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ABSTRACT

We investigate using smartphone WiFi signals to track human queues,

which are common in many business areas such as retail stores,

airports, and theme parks. Real-time monitoring of such queues

would enable a wealth of new applications, such as bottleneck anal-

ysis, shift assignments, and dynamic workflow scheduling. We take

a minimum infrastructure approach and thus utilize a single moni-

tor placed close to the service area along with transmitting phones.

Our strategy extracts unique features embedded in the signal traces

to infer the critical time points when a person reaches the head of

the queue and finishes service, and from these inferences we derive

a person’s waiting and service times. We develop a feature driven

approach in our system. Extensive experiments conducted both in

the laboratory demonstrate that our system is robust to queues with

different waiting time. We show that in spite of noisy signal read-

ings, our methods can measure important time periods in queue

(e.g., service and waiting times) to within a 10 second resolution.

Categories and Subject Descriptors

H.4.m [Information Systems Applications]: [miscellaneous]

General Terms

Measurement, Experimentation

Keywords

Human Queue, WiFi, Smartphone

1. INTRODUCTION
The popular usage of smartphones and their data-intensive apps

has created novel opportunities to exploit such network traffic for

monitoring and optimizing real-world processes. Research has shown,

for example, how cellular call data records can be used to infer large
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Figure 1: Illustration of special queue-related patterns embed-

ded in the RSS trace collected from a smartphone in a human

queue.

scale transportation patterns (e.g., [1]) or how cellular signal traces

allow inferring the level of congestion on roadways [2]. In this

work, we ask whether signal power readings from phone traffic are

also sufficient, to monitor a much finer-scale, yet common, process:

human queues.

Such queues are a familiar and often frustrating occurrence, for

example in retail stores, banks, theme parks, hospitals and trans-

portation stations. Note that we interpret the concept of a queue

loosely, people do not need to stand in line but could sit in a wait-

ing room and do not always need to be served in a strict first in, first

out order. Real-time quantification of the waiting times and service

times in such queues, allows optimizing service processes across

ranging from retail, to heath care, to transportation and entertain-

ment. For example, many hospital emergency departments surveys

have average waiting times of several hours [3]. More complete

wait and service time statistics allows customers, travelers, man-

agers and service providers make changes to their behavior and

processes. For example, an airport checkpoint might be experienc-

ing abnormal delays and require intervention by diverting screeners

from queues with shorter waiting times. Customers also can bene-

fit, for example, knowing at what times retail store checkout lines

can be expected to be shorter.
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Figure 2: Flow of feature-driven scheme to find EoL, LP, and

BoS in a time-reversed way.

Existing solutions to the queue monitoring problem often rely on

cameras [4] or special sensors (e.g., infrared [5] or floor mats [6]) at

multiple locations. Bluetooth signals emanating from phones have

also been used to measure travel times between two sensing points,

both at airports [7] and for vehicle traffic [8]. All these solutions

require multiple sensors to fully monitor a single queue, which in-

creases installation and system cost. In addition, prior techniques

using wireless networks were too coarse-grained to differentiate be-

tween the waiting time and service time and vision techniques face

increased privacy issues.

Our approach uses only a single sensor, a WiFi monitor near

the head of the queue that measures the received signal strength of

packets emitted from phones. Intuitively, the received signal power

should follow a known pattern. As the person moves towards the

service point, the phone moves closer to the monitor and the re-

ceived signal power should increase. When the person is receiv-

ing service, the signal power should be very strong and relatively

constant. Finally, when the person exits the service point, there

should be a rapid decline in signal strength. For example, Figure 1

presents the RSS trace of a smartphone in a queue collected from

a single WiFi monitor at the service desk in a coffee shop. We ob-

serve that the captured RSS trace reflects the patten of the distance

between the person carrying the phone to the service desk. In par-

ticular, the RSS exhibits the following unique patterns: (1) the RSS

has a slowly increasing trend during the waiting period; (2) it then

becomes stable at high RSS values when the person carrying the

phone is in the service period; and (3) it finally drops quickly when

the person is leaving the service desk after got service in his leaving

period.

Accurately discerning the points where the person begins and

ends service is challenging, however, in this single-point monitor-

ing system, because the multi-path, shadowing, and fading compo-

nents of a signal are quite dynamic due to the movement of many

people. We therefore investigate a direct feature-driven approaches

for extracting the waiting and service times from a signal trace.

We experimentally evaluate our approach in a laboratory with 90
traces. We find our approach is robust and able to measure the

waiting time to with average errors less than 10s.

2. FEATURE-DRIVEN QUEUE PARAMETER

DETERMINATION
We find that the important periods of a human queue are sep-

arated by three critical time points, namely Beginning of Service

(BoS), Leaving Point (LP), and End of Leaving (EoL). By deduc-

ing these three time points, our system is able to track the important

queue time periods including waiting, service, and leaving periods.

Toward this end, we develop a feature-driven scheme in our sys-

tem to identify the critical time points in a human queue. The

feature-driven approach utilizes the unique features extracted from

RSS traces to identify these time points. We next describe the de-

tails of this approach.

When designing the feature-driven scheme, we consider directly

applying the features associated with the leaving period in the RSS

trace to determine the EoL, LP, and BoS in a time-reversed manner.

Because the RSS value changes dramatically when people leave the

queue after service, the features associated with the leaving period

are the most obvious and easy to be extracted. In particular, we

identify three features extracted from the RSS trace associated with

the leaving period:

1. The leaving period has the longest consecutive negative-slope

segments of the selected RSS trace.

2. The RSS values before the leaving period are stable with the

highest amplitude of the selected RSS trace.

3. The leaving period experiences the largest decreasing of RSS

in the selected RSS trace.

The feature-driven scheme consists of three components: EoL Es-

timator, Quantizer, and LP/BoS Estimator. We illustrate the flow

of the feature-driven scheme in Figure 2.

EoL Estimator. Assume there is a group of M segments with

consecutive negative slopes in the RSS trace G = {G1, . . . , GM},

and each segment Gi lasts for a period of Ti = ti1 − ti0, where ti1
and ti0 denote the starting time and the ending time of that segment,

respectively. The EoL estimator determines the time ti0 to be EoL

when a segment Gi is most likely to be a leaving period. To de-

termine the likelihood of being a leaving period, we first define the

significance of the three features described above as: 1)
Ti

max(T)
,

where T denotes time length of all the segments in G; 2) Si

max(S)
,

where Si is the average RSS over a time window L before ti1, and

S denotes all such average RSS; 3)
Ri

max(R)
, where Ri is the ratio of

the RSS at ti0 and ti1, and R denotes all such RSS ratio, respectively.

We further define an utility function which is a weighted sum of the

significance of the three features:

ui = α ·
Ti

max(T)
+ β ·

Si

max(S)
+ γ ·

Ri

max(R)
, (1)

where α, β, and γ are the weights. The leaving period thus can be

determined as the segment Gi that maximizes the utility function

ui. And the time ti0 of such a segment Gi is then declared as the

EoL. To determine the weights in Equation (1), we use a heuris-

tic approach by counting the occurrence of each feature in a small

portion of the collected traces (e.g., 20 traces) and respectively us-

ing the ratio of each feature’s occurrence to the number of traces as

their weights. For example, if feature 1 has been found true for 10
times in 20 traces, the weight for feature 1 is then 0.5. Based on

our experiments, we empirically find that when α = 0.4, β = 0.8
and γ = 0.8, the unique features can be extracted from the RSS

trace accurately.

Meanwhile, we compute the slopes of each RSS sample in the

selected RSS trace. A Quantizer performs normalization and quan-

tization on the computed RSS slopes.

LP/BoS Estimator. Our feature-driven scheme then takes the in-

put from the EoL Estimator together with the quantized RSS slopes

to identify the leaving point (LP) and beginning of service point
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Figure 3: Illustration of experimental setup for queue measure-

ment in the laboratory.

(BoS) in the queue following the temporal-reversed order. The

LP/BoS Estimator takes the view point that the leaving point sep-

arates the service period and the leaving period, and thus the WiFi

signals before LP is relatively stable whereas they drop dramati-

cally after the leaving point. This useful observation indicates that

the distributions of WiFi signal changes (i.e., slopes of RSS) before

and after the leaving point are significantly different. This inspires

us to identify LP by using the KL-divergence technique to examine

the distribution difference of WiFi signal changes. And LP is de-

termined as the time point (prior to EoL) separating the RSS slopes

into two parts that present the most different distributions from each

other.

In particular, we calculate the distributions of quantized RSS

slopes before and after each time point tj occurring before EoL, re-

spectively denoted as P (Kj−1) and Q(Kj), j = [1, . . . , J ], where

J is number of time points occurring before EoL. The K-L diver-

gence between these two distributions are derived as:

DKL(P (Kj−1)‖Q(Kj)) =
∑

q∈Q

P (Kj−1 = q) ln
P (Kj−1 = q)

Q(Kj = q)
,

(2)

where Q is the set of all possible values for quantized RSS slopes.

LP is then determined as the time point tj , which maximizes the

K-L divergence value:

tj = argmax
tj

(DKL(P (Kj−1)‖Q(Kj))). (3)

Similarly, our scheme can also employ the KL-divergence tech-

nique to identify BoS, since WiFi signals is relatively stable during

the service period while they exhibit an obvious increasing trend in

the waiting period.

3. PERFORMANCE EVALUATION
We next show our system implementation with the input RSS

from single antenna as well as the maximum RSS from two anten-

nas at the WiFi monitor, and evaluate their impacts.

Experimental Setup. We conduct experiments with human queues

in a laboratory setup as shown in Figure 3. We place a WiFi monitor

equipped with two antennas at the service desk to capture WiFi sig-

nals. We develop an Android app to send beacon packets at the rate
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Figure 4: Performance comparison of the single-antenna and

two-antenna approach under different service times in labora-

tory.

of 10pkt/sec. We experiment with three different service times,

30s, 60s, and 180s, representing short, normal and long service

times, respectively. In total we collect 90 traces in the laboratory

environment and we use two-fold cross-validation for evaluation.

We calculate the estimation error of the relevant time points and

important time periods with regard to the manually logged ground-

truth.

Experimental Results. We first study the performance of the

feature-driven scheme based on the signals received from a single

and two antennas at the WiFi monitor. Figure 4 (a) compares the

average error of estimating the LP and BoS under different length

of the service time. We observe that the feature-driven scheme per-

forms well with both single and two antennas under short (30s) and

normal (60s) service times with the average error less than 10s. We

find that with two antennas the system has better performance, es-

pecially under the long service time (180s). Moreover, Figure 10(b)

depicts the average error of tracking the waiting and service times

derived from the estimated BoS and LP. We observe the average

error of both waiting and service times is less than 10s under short

and normal service times. Under the long service time, using two

antennas outperforms using single antenna for over 30%, although

both schemes experience performance degradation.
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