transparencptada
| £ Virtual Sensor Sensors | tion, scalability/efficiency, reliability/security, anduality of

| Networks | service.

| |

| |

| |

| |

Sensing Layer 1) Creating, Publishing, and Discovering Information:
b ‘ The first three requirements address the basic features to
make data available to users. First, the middleware system
needs to provide a common API for developers to create
new data analysis software which works across many differen
platforms. This enables seamless integration of multipteser
networks, preventing the system from being bound to specific
hardware or software environments. Second, there must be a
way to share this new software with other users via registrat

their focus on the physical sensors and data mean that th&f publication services in the system. Third, there must be a
systems have addressed these issues well, usually havihg we

The BAT system[[7] provides a good example of how defined semantics for producing, consuming, combining, and

a system can be well-designed for its initial purpose, bupuplishing data from various sensor sourdes [5].
then fails to adapt to the demands of a changing user base.

When the BAT system was redeployed at a second location, 2) Heterogeneity, Integration Transparency, and Adaption
Mansley et al.[[T4] found that its initial set of features diot ~ The next three requirements govern hiding a system’s comple
satisfy the diverse requirements of its new user base. &ilyjil ity from users. APIs and protocols should be available &cros
Microsoft's SixthSense [15] platform created a limited et platforms, the details of services should be integrateal tin¢
information through its “inference engine” and allowed for system so that their complexity is hidden from users, and the
powerful SQL queries on that data, but was limited by thesystem should adapt to component failures as seamlessly as
expressiveness of SQL. An effective middleware system mugossible without user intervention. These are arguablyribst
combine useful data abstractions with an API that allowsuse important as they determine how much effort is required of
to analyze the data flexibly, without the system becoming s@levelopers and users to work with and expand the capasilitie
complex that only experts are capable of using it. of a system,

Fig. 1: Two layers of abstraction, a world model and an
aggregator, separate concerns across sensor deploynments,
formation processing, and application development.

By designing the system so that non-experts can use it, As mentioned in Sectionlll, separating the sensor network
a community can form around the platform. An effective abstraction layer from the data analysis layer allows tistesy
example of this is the Firefox web browser, which providesto be more flexible without adding unnecessary complexity. A
a simple but powerful add-on APLI[1] that enables users tacommon approach to designing a cross-platform system is to
expand the functionality of the web browser. Some researcprovide access through a network API. This is an effective wa

to allow the system to adapt to user needs and prevents it from Names do not change over time so only immobile items

being bound to a specific hardware or software environmentshould have implicit locations in their names. Attributesic

. . , . . change over time, so if an object moves it would have its
3) Scalability, Reliability, Quality of ServiceThe idea |ocation explicitly stated as an attribute rather than ioigy

of scalability and efficiency in a middleware system appliesgiateq in jts name. Thus a client that wishes to draw the urre

to difficulties in processing, storing, and disseminating t |5cations of all mobile items would request all items (using
potentially large amounts of data handled. Most data gsierie« x» RegEx) that had a “location” attribute.

will not involve the entire system, but will most likely be
limited to a specific spatial, temporal, or relational domai 1) Attribute Names and Data Type#n attribute name
Knowing whether it is raining at the user’s office is a more strictly specifies the data type of the attribute, similaMidE
common query than knowing how much rainfall occurs ontypes. For instance, “temperature.Celsius” might spefeif§4-
average across the entire globe. Though both queries ahit IEEE floating point value representing the temperature i
possible in such a system, the former is more likely and shouldegrees Celsius.” In addition to simple types, the system ca
be a more important consideration when designing the systemlso recognize aggregate types, such as vectors of pm@mitiv
o))) types. Primitive data types are specified in a standards-docu
~ Security in such a system is another important considerament and libraries in multiple languages can be provided to
tion since many users will be accessing it simultaneousyy. B interpret these data types. This allows the system to stippor

identifying each piece of information in the system with angany arbitrary type while still having a standard that spesifi
“origin” identifier, users can be sure of the authorship dda pow to interpret or display each kind of data.

The user can then provide a set of origin preferences to the] o
system, which can manage the flow of information as different _2) Attribute Origins: The world model remembers the
sources are available. While this is an important part of such origin of each attribute. This origin specifies the sourcat th

system, a thorough discussion of security is outside thpesco Provided the attribute to the world model and, along with a
of this paper. digital signature, can be used to provide authenticity forld/

model data. The origin string also allows clients to differate
Finally, quality of service concerns vary with the type of different sources of similar data. Two different sourcesldo

data being provided and the application being designedisUseprovide the same information to the world model, for ins&nc
might expect to have regular updates from many types opy using a different algorithm or hardware to generate theesa
sensors (temperature, humidity, light, etc.), while otty@es data. The attribute origin field gives clients and solverat th
of data may only be sent “on-demand” (events, query resultS)nteract with the world model a way to specify a preference
In any case, it is reasonable to expect the user interface #r one source of data over another. This provides a method fo
provide further quality of service information such asdedl fault tolerance - if the preferred source of data fails, bsesof
notifications, heartbeats, and ensuring that periodicalalées sensor failure, a software fault, or any other reason, then t
on-time and with as little irregularity as possible. world model can immediately serve the most preferred data

from the remaining alternatives.

IV. OwL PLATFORM ARCHITECTURE
. B. The Data Analyst's View
Our proposed IoT middleware system, callévl Plat-

form has several key features that allow it to support many The data analyst views the system as an aggregator with
users of differing skill levels. Owl Platform achieves efige faw sensor data and a world model with processed sensor data
component segregation and simple interactions by promotinand other high-level information. Analysis software, edll
two primary abstraction layers to separate concerns inteth Solversin Owl Platform, subscribe to sensor data from the
“views” of the entire application stack, pictured in Figi@e @gdgregator by specifying patterns of physical layer IDs and
Each of these layers supports an API over TCP/IP. sensor IDs. Solvers request data from the world model in the
same way that client applications query the system. Solvers
We will describe the application developer's view and theare also free to use information from sources outside of the
data analyst's view of the system below. We will address theaggregator and world model. When solvers create new data
sensor expert’s view in future work. they send it back to the world model. This mechanism allows
each solver to be a standalone process independent of other

A. The Application Developer’s View components.

The world model and aggregator APIs allow developers
0 use any combination of platforms and development tools
hat support TCP/IP, from smart phones to desktop computers
Although the possible complexity of a solver is high, we
advocate using the UNIX philosophy of small, independent
units whose results can be combined to create high-level
results, encouraging data reuse.

The application developer views the system as just th
world model, a named hierarchy of physical and conceptu
objects and their attributes, similar in spirit to LDAP or BR.
Each item in the world model is a name and a set of attribute
with primitive or user-defined types. In Owl Platform, every
attribute has a creation time and an expiration time thabthen
when the value is valid. Figuifd 2 shows a view of the world
model. Users query the world model by searching for items The simplest solvers take raw sensor information from the
with names matching a given POSIX RegEX [2], a set ofaggregator, process it, and put it into context in the world
desired item attributes, and a time range for the query. i@sier model. For example, a temperature value from a sensor will
can also request subscriptions for data as it arrives rdltlaer be processed by a temperature solver and associated with an
data in an historic time range. item in the world model. More complicated processing of that

Client Interface
‘World Model
Solver Interface

Push Data Subscribe
and Push
Solver Interface w Sensed Data | Sensed Data .
[Aggregator Processing | Processing | SensorFusion | Application | Application| |App1icati0n

Sensor Interfacﬂ
/‘ L—NSubscribe \
Solver I'nterl’ace World Model Client Interface
Sensor| Sensor| ... | Sensor Middleware Aggregator Sensor Interface or oae Solver Interface

(@) (b) (©

Fig. 2: The world model and aggregator partition the develept space into separate views for deploying new sensors (a)
analyzing sensor data or performing higher level analysjsgnd developing applications using the information ie #ystem

(©).

data is left to other solvers. This means that many solvers do 1) Radio TransmittersOur physical layer consists of pip-
not process sensor data directly and will never need to @innesqueak radio tags [6]. The pipsqueak broadcasts its unique
to the aggregator. sensor ID every second. The beacons’ signal strengths are
1) Transient Solvers:The solvers we have described do USEd- by a set (-)f core owl Platf_o_rm solve_rs: localization [8],

: location discrimination, and mobility detectionl [9]. Tleegs

not need to interact with clients or solver requests and cajare chosen because of their size and lifetime - they are
be relatively simple because requests stop at the Wo_rld mOdﬁpproximately 3.5cm by 3cm and this version runs for over
and do not go to the solver itself. However, this might not, years on a coin cell battery at this duty cycle

be suitable for all situations as the domain of some kinds
of data is too large to fully compute and add into the world 2) Signal Strength Based Solvershe signal strength
model. This includes, at the extreme, the space of all plessib statistics solveruses information from the aggregation layer
logical queries. A slightly more modest example is a solveito calculate the mean, median, and variance of wireless link
that computes the covariance of the signal strength values isignal strengths and the average signal variance of eaas-tra
the system. mitter’s signals across all links. To avoid unnecessarya dat
creation and transmission we wanted this data to be created

As the number of transmitters increases, the number ofyn gemand” so we made this a transient solver, as described
results that a covariance solver would need to compute ang sectionTV-B1.

place into the world model would increase factorially. Toigv .) -)

this kind of situation the world model API allows solvers to Themobility detection solvedetects mobility events using
declare that they haveansientdata. The world model keeps changes in signal variance from a transmitter at multiple
a list of attributes that are provided by transient solviéveen receivers. With multiple deployed receivers this techeiqu
the world model receives a request for that a transient dat@ives low false positives and high detection rates (close to
type, the world model forwards the request unchanged to th89%), even for mobility events lasting only a few seconds [9]
appropriate solver. The transient solver then generatas thThis solver requests signal variance measurements from the

information “on demand.” This allows the system to supportworld model that were originally created by the signal sgtan
solvers of arbitrary complexity. statistics solver. The solver updates the mobility attebuof

items in the world model.

V. COREOWL PLATFORM DEPLOYMENT The localization solveris written based on a Bayesian

- . localization algorithm[[13], which uses signal strengthame
The system was initially deployed with a small number g, .ements. The solver uses real-time training data fromstra

of sensors and applications, and was grown over the COUrSgiyars ninned to the wall at known locations, similar to e

of a year. Many sensors and solvers were added to the systgipyach in the LEASE systerii [L1]. The locations of immobile

live” during the deployment, and in this section we will € 45 smitters and receivers are stored in the world mode. Th

on a few illustrative examples. In Sectipn] VI we will discuss |47 ation solver subscribes to mobility informationrin the

how users and new developers used and expanded the systGjg4 model to trigger localization and median signal sytén
for summer projects, demos, research, and fun. values to perform localization

As we added transmitters and receivers in new locations
the distributed nature of the system allowed us to easily
The deployment covers an area of approximately 66.®vercome networking issues, such as administrative boigsla
by 51.5 meters (3,425 th and contains cubicles, conference and data collection across distant physical locations.eSofmn
rooms, a kitchen, storage room, and lab areas. the gateway hubs were split across two different netwoiksh e

A. Initial Deployment

separated by a Network Address Translation (NAT) firewalla switch sensor to detect when people opened the lid to the
that blocks many connection types. The solution to this wasvater reservoir to fill it. This kind of change does require a
relatively simple; we ran two aggregators, one for each dvire change in the coffee solver - however, this change stilldsav
network domain, and solvers connected to both aggregatogl client software unaffected because Owl Platform haddmid

to obtain information across both networks. Later we alsahe details of that decision from client applications. Whiea t
expanded the Owl Platform deployment to a different bugddin coffee solver updates the “fresh coffee” attribute of théfemd

8 miles away. We used tiered aggregators to keep informatiopot client applications do not know how the solver creatss it
across multiple sites in a centralized location, with a eolv solution.

forwarding information from one aggregator into the other.

VI. RESULTS USER ANDDEVELOPEREXPERIENCES

B. Adding Sensing We must evaluate the effectiveness of Owl Platform for two

We also added a variety of sensors to provide criticalgroups of people - users and developers. Users simply want to
information for the experimental deployment, includingnte retrieve information from the system through graphicalldoo
perature, chair use, door states (open or closed), and powand event notification systems. They will only interact with
consumption. the client interface of the world model. Developers want to

. , . use the system to build something new, so they might deplo
We used these different sensors to build multiple solvers; y g y Mg ploy

. . ew sensors, write new software, create new applications, o
che_cklng for_propped open doors, detecting room use angny combination of the three.
social gatherings, fresh coffee brews, and so on. We foun
it very easy to deploy new sensors and solvers - generally the Information created by solvers is stored in the world model
most difficult task was to properly package sensors for longso users rely upon clients to fetch that information for them
term use. The abstraction layers allowed us to focus on thedaitially we built a live status map of the system to track the
physical problems though, so we did not need to worry aboulocations and status of items in the deployment area. Icons
new analysis software or networking issues. We will degcrib on the map changed to indicate status updates. Door icons
our experiences sensing fresh coffee brews to illustrage thopen and close along with their real-life counterparts,irsha
little effort needed to work with Owl Platform. show a person sitting when they are being used, projectors
. . , “light up” when their power is on, and so on. This status map
The microcontroller in the tags has an on-chip temperaturg,ayes a good demo and is suitable for status lookups, such as

sensor which we used to detect coffee brews. Initially Weyiscovering room use information and locating lost itenfsisT
deployed a sensor inside the upper chamber of the coffee PRt h4ticularly helpful in cases when the system cannotipted

to sample heat from steam as soon as coffee was brewenan the user may need the information. For example, a user

Once the sensor was deployed, we added an item into g ook at the status map when he/she needs a conference
world model named <region>.coffee potkitchen to indicate,,qm

that this item was a coffee pot for the kitchen. We added an

attribute to this item called “sensor.temperature” wite D In addition to the live status map, we also provide a
of the temperature sensor. We wrote a temperature solver thgpush” mechanism which sends event updates to users over
searches the world model for temperature sensors, requesi/S, email, and Twitter. For example, although informaton
those sensors’ data from the aggregator, and adds “tempereeffee brew times was available on the status map by moving
ture.Celcius” attributes to items with temperature sessdfe @ mouse cursor over the coffee machine icon, if the user is
then wrote a second solver to search for all items with “eoffe always ready for a cup of fresh coffee whenever possible, it
pot” in their names that had temperature attributes. When thiis much more desirable for Owl Platform to push the event
solver observes a local temperature maximum it updates thi@ the user. Similarly, when tea time was detected by a solver
“fresh coffee” attribute of the coffee pot to indicate thestla (through a gathering of mugs in the kitchen) email notifiwati
time that coffee was brewed. was preferred to checking on the status map.

The location where we placed the temperature sensor had As a final example, we implemented a device-free passive
a high failure rate however, because the high temperatur@calization and counting solver that determines the numbe
and humidity melted, warped, or corroded various packagingnd location of people based upon their impact on ambient
attempts. After several different configurations we eveltyu radio signalsi[18],/[19]. Passive localization can tracepbe
encased our sensor in shrink wrap, placed it inside a rubbe¥ithout revealing their identity, and is suitable for ajgplions
balloon, and taped it to the outside of the machine neawith strong privacy concerns. In its current state, we cay on
the heated water reservoir. Even though we changed sensdggalize a small number of people (4) in the same room. We
several times, the Owl Platform system made this very pssnle are exploring the possibility of integrating a camera ortb#-
- we simply changed the “sensor.temperature” attributéhef t shelf smartphones to bring more sensor modalities to extend
coffee pot to indicate the current sensor. No software wa@ur capabilities and track people [20].
changed.

Eventually, the original coffee pot was replaced with a VIl. CONCLUSIONS ANDFUTURE WORK

different model with two independently heated plates and a We addressed the complexity of multi-user pervasive sys-
permanently heated water reservoir. This makes resulta fro tems and introduced a new architecture, nai®ed Platform

a temperature sensor more ambiguous and results from designed to lower the barriers to entry for novice users.
power sensor complicated to interpret because there ae thrTo demonstrate our solution we described an experimental
independent elements that draw power. Eventually we usechulti-user deployment that expanded over time. The system’

abstractions and APIs successfully allowed sensor deggdop [3]
software analysts, and application developers, and irdtan
consumers to simultaneously use the system without imterfe
ing with each other. New hardware and software was added td*
the deployment “live” without disrupting any running seres. 5]

Owl Platform focuses on supporting hardware and software
heterogeneity through network APIs, hiding system comniplex
through the world model and aggregator abstraction lagexs, (6]
adapting to dynamic deployments. This makes Owl Platform
suitable for users with different knowledge levels and gold 7]
contrast, traditional sensor network middleware systemsd
on data creation and publishing for expert users, and ae oft (g
limited to a specific application domain.

There are three areas of discussion that we have left’)
for future work: data authenticity, security and privacpda
large-scale deployments. In Sectibnl Ill we proposed digitay;q
signatures as a method to assure data authenticity. We also
note that access controls similar to those found in file syste [11]
may be well-matched to the hierarchical naming structueslus
in the world model. These access controls could be a good
method for providing security and privacy within the system (12]

In addition we recognize multiple open questions with[13]
respect to large-scale deployments. When they cross naultipl
political and administrative boundaries, should each esgst
remain separate or are distributed systems more apprepriat!14
When handling client queries that require remote infornmtio
is redirection the correct approach, or would a peering agw [15]
with access control be better? We are currently exploringlel
these problems by deploying Owl Platform systems in mor
locations, and in future work we hope to be able to presenf 7
interesting solutions in this area.

REFERENCES [18]
[1] Add-ons for Firefox. Website, Retrieved April 6, 2011.
https://addons.mozilla.org/en-US/firefox/. [29]
[2] IEEE Standard for Information Technology - Portable Gyierg System
Interface (POSIX). System Interface€EE Std 1003.1, 2004 Edition.
The Open Group Technical Standard. Base Specificationsge I§s [20]

2004.

K. Aberer, M. Hauswirth, and A. Salehi. Infrastructurer fdata
processing in large-scale interconnected sensor netwotksIEEE
MDM, 2007.

J. Al-Jaroodi and N. Mohamed. Service-oriented middl@war survey.
Journal of Network and Computer Applicatiqriz012.

J. Anke, J. Miller, P. SpieSS, L. Weiss, and F. Chaves. Aise-
oriented middleware for integration and management of hetereaus
smart items environments. MINEMA, 2006.

B. Firner, P. Jadhav, Y. Zhang, R. Howard, W. Trappe, ané&hson.
Towards Continuous Asset Tracking: Low-Power Communicatind
Fail-Safe Presence Assurance.lEEE SECON 2009.

R. K. Harle and A. Hopper. Deploying and Evaluating a Libma-Aware
System. INACM MobiSys 2005.

K. Kleisouris, Y. Chen, J. Yang, and R. Martin. The Impa¢€tUsing
Multiple Antennas on Wireless Localization. IEEE SECON 2008.
K. Kleisouris, B. Firner, R. Howard, Y. Zhang, and R. P. it
Detecting Intra-Room Mobility with Signal Strength Degatdrs. In
ACM MobiHog 2010.

V. Koutsonikola and A. Vakali. Ldap: framework, pra@s; and trends.
IEEE Internet Computing2004.

P. Krishnan, A. S. Krishnakumar, W.-H. Ju, C. Mallowsda®. Ganu.
A System for LEASE: Location Estimation Assisted by Statigna
Emitters for Indoor RF Wireless Networks. IEEE INFOCOM 2004.
L. Luo, A. Kansal, S. Nath, and F. Zhao. Sharing and esipipsensor
streams over geocentric interfaces.AGM GIS 2008.

D. Madigan, E. Einahrawy, R. Martin, W.-H. Ju, P. Kristm and
A. Krishnakumar. Bayesian Indoor Positioning Systems. |IBEEE
INFOCOM, 2005.

K. Mansley, A. R. Beresford, and D. Scott. The carrot raggh:
Encouraging use of location systems. AGM UbiComp 2004.

L. Ravindranath, V. N. Padmanabhan, and P. Agrawal. hSehse:
RFID-based Enterprise Intelligence. ACM MobiSys 2008.

W. Stallings. Snmpv3: A security enhancement for snmf{EEE
Communications Surveys Tutorials998.

W. Willett, P. Aoki, N. Kumar, S. Subramanian, and A. Woofflr

Common sense community: Scaffolding mobile sensing and analysis

for novice users. IPervasive 2010.

C. Xu, B. Firner, R. S. Moore, Y. Zhang, W. Trappe, R. Hota
F. Zhang, and N. An. Scpl: indoor device-free multi-subjestirgting
and localization using radio signal strength. AGM/IEEE IPSN2013.
C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin. Imgving rf-
based device-free passive localization in cluttered indmvironments
through probabilistic classification methods.AGM/IEEE IPSN 2012.
C. Xu, M. Gao, B. Firner, Y. Zhang, R. Howard, and J. Liwgrds ro-
bust device-free passive localization through automatiera-assisted
recalibration. INACM SenSys2012.

https://addons.mozilla.org/en-US/firefox/

	Introduction
	Related Work
	System Requirements
	Creating, Publishing, and Discovering Information
	Heterogeneity, Integration Transparency, and Adaption
	Scalability, Reliability, Quality of Service

	Owl Platform Architecture
	The Application Developer's View
	Attribute Names and Data Types
	Attribute Origins

	The Data Analyst's View
	Transient Solvers

	Core Owl Platform Deployment
	Initial Deployment
	Radio Transmitters
	Signal Strength Based Solvers

	Adding Sensing

	Results: User and Developer Experiences
	Conclusions and Future Work
	References

