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Abstract—Developing Internet of Things (IoT) applications
can be a complex task for many developers, requiring knowledge
of sensor hardware, deployment characteristics, network limita-
tions, and multiple protocols. Because of this, IoT development
has been largely centered around research scientists and domain
experts, with only a limited number of simple applications coming
from the broader community. We present a software architecture
that seeks to simplify and accelerate the development of IoT
applications, making them accessible to a larger community of
developers. To keep the system simple yet flexible, it focuses on
a limited number of abstractions, relying on the developers and
administrators to enforce additional constraints where necessary.
We present a model system and a prototype implementation,
along with experiences developing applications.

I. I NTRODUCTION

The Internet of Things may prove to be a powerful and
disruptive conceptthat can improve the way people live by
creating new ways to perform environmental monitoring, home
automation, power conservation, health care, and work flow
optimization. For most developers, however, these systemsare
by and large inaccessible, due in large part to the difficulty
of deploying and managing these systems. This is a serious
bottleneck for the adoption of the Internet of Things. In this
work we address complexity of use and development in IoT
systems. The goal of this research is to make application
development accessible to the vast majority of developers.

We begin by describing the design and deployment of
a new software architecture,Owl Platform that eases the
burden of developing IoT applications. Owl Platform allows
someone with modest programming knowledge (1-2 years of
programming coursework) and no previous experience with
sensor networks the ability to design and deploy meaningful
IoT applications. We qualitatively demonstrate our claimsby
experimenting with a dynamically growing sensor deployment
in an office environment with offices, eating, meeting, and
storage areas.

A primary conclusion of our experiences is that a clear
separation of concerns between the roles of users, applica-
tion developers, sensor designers, and system administrators
reduces the complexity of application development and sen-
sor deployment. Separating these concerns allowed novice
programmers to develop applications with only intermediate
levels of knowledge in a single area of the deployment. This
separation of concerns is supported through two abstractions
layers, pictured in Figure 1.

The first abstraction layer, called theworld model, is a
virtual representation of a physical space, the items in that
space, and those items’ attributes. Items may be physical (a
chair) or abstract (a meeting) and there are no constraints

or assumptions made about items or which attributes they
possess. This stands in contrast to location-based systemssuch
as BAT [7] and SenseWeb [12] which focus on location-based
services and queries. Instead, the Owl Platform world model
focuses on implicit relationships based upon a hierarchical
name space (e.g. the names of all lights in a building begin with
<building>.light) or explicit relationships based upon time-
varying item attributes. This approach is similar in spiritto
LDAP [10] or SNMP servers [16] and provides the flexibility
to store and distribute abstract information, rather than just raw
sensor data.

The second layer of abstraction is the Owl Platformaggre-
gator. The aggregator hides the low-level details of individual
sensors from the application developer while also hiding the
high-level details of a sensor’s use from a person deploying
sensors. This approach allows sensor designers and application
developers to work separately by giving them both a simple
standard to work with. For example, a developer who designs
and deploys simple switch and temperature sensors only needs
to worry about communication with the aggregator. Likewise,
someone with application knowledge can use these sensors
without sensor-specific knowledge; combining the application
code in the sensor would only complicate the design and slow
the process of building sensors.

Owl Platform advances the state of the art in IoT systems
by providing simple, flexible interfaces that enable rapid devel-
opment, deployment, and management of novel applications.
We also demonstrate that it supports a wide range of sensing-
based applications and fosters creative and novel applications
by making these systems available to a larger community of
developers.

In this paper we survey related work in middleware and
service-oriented systems in Section II, and discuss the addi-
tional features required to create multi-user systems thatdo
not require specialized domain knowledge in Section III. In
Section IV, we present our proposed system, detailing how
the world model and aggregator abstractions work to simplify
interaction with the system without sacrificing flexibility. We
evaluate the performance of our system during a year-long
deployment supporting smart office applications in SectionV.

II. RELATED WORK

Modern middleware systems are designed to aggregate
data from many sensors and sensor networks into a common
interface, often in the form of a software Application Pro-
gramming Interface (API). Systems like SenseWeb [12] and
Global Sensor Network (GSN) [3] are effective at providing
a neutral platform for many different sensors. Unfortunately
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Fig. 1: Two layers of abstraction, a world model and an
aggregator, separate concerns across sensor deployments,in-
formation processing, and application development.

their focus on the physical sensors and data mean that they
are more appropriate for domain experts than novice users.

The BAT system [7] provides a good example of how
a system can be well-designed for its initial purpose, but
then fails to adapt to the demands of a changing user base.
When the BAT system was redeployed at a second location,
Mansley et al. [14] found that its initial set of features didnot
satisfy the diverse requirements of its new user base. Similarly,
Microsoft’s SixthSense [15] platform created a limited setof
information through its “inference engine” and allowed for
powerful SQL queries on that data, but was limited by the
expressiveness of SQL. An effective middleware system must
combine useful data abstractions with an API that allows users
to analyze the data flexibly, without the system becoming so
complex that only experts are capable of using it.

By designing the system so that non-experts can use it,
a community can form around the platform. An effective
example of this is the Firefox web browser, which provides
a simple but powerful add-on API [1] that enables users to
expand the functionality of the web browser. Some research

projects, like Common Sense [17], have involved the user
community to improve the system. In this case the researchers
distributed air quality sensors to users who carried them during
their daily activities. The users were able to gather, annotate,
and discuss the data, but were not able to interact more fully
with the data or modify the system to suit their own needs.

Creating a user base or community around a sensor network
platform opens up many new possibilities. For the Internet of
Things, providing a flexible and simple API enables users to
add new functionality to the system, adapt it to their own
needs, or even provide additional interfaces to the system.
Separating the data gathering platform from the analysis plat-
form means that multiple sensor networks can coexist without
interference. Additionally, users can keep their own analysis
systems running separately from the “official” system run by
researchers or sponsors. This avoids data contamination for
researchers, since their systems are unchanged, but allowsthe
system to grow to suit the needs of new communities of users.
This in turn can provide the same researchers with powerful
new tools or ideas that they can use to improve the system.

III. SYSTEM REQUIREMENTS

Al-Jaroodi and Mohamed [4] performed a survey of mul-
tiple service-oriented middleware systems and identified aset
of nine requirements considered important. These requirements
are: creating, publishing, and discovering information, support-
ing heterogeneous systems, integration transparency, adapta-
tion, scalability/efficiency, reliability/security, andquality of
service.

1) Creating, Publishing, and Discovering Information:
The first three requirements address the basic features to
make data available to users. First, the middleware system
needs to provide a common API for developers to create
new data analysis software which works across many different
platforms. This enables seamless integration of multiple sensor
networks, preventing the system from being bound to specific
hardware or software environments. Second, there must be a
way to share this new software with other users via registration
or publication services in the system. Third, there must be a
way for users to discover and use these new services. Existing
systems have addressed these issues well, usually having well-
defined semantics for producing, consuming, combining, and
publishing data from various sensor sources [5].

2) Heterogeneity, Integration Transparency, and Adaption:
The next three requirements govern hiding a system’s complex-
ity from users. APIs and protocols should be available across
platforms, the details of services should be integrated into the
system so that their complexity is hidden from users, and the
system should adapt to component failures as seamlessly as
possible without user intervention. These are arguably themost
important as they determine how much effort is required of
developers and users to work with and expand the capabilities
of a system,

As mentioned in Section II, separating the sensor network
abstraction layer from the data analysis layer allows the system
to be more flexible without adding unnecessary complexity. A
common approach to designing a cross-platform system is to
provide access through a network API. This is an effective way



to allow the system to adapt to user needs and prevents it from
being bound to a specific hardware or software environment.

3) Scalability, Reliability, Quality of Service:The idea
of scalability and efficiency in a middleware system applies
to difficulties in processing, storing, and disseminating the
potentially large amounts of data handled. Most data queries
will not involve the entire system, but will most likely be
limited to a specific spatial, temporal, or relational domain.
Knowing whether it is raining at the user’s office is a more
common query than knowing how much rainfall occurs on
average across the entire globe. Though both queries are
possible in such a system, the former is more likely and should
be a more important consideration when designing the system.

Security in such a system is another important considera-
tion since many users will be accessing it simultaneously. By
identifying each piece of information in the system with an
“origin” identifier, users can be sure of the authorship of data.
The user can then provide a set of origin preferences to the
system, which can manage the flow of information as different
sources are available. While this is an important part of sucha
system, a thorough discussion of security is outside the scope
of this paper.

Finally, quality of service concerns vary with the type of
data being provided and the application being designed. Users
might expect to have regular updates from many types of
sensors (temperature, humidity, light, etc.), while othertypes
of data may only be sent “on-demand” (events, query results).
In any case, it is reasonable to expect the user interface to
provide further quality of service information such as failure
notifications, heartbeats, and ensuring that periodic dataarrives
on-time and with as little irregularity as possible.

IV. OWL PLATFORM ARCHITECTURE

Our proposed IoT middleware system, calledOwl Plat-
form has several key features that allow it to support many
users of differing skill levels. Owl Platform achieves effective
component segregation and simple interactions by promoting
two primary abstraction layers to separate concerns into three
“views” of the entire application stack, pictured in Figure2.
Each of these layers supports an API over TCP/IP.

We will describe the application developer’s view and the
data analyst’s view of the system below. We will address the
sensor expert’s view in future work.

A. The Application Developer’s View

The application developer views the system as just the
world model, a named hierarchy of physical and conceptual
objects and their attributes, similar in spirit to LDAP or SNMP.
Each item in the world model is a name and a set of attributes
with primitive or user-defined types. In Owl Platform, every
attribute has a creation time and an expiration time that denote
when the value is valid. Figure 2 shows a view of the world
model. Users query the world model by searching for items
with names matching a given POSIX RegEx [2], a set of
desired item attributes, and a time range for the query. Queries
can also request subscriptions for data as it arrives ratherthan
data in an historic time range.

Names do not change over time so only immobile items
should have implicit locations in their names. Attributes can
change over time, so if an object moves it would have its
location explicitly stated as an attribute rather than implicitly
stated in its name. Thus a client that wishes to draw the current
locations of all mobile items would request all items (usingthe
“.*” RegEx) that had a “location” attribute.

1) Attribute Names and Data Types:An attribute name
strictly specifies the data type of the attribute, similar toMIME
types. For instance, “temperature.Celsius” might specify“a 64-
bit IEEE floating point value representing the temperature in
degrees Celsius.” In addition to simple types, the system can
also recognize aggregate types, such as vectors of primitive
types. Primitive data types are specified in a standards docu-
ment and libraries in multiple languages can be provided to
interpret these data types. This allows the system to support
any arbitrary type while still having a standard that specifies
how to interpret or display each kind of data.

2) Attribute Origins: The world model remembers the
origin of each attribute. This origin specifies the source that
provided the attribute to the world model and, along with a
digital signature, can be used to provide authenticity for world
model data. The origin string also allows clients to differentiate
different sources of similar data. Two different sources could
provide the same information to the world model, for instance
by using a different algorithm or hardware to generate the same
data. The attribute origin field gives clients and solvers that
interact with the world model a way to specify a preference
for one source of data over another. This provides a method for
fault tolerance - if the preferred source of data fails, because of
sensor failure, a software fault, or any other reason, then the
world model can immediately serve the most preferred data
from the remaining alternatives.

B. The Data Analyst’s View

The data analyst views the system as an aggregator with
raw sensor data and a world model with processed sensor data
and other high-level information. Analysis software, called
solvers in Owl Platform, subscribe to sensor data from the
aggregator by specifying patterns of physical layer IDs and
sensor IDs. Solvers request data from the world model in the
same way that client applications query the system. Solvers
are also free to use information from sources outside of the
aggregator and world model. When solvers create new data
they send it back to the world model. This mechanism allows
each solver to be a standalone process independent of other
components.

The world model and aggregator APIs allow developers
to use any combination of platforms and development tools
that support TCP/IP, from smart phones to desktop computers.
Although the possible complexity of a solver is high, we
advocate using the UNIX philosophy of small, independent
units whose results can be combined to create high-level
results, encouraging data reuse.

The simplest solvers take raw sensor information from the
aggregator, process it, and put it into context in the world
model. For example, a temperature value from a sensor will
be processed by a temperature solver and associated with an
item in the world model. More complicated processing of that
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Fig. 2: The world model and aggregator partition the development space into separate views for deploying new sensors (a),
analyzing sensor data or performing higher level analysis (b), and developing applications using the information in the system
(c).

data is left to other solvers. This means that many solvers do
not process sensor data directly and will never need to connect
to the aggregator.

1) Transient Solvers:The solvers we have described do
not need to interact with clients or solver requests and can
be relatively simple because requests stop at the world model
and do not go to the solver itself. However, this might not
be suitable for all situations as the domain of some kinds
of data is too large to fully compute and add into the world
model. This includes, at the extreme, the space of all possible
logical queries. A slightly more modest example is a solver
that computes the covariance of the signal strength values in
the system.

As the number of transmitters increases, the number of
results that a covariance solver would need to compute and
place into the world model would increase factorially. To avoid
this kind of situation the world model API allows solvers to
declare that they havetransientdata. The world model keeps
a list of attributes that are provided by transient solvers.When
the world model receives a request for that a transient data
type, the world model forwards the request unchanged to the
appropriate solver. The transient solver then generates that
information “on demand.” This allows the system to support
solvers of arbitrary complexity.

V. CORE OWL PLATFORM DEPLOYMENT

The system was initially deployed with a small number
of sensors and applications, and was grown over the course
of a year. Many sensors and solvers were added to the system
“live” during the deployment, and in this section we will focus
on a few illustrative examples. In Section VI we will discuss
how users and new developers used and expanded the system
for summer projects, demos, research, and fun.

A. Initial Deployment

The deployment covers an area of approximately 66.5
by 51.5 meters (3,425 m2) and contains cubicles, conference
rooms, a kitchen, storage room, and lab areas.

1) Radio Transmitters:Our physical layer consists of pip-
squeak radio tags [6]. The pipsqueak broadcasts its unique
sensor ID every second. The beacons’ signal strengths are
used by a set of core Owl Platform solvers: localization [8],
location discrimination, and mobility detection [9]. These tags
were chosen because of their size and lifetime - they are
approximately 3.5cm by 3cm and this version runs for over
2 years on a coin cell battery at this duty cycle.

2) Signal Strength Based Solvers:The signal strength
statistics solveruses information from the aggregation layer
to calculate the mean, median, and variance of wireless link
signal strengths and the average signal variance of each trans-
mitter’s signals across all links. To avoid unnecessary data
creation and transmission we wanted this data to be created
“on demand” so we made this a transient solver, as described
in Section IV-B1.

Themobility detection solverdetects mobility events using
changes in signal variance from a transmitter at multiple
receivers. With multiple deployed receivers this technique
gives low false positives and high detection rates (close to
99%), even for mobility events lasting only a few seconds [9].
This solver requests signal variance measurements from the
world model that were originally created by the signal strength
statistics solver. The solver updates the mobility attributes of
items in the world model.

The localization solver is written based on a Bayesian
localization algorithm [13], which uses signal strength mea-
surements. The solver uses real-time training data from trans-
mitters pinned to the wall at known locations, similar to theap-
proach in the LEASE system [11]. The locations of immobile
transmitters and receivers are stored in the world model. The
localization solver subscribes to mobility information from the
world model to trigger localization and median signal strength
values to perform localization.

As we added transmitters and receivers in new locations
the distributed nature of the system allowed us to easily
overcome networking issues, such as administrative boundaries
and data collection across distant physical locations. Some of
the gateway hubs were split across two different networks, each



separated by a Network Address Translation (NAT) firewall
that blocks many connection types. The solution to this was
relatively simple; we ran two aggregators, one for each wired
network domain, and solvers connected to both aggregators
to obtain information across both networks. Later we also
expanded the Owl Platform deployment to a different building
8 miles away. We used tiered aggregators to keep information
across multiple sites in a centralized location, with a solver
forwarding information from one aggregator into the other.

B. Adding Sensing

We also added a variety of sensors to provide critical
information for the experimental deployment, including tem-
perature, chair use, door states (open or closed), and power
consumption.

We used these different sensors to build multiple solvers:
checking for propped open doors, detecting room use and
social gatherings, fresh coffee brews, and so on. We found
it very easy to deploy new sensors and solvers - generally the
most difficult task was to properly package sensors for long-
term use. The abstraction layers allowed us to focus on these
physical problems though, so we did not need to worry about
new analysis software or networking issues. We will describe
our experiences sensing fresh coffee brews to illustrate the
little effort needed to work with Owl Platform.

The microcontroller in the tags has an on-chip temperature
sensor which we used to detect coffee brews. Initially we
deployed a sensor inside the upper chamber of the coffee pot
to sample heat from steam as soon as coffee was brewed.
Once the sensor was deployed, we added an item into the
world model named <region>.coffee pot.kitchen to indicate
that this item was a coffee pot for the kitchen. We added an
attribute to this item called “sensor.temperature” with the ID
of the temperature sensor. We wrote a temperature solver that
searches the world model for temperature sensors, requests
those sensors’ data from the aggregator, and adds “tempera-
ture.Celcius” attributes to items with temperature sensors. We
then wrote a second solver to search for all items with “coffee
pot” in their names that had temperature attributes. When this
solver observes a local temperature maximum it updates the
“fresh coffee” attribute of the coffee pot to indicate the last
time that coffee was brewed.

The location where we placed the temperature sensor had
a high failure rate however, because the high temperature
and humidity melted, warped, or corroded various packaging
attempts. After several different configurations we eventually
encased our sensor in shrink wrap, placed it inside a rubber
balloon, and taped it to the outside of the machine near
the heated water reservoir. Even though we changed sensors
several times, the Owl Platform system made this very painless
- we simply changed the “sensor.temperature” attribute of the
coffee pot to indicate the current sensor. No software was
changed.

Eventually, the original coffee pot was replaced with a
different model with two independently heated plates and a
permanently heated water reservoir. This makes results from
a temperature sensor more ambiguous and results from a
power sensor complicated to interpret because there are three
independent elements that draw power. Eventually we used

a switch sensor to detect when people opened the lid to the
water reservoir to fill it. This kind of change does require a
change in the coffee solver - however, this change still leaves
all client software unaffected because Owl Platform has hidden
the details of that decision from client applications. When the
coffee solver updates the “fresh coffee” attribute of the coffee
pot client applications do not know how the solver creates its
solution.

VI. RESULTS: USER AND DEVELOPEREXPERIENCES

We must evaluate the effectiveness of Owl Platform for two
groups of people - users and developers. Users simply want to
retrieve information from the system through graphical tools
and event notification systems. They will only interact with
the client interface of the world model. Developers want to
use the system to build something new, so they might deploy
new sensors, write new software, create new applications, or
any combination of the three.

Information created by solvers is stored in the world model
so users rely upon clients to fetch that information for them.
Initially we built a live status map of the system to track the
locations and status of items in the deployment area. Icons
on the map changed to indicate status updates. Door icons
open and close along with their real-life counterparts, chairs
show a person sitting when they are being used, projectors
“light up” when their power is on, and so on. This status map
makes a good demo and is suitable for status lookups, such as
discovering room use information and locating lost items. This
is particularly helpful in cases when the system cannot predict
when the user may need the information. For example, a user
will look at the status map when he/she needs a conference
room.

In addition to the live status map, we also provide a
“push” mechanism which sends event updates to users over
SMS, email, and Twitter. For example, although informationon
coffee brew times was available on the status map by moving
a mouse cursor over the coffee machine icon, if the user is
always ready for a cup of fresh coffee whenever possible, it
is much more desirable for Owl Platform to push the event
to the user. Similarly, when tea time was detected by a solver
(through a gathering of mugs in the kitchen) email notification
was preferred to checking on the status map.

As a final example, we implemented a device-free passive
localization and counting solver that determines the number
and location of people based upon their impact on ambient
radio signals [18], [19]. Passive localization can trace people
without revealing their identity, and is suitable for applications
with strong privacy concerns. In its current state, we can only
localize a small number of people (4) in the same room. We
are exploring the possibility of integrating a camera or off-the-
shelf smartphones to bring more sensor modalities to extend
our capabilities and track people [20].

VII. C ONCLUSIONS ANDFUTURE WORK

We addressed the complexity of multi-user pervasive sys-
tems and introduced a new architecture, namedOwl Platform,
designed to lower the barriers to entry for novice users.
To demonstrate our solution we described an experimental
multi-user deployment that expanded over time. The system’s



abstractions and APIs successfully allowed sensor developers,
software analysts, and application developers, and information
consumers to simultaneously use the system without interfer-
ing with each other. New hardware and software was added to
the deployment “live” without disrupting any running services.

Owl Platform focuses on supporting hardware and software
heterogeneity through network APIs, hiding system complexity
through the world model and aggregator abstraction layers,and
adapting to dynamic deployments. This makes Owl Platform
suitable for users with different knowledge levels and goals. In
contrast, traditional sensor network middleware systems focus
on data creation and publishing for expert users, and are often
limited to a specific application domain.

There are three areas of discussion that we have left
for future work: data authenticity, security and privacy, and
large-scale deployments. In Section III we proposed digital
signatures as a method to assure data authenticity. We also
note that access controls similar to those found in file systems
may be well-matched to the hierarchical naming structure used
in the world model. These access controls could be a good
method for providing security and privacy within the system.

In addition we recognize multiple open questions with
respect to large-scale deployments. When they cross multiple
political and administrative boundaries, should each system
remain separate or are distributed systems more appropriate?
When handling client queries that require remote information,
is redirection the correct approach, or would a peering network
with access control be better? We are currently exploring
these problems by deploying Owl Platform systems in more
locations, and in future work we hope to be able to present
interesting solutions in this area.
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