
A Privacy Preserving System for Friend Locator
Applications

Bin Zan
WINLAB, Rutgers University

671 Route 1 South
North Brunswick, NJ

08902-3390
zanb@winlab.rutgers.edu

Tingting Sun
WINLAB, Rutgers University

671 Route 1 South
North Brunswick, NJ

08902-3390
sunting@winlab.rutgers.edu

Marco Gruteser
WINLAB, Rutgers University

671 Route 1 South
North Brunswick, NJ

08902-3390
gruteser@winlab.rutgers.edu

Fei Hu
ECE, The University of

Alabama
101 Houser Hall

Tuscaloosa, AL, 35487-0286
fei@eng.ua.edu

Yanyong Zhang
WINLAB, Rutgers University

671 Route 1 South
North Brunswick, NJ

08902-3390
yyzhang@winlab.rutgers.edu

ABSTRACT

One interesting application of online social networks is the
friend locator, in which the application server informs users
through mobile devices if their listed friends are nearby in
terms of geographical locations. However, in such services,
it is challenging to protect the privacy of an individual user.
Previous privacy protection solutions for friend locators do
not guarantee a high level of privacy and maintain efficiency.
In this paper, we propose a privacy preserving system to
guarantee both strong privacy and efficiency. Additionally,
we use the polygon decomposition method to achieve both
accuracy and flexibility especially for irregular areas of inter-
est. Finally, through numerical analysis and simulation, we
show that the proposed system and algorithm can achieve
high privacy, efficiency, accuracy and flexibility.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication;
K.4.1 [COMPUTERS AND SOCIETY]: Public Policy
Issues—Privacy

General Terms

Algorithms, Performance, Security

Keywords

Friend Locator, Privacy Preserving, Convex Polygon

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiWac’11, October 31–November 4, 2011, Miami, Florida, USA.
Copyright 2011 ACM 978-1-4503-0901-1/11/10 ...$10.00.

1. INTRODUCTION
A friend locator is a location-aware social network appli-

cation, in which users are notified if any of their friends is
geographically close by. In such an application, users with
a GPS enabled mobile device will periodically update their
current locations to a central server. By comparing a user’s
area of interest with the friends’ locations, the server can de-
termine if any friend is close by, and then inform this user.
Users have to trust the central server and disclose their own
locations to the server first. However, this is sometimes in
contradiction with privacy requirements. A user’s location
information is often associated with sensitive personal infor-
mation. For example, frequent visits to a dental office by
a user may indicate his/her dental health issues. Or, if a
medical insurance company knows how often a user visits
fast food restaurants, it may raise the rate accordingly.

Prior work on preserving privacy of general location based
services (LBS) do not fit friend locator applications very
well. For example, the k-anonymity method [7, 4, 14], which
protects a user’s location information by mixing it with k−1
other users’ location information, is well-suited to location
based queries, such as point of interest (POI) queries. How-
ever, it does not work in a friend locator, which requires user
identities. Location obfuscation would result in incorrect
judgement on whether or not two users are adjacent. Some
specific algorithms also have been developed for friend loca-
tor privacy preservation [17, 10, 19, 11]. However, Šikšnys
et al. [17] and Mascetti et al. [11] achieve privacy by sacri-
ficing the accuracy of the results. Manweiler et al.’s method
[10] is not so efficient. In addition to that, to the best of
our knowledge, none of the previous solutions can handle
area of interest with irregular shapes as in our proposed al-
gorithm, and none of the existing approaches can guarantee
privacy protection when the server and the other users are
collaborating.

In this paper, we develop a new privacy preserving system
and algorithm to achieve high privacy, accuracy, efficiency
and flexibility for friend locator applications. To summarize,
the main contributions of this paper are:

1. On Efficiency: Reducing the overall overhead by split-

regular user

active user

central server

location message

active flag

?

?

? ?

?

Figure 1: System Model

ting the friend locator task into two parts – a coarse
and a fine resolution phase. After removing a large
amount of friends during the coarse phase, only a small
number of users are left to the fine phase, which has
higher complexity. In the coarse resolution phase, we
also exploit a multi-level grid, variable-length bit se-
quences, and differential permutation encryption meth-
ods to further reduce the overhead.

2. On Privacy: Exploiting entropy-based splitting to in-
crease the uncertainty of each location index which
prevents statistical attacks based on the knowledge
of the population distribution. In the fine resolution
phase, we exploit a property of linear operations. This
allows the system to successfully hide individual user’s
privacy from the server or other users, while still being
able to determine if a friend is inside an active user’s
area of interest (over a multiple-convex-polygon repre-
sentation of the area).

3. On Accuracy and Flexibility: Providing a fine-resolution
level for the active user to specify an area of interest
in detail. Furthermore, representing each active user’s
area of interest through multiple convex polygons. Al-
though this step is the basic part for the privacy mech-
anism, it also increases the accuracy and the flexibil-
ity of friend locator applications compared to those
using Euclidean distance only methods (especially for
irregular-shape cases).

This paper is organized as follows. Section 2 describes the
system model and problem statement. Section 3 provides
the details of the proposed privacy preserving algorithm.
Section 4 evaluates the scheme through numerical analysis
and simulation. Section 5 discusses related work. Section 6
concludes the paper.

2. SYSTEM MODEL AND PROBLEM

STATEMENT

2.1 System Model
As shown in Fig. 1, we assume the friend locator system

is formed by three parties: A central server, regular users
and active users (user with question mark on head). All the
users carrying a mobile device (for example cellphone) are
called regular users. We assume users are communicating
in infrastructure mode. Users periodically update their lo-
cation information to the server and the server stores the

location information in its database. Active users are the
ones who are currently interested in finding their nearby
friends. When a user wants to become an active user, the
user sends the server an active flag and the updated location
information. The server will either help identify the nearby
friends for the user or start a procedure to assist the user to
find friends inside the area of interest. The area of interest
is defined as the geographical area in which a user would
like to monitor friend positions. We assume that this area
surrounds the user but the shape of the area and the user’s
relative position inside the area can be arbitrary. For ex-
ample, the area of interest can be an irregular shaped floor
plan of a shopping mall, and the user, while shopping inside
a random store, is interested in knowing which friends are
inside the same mall.

2.2 Problem Statement
The biggest challenge we face is to keep individual users’

exact locations unknown from the central server and other
users, without affecting the execution of friend locator appli-
cations. Privacy is a general requirement for human being’s
daily life. Sensitive location information can disclose many
secrets of a particular user. For example, a female user’s
visits to a maternity clinic over several months may indi-
cate pregnancy. Thus, our goal is to keep the exact location
unknown from the central server. Otherwise, once an ad-
versary compromises the central server, it can derive much
private information from the location data of a particular
user. However, for friend locator applications, the server
has to collect users’ location information in order to identify
if two users are close to each other.

Zhong et al. [19] have proposed to use homomorphic en-
cryption method to resolve this conflict. However, it is not
flexible enough since this method can not handle an irregu-
lar area of interest. For example, a user would not be able to
accurately define a shopping mall as an area of interest. Due
to the large overhead introduced in a short time period, the
idea of bypassing the central server and letting users always
communicate peer-to-peer to determine if they are nearby is
not practicable. Furthermore, in such case, none of previous
solutions can prevent the attack from one of the users. Fi-
nally, using location information obfuscation alone does not
work for users who want to have higher level of accuracy.

In summary, we target on the following problems and ob-
jectives: 1) Privacy: accurate location information of a
user should not be directly known by the central server.
The central server is assumed to be untrustworthy. The
privacy should be preserved under passive attacks from the
server. 2) Efficiency: the system should try its best to shift
computation overhead to the central server. In other words,
minimize the computation overhead on each individual user.
3) Accuracy: the system should meet a user’s requirement
of accuracy. For example, if a user wants to find all friends
in the area of 5 square miles, we should not include the ones
who are 20 miles away. 4) Flexibility: the system should
provide active users flexibility in choosing their own areas of
interest, which means a user might want to know if a nearby
friend is in a particular area. Last but not the least, for a
user who wants to have high accuracy and strong privacy
protection, this system should provide an ultimate solution
that even eavesdropping on the information from both the
server and the friends of this user, an adversary is still un-
able to figure out the exact location.

00

0000

0010

001000

A

C

B

D

A

00

10

00

Figure 2: Multi-level splitting based on Quadtree.
Users can choose their own privacy preferences,
which are also corresponding to the depth of the
tree.

In this proposed work, we assume users are authenticated
through a third party method. The adversary is not in-
terested in spoofing attacks by masquerading as a friend of
the target user. The authentication of a user’s location is
not the focus of this paper since we target on information
confidentiality issues.

3. THE PRIVACY PRESERVING

ALGORITHM
In this section, we describe the proposed Privacy Pre-

serving Algorithm (PPA) in details. The PPA algorithm
includes two phases. In phase one, the server roughly esti-
mates if two users are close to each other by comparing their
location information in terms of location bit sequences. In
phase two, after filtering all the friends who are not in the
same geographical block, the active user further determines
if a particular friend is inside the area of interest by provid-
ing a special convex polygon representation of the area.

3.1 Phase One: Quadtree Based Multi-Level
Splitting

We split the full map into multiple levels according to
a Quadtree structure. The location information of a user is
represented by a bit sequence which can be obtained through
the tree. As an example, in Fig. 2, user A discloses three
levels of the location information: level 1 (block 00), level
2 (block 10), level 3 (block 00). The length of a location
bit sequence (equivalent to the depth in the tree) is defined
according to the user’s own privacy requirement. The longer
the bit sequence is, the more accurate the location informa-
tion is. This also indicates how often a user wants to be
checked by friends. A short bit sequence results in more
chances to be checked by others. In above example, user D
only gives top level location information. Thus, if any of the
users A, B and C wants to figure out if D is nearby, D has
to disclose more information. On the other hand, the infor-
mation given by user B is already enough for user A and C
to determine that they are not nearby and vice versa.

A user periodically updates the location information to
the server. In addition to that, the bit sequence is encoded
by a secret key which permutes the block numbers (simi-
lar to a Block Cipher [9]) at each level. This key is only
shared between a user and the friends. To find if any friend
is nearby, a user sends multiple copies of the location infor-
mation to the server. Each copy is encoded with a special

1 3

0 2

2 1

3 0

3 2

0 1

codebook 1
user A

codebook 1
user B

difference
from A to B

2 0

1 3

3 2

0 1

2 0

3 1

codebook 2
user A

codebook 2
user B

difference
from A to B

2

0 1

3

plain text

Figure 3: The codebooks of user A and B in level 1
(first row) and 2 (second row) and their difference.
The codebook of a user indicates the encrypted val-
ues the user will generate for real location indexes.
For example, a real location index 1 will be en-
crypted as 3 by user A and 1 by user B in level
1. Thus, if the server sees an encrypted value of 3
from user A, unless it also sees an encrypted value
of 1 from B, otherwise the original indexes from A
and B are different in level 1.

key agreed with a friend. The server compares the pair of
location bit sequences to identify if two users are in the same
block. This achieves similar functionality as a Homomorphic
Encryption [16] does.

Increase Efficiency through Differential Permuta-
tion: To improve the efficiency, we propose an enhanced
scheme for comparison of two bit sequences. Recall in orig-
inal scheme, for every friend, a user has to provide a copy
of the location bit sequence with special encryption through
the common key agreed by that friend. If a user has a large
number of friends, this clearly creates a lot of overhead. To
reduce the overhead, we propose a differential method. The
idea is to let each user encrypt (permute) the bit sequence
using the user’s own secret key. While every pair of friends
publish the distance of their secret keys. After knowing the
“difference”, the server could transform the permuted loca-
tion bit sequence of a user and make it comparable with
another user’s location bit sequence.

For example, the first two-level bit sequence of user A,
0010 (0,2), as shown in Fig. 2 can be encrypted by user A
through codebooks of A in Fig. 3, and becomes 0101 (0 → 1
and 2 → 1). The bit sequence, 0000 (0,0), of user B becomes
1011 (0 → 2 and 0 → 3). The encrypted value 0101 and
1011 received by the server can not be compared directly.
However, after converting 0101 into 1000 (1 → 2 and 1 → 0)
according to the codebook difference tables, the server can
identify that user A and user B have the same top level
location, however from level 2, they are at different blocks.
Without knowing codebook of A or codebook of B, the server
can not figure out the real location index of user A or B.

Entropy-Based Splitting: In most previous work, when
a map is divided into several blocks, the cutting is only
mandatory based on geographical information. Even though
each user’s location bit sequence is encrypted with secret key
unknown by the server, if the server links all the users from
the same block and does some statistical analysis, it is possi-
ble to find out the real block indexes or weaken the strength
of the privacy protection scheme. Consider the following
example.

Assume the adversary is the server itself. At a certain

y1

y4

y3

y2

y5

Figure 4: Illustration of the population attack. The
icons shown in each group represent the rough pop-
ulation size.

level, the general population in each block is (1, 10, 2, 2)
millions known by the server. As shown in Fig. 4, after the
server links all users in the same blocks, it can form five
groups (y1, y2, y3, y4 and y5). Some groups may be able
to be combined again, and some may not. For example,
because some users in group y1 and y4 are definitely not
in the same block, these two groups can not be combined
again. By finding the optimal way to allocate each group
into a block, some of the users’ real block indexes can be
disclosed with high probability. For example, it is reasonable
to consider group y1 and y2 actually represent block 2, y5

represents block 1, and y3, y4 represents either block 3 or 4,
respectively. Therefore, if a user is in y1, the server has high
confidence to believe the real index number is 2.

We also observe that if the block size in terms of popula-
tion is divided evenly, even though the optimal matching is
perfect, the adversary would not know the right index value.
As in Fig. 4, even it is known that one of the groups y3 and
y4 is actually in block 3, and the other is in block 4, it is in-
distinguishable which one should be in block 3 or 4 exactly.
When the population sizes of blocks are close, it is hard to
distinguish them. This can be understood easily by using
entropy to represent the whole system’s uncertainty as:

H = −

m
∑

i=1

p(xi) log p(xi) (1)

Where m is the total number of blocks in a level, p(xi) is
the ratio of average population within block xi compared
to the average total population in this level. Clearly, H
is maximized when p(x1) = p(x2) = ... = p(xm). It also
indicates that we should divide the map into blocks based
on population size.

Since phase one only uses location bit sequence of multi-
level grid, it does not provide high accuracy for friend locator
applications. To achieve higher accuracy, the nearby users
need to enter the second step, the fine resolution phase.

3.2 Phase Two: Privacy and Polygon
Decomposition

After phase one, it is expected that only a small number
of friends from a user’s friend list will be kept for further
exploration. The friends in different blocks from the user
are no longer needed to be involved.

Representing Area of Interest by Convex Poly-
gons: The active user provides the remaining friends a spe-
cial set of convex polygons which represent the area of inter-
est1. Then, the friend locator problem can be represented

1To prevent attacking from multiple friends and server’s col-
laboration, we require the active user provides different set

covex
ploygon

halfspace

(a) (b)

Figure 5: Illustration of the concept of halfspace and
convex polygon.

concave
polygon

User

convex
polygon II

convex
polygon I

Figure 6: Area of interest represented by a polygon.

by a matrix and solved through linear operations. While
this conversion is originally for privacy purpose, it also in-
creases accuracy and flexibility when the area of interest of
an active user is in irregular shape.

We first introduce some basic definitions and concepts.
(Halfspace) A halfspace in R

n is a set of the form

H =

{

x ∈ R
n : pT x ≤ α

}

(2)

where p ∈ R
n is a fixed non-zero vector, and α is a fixed

real number. Fig.5 (a) gives a halfspace example in two-
dimensional space.

(Convex Polygon) A convex polygon is the intersection
of a finite number of halfspaces. It can be defined as:

P =

{

x ∈ R
2 : Ax ≥ b

}

(3)

Fig.5 (b) shows an example of convex polygon.
If ai ∈ R

2 represents the i-th row of A, i = 1, . . . , m, then
we can represent P as

P =

{

x ∈ R
2 : aT

i x ≥ bi, i = 1, . . . , m

}

(4)

We represent the area of interest of a user as a polygon. As
can be seen in Fig. 6, a polygon is either a convex polygon
itself, or it can be divided into a set of convex polygons.
Thus, we can write P = P 1

∪ P 2
∪ ... ∪ P z, and

P =

{

x ∈ R
2 : (A1x ≥ b1) ∨ (A2x ≥ b2) ∨ ...

... ∨ (Azx ≥ bz)

}

(5)

Note, for arc-shaped area, we could also use polygon to im-
itate it.

Preserving Privacy through Matrix Operation: Af-
ter representing area of interest as a set of z convex polygons,
we consider a user B’s location x = (x1, x2) is inside user A’s
area of interest if x is a feasible point of P . Without privacy

of convex polygons and slightly different area of interest for
each user.

consideration, thus, user A needs submit a set of matrices
Ai and vectors bi to the location service provider. Then the
server computes Aix and compares the results with bi.

Obviously, for privacy concern, the exact information of
matrices Ai or vectors bi as well as the location (x1, x2)
should not be disclosed at the server side. On the other
hand, simply bypassing the server is not the solution we
are satisfied with since a user’s location information will be
disclosed to the friends. One common method to hide in-
formation is transformation. Specifically, let both A and B
transform their areas of interest information or location in-
formation into a different coordinate system which is only
known by A and B themselves. For example, transforming
Ai into Ãi = AiH and x into x̃ = HT x. However, with the
new Ãi and x̃, user A must provide the server a new b̃i ac-
cordingly to compare with Ãix̃ = AiHHT x. An alternative
is using x̃ = H−1x, and Ãix̃ = AiHH−1x = Aix. Through
this method, the information of matrix Ai and x are not
revealed to the server, but the server can still compute Aix
and compare it with bi. This solution is much simpler than
the Homomorphic Encryption method used in [19], and user
A has a higher flexibility in choosing the area of interest
instead of just using circumcircle.

Achieving Strong Privacy: When the central server
cooperates with one of the users, neither the above method
nor the Homomorphic Encryption method can protect pri-
vacy of the second user. For example, with available in-
formation, H, at user A, and, x̃, at the central server, an
adversary can figure out the location information of user B
through x = Hx̃.

This problem can be reduced to a secure multi-party com-
putation problem [18, 5, 3]. There are methods to solve such
problem as early as Yao’s millionaire problem [18]. How-
ever, considering their complexity, many of them are im-
practical for friend locator applications. In the proposed
algorithm, we develop a method which is inspired by [3]. In
this method, we only disclose partial data in Ai by user A
and x by user B. Specifically, at user A, we have

Ãi = AiH =

a11 a12

a21 a22

. .

. .

. .
am1 am2

[

h11 h12

h21 h22

]

=

h11a11 + h21a12 h12a11 + h22a12

h11a21 + h21a22 h12a21 + h22a22

. .

. .

. .
h11am1 + h21am2 h12am1 + h22am2

(6)

and at user B, we have

x̃ = H−1x = c

[

h22 −h12

−h21 h11

] [

x1

x2

]

=

[

c(h22x1 − h12x2)
c(−h21x1 + h11x2)

]

(7)

where c = 1

h11h22−h12h21

. It can be seen that given only one

column of matrix Ãi or one row of vector x̃, the additional
knowledge of matrix H can’t help an adversary to obtain
the value of Ai or x. Therefore, let user A and B exchange
partial of their own information through the server. A sends

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

user preferred grid level

o
v
e
rh

e
a
d

in
 l
o

g
 s

c
a
le

q=16, ρy/x=0.01

q=8, ρy/x=0.01

q=4, ρy/x=0.01

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

user preferred grid level

o
v
e
rh

e
a
d

in
 l
o

g
 s

c
a
le

ρy/x=0.001, q=8

ρy/x=0.01, q=8

ρy/x=0.1, q=8

Minimum Point

Minimum Point

Figure 7: For a regular user, a low grid level results
in small communication overhead in each updating
period. However, it increases the chance to be se-
lected to enter phase two.

Ãi
∗1, the first column of matrix Ãi, to B, and B sends x̃2,

the second row of vector x̃, to A. Next, user A computes
U i = Ãi

∗2x̃2 and user B computes V i = Ãi
∗1x̃1. Since

Aix = Ãix̃ = Ãi
∗1x̃1 + Ãi

∗2x̃2 = U i + V i
≥ bi (8)

⇒ (U i
− bi) + V i

≥ 0 (9)

if user A sends the results of U i
− bi to B, B can add V i

and compare with 0 to determine if B is inside the convex
polygon of P i or not. Finally user B informs A the result.
During the whole process, the vector bi should be kept secure
at user A’s side only, while the invertible matrix H can be
known to everyone.

Assume user A and the central server are cooperating.
During the whole process, user B only discloses the value of
x̃2, which by it alone is not enough to solve a two-variable
system. Therefore, user B’s privacy is preserved. On the
other hand, user A discloses Ãi

∗1 and U i
− bi during the

whole process. These information constructs a 2mi-equation
system with 3mi unknown variables, which, in general, has
no unique solution. To conclude, through the above method
we can achieve a strong privacy in phase two.

4. EVALUATION
The evaluation of the proposed system includes numerical

analysis and simulation. In the numerical analysis part, we
study the tradeoff on overhead between low and high grid
levels and then compare the efficiency achieved by differen-
tial permutation against a non-differential method. In the
simulation part, we study the impact of entropy based split-
ting on privacy, the advantage on communication overhead
by using two-phase algorithm, and finally the improvement
on accuracy through the polygon decomposition method com-
pared to a baseline scheme.

4.1 Numerical Analysis
First, we study the advantage of using variable-length bit

sequences. We can generalize the communication overhead
for a regular user during a location update period as:

O = l ∗ x + qL−l
∗ ρ ∗ y (10)

where l is the specific grid level the user preferred. x is the
number of bits each level needs (for quadtree it is 2). L is
the total number of levels. ρ is the probability a user will
be checked by friends who are in the same block of the low-
est level during the update period. q is the increasing on

01025 50 100 200 500
10
25
50

100

200

500

number of a typical user’s friends

n
u

m
b

e
r

o
f

lo
c
a
ti

o
n

b

it
 s

e
q

u
e
n

c
e
 c

o
p

ie
s

without differential method

10 groups

25 groups

50 groups

100 groups

200 groups

Figure 8: The number of copies required when the
number of groups is fixed.

0 50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

number of a typical user’s friends

n
u

m
b

e
r

o
f

lo
c
a
ti

o
n

b

it
 s

e
q

u
e
n

c
e
 c

o
p

ie
s

user defined group size 10

user defined group size 25

user defined group size 50

user defined group size 100

none differential method

Figure 9: The number of copies required when the
size of a group is fixed.

probability a user will be selected to enter phase two when
the preferred grid level decreases by one level. y is the com-
munication overhead for phase two operation. In Fig. 7, we
assume L = 5. It can be seen from the first subplot, while
fixing the value of ρy/x, the smaller the value of q, the more
communication overhead we save while lowering the level to
a more coarse one. On the other hand, as shown in the sec-
ond subplot, while fixing the value of q, the smaller the ratio
of ρy/x, the more coarse level is preferred in terms of reduc-
ing communication overhead. Finally, this could be formu-
lated as an integer programming problem. By first solving
the continuous relaxation version, we can get its optimum
value at:

l = L −
ln(x

ρy
) − ln(ln(q))

ln(q)
(11)

and further determine the integer solution.
Next, we study the advantage of using differential per-

mutation. As we know, through differential permutation,
regular users can avoid uploading multiple copies of their lo-
cation bit sequences. The only disadvantage of this method
is that if one user leaks a secret key, the server or adversary
can also break the friends’ secret keys through it. Therefore,
we offer two methods based on differential permutation to
avoid ripple effect. First, we allow a user to have fixed num-
ber of groups of friends. For each group, the user will use
the same secret key, in other words, the same permutation.
Based on user’s own preference, friends are assigned to dif-
ferent groups. Second, we allow a user to have groups of
fixed size. When a group is full, the user starts a new group
and gives a new key to that group. As shown in Fig. 8, while
we fix the number of groups, the overhead is first increas-
ing as the non-differential method, and until the user has
all groups activated, then the number of copies stays in the
same level. In Fig. 9, when the size of each group is fixed,

19:00 20:00 21:00 22:00 23:00

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

clock (hour)

e
n

tr
o

p
y

 v
a

lu
e

split by geographical size

split by population size

Figure 10: The uncertainty is increased by splitting
the map based on population.

10
20

50
100

200
500

19:00
20:00

21:00
22:00

23:00
24:00

0

5

10

15

20

number of friendsclock (hour)

fr
ie

n
d

s
 n

e
a

r
b

y

Figure 11: The maximum depth of the quadtree is 4.
The number of friends each user has varies from 10
to 500. As can be seen, in average, a user has much
less close by friends than total number of friends.
Therefore, a two-phase design is necessary and it
can dramatically reduce the overhead of each user.

the overhead will keep increasing, however, the speed is far
lower than the non-differential method.

4.2 Simulation
In this subsection, we further study the proposed algo-

rithm through simulation. The data set of users’ movements
is obtained through the MilanoByNight simulation [13] by
EveryWare Laboratory from university of degli Studi di, Mi-
lan, Italy. It represents 100,000 users’ movement in the city
of Milan during a weekend night. The whole data set is
collected over 5 hours, and locations are sampled every 20
seconds. The total size of the map is 174 mile2 and the
average density is 572 users/mile2.

In the first experiment, we assume the maximum depth of
the quadtree is 2. The 16 leaf blocks are obtained in two dif-
ferent ways. First, we use traditional method which divides
the map based on geographical size. Second, we divide the
map based on the proposed entropy-based splitting scheme.
As shown in Fig. 10, by splitting the maps based on the
population, the entropy value increases from 3 to 4 over the
simulation period.

Next, we estimate the communication overhead. We as-
sume each active user has a number of friends varying from
10 to 500, and we assume the maximum depth of the quadtree
is 4. As shown in Fig. 11, after phase one, the proposed al-
gorithm eliminates most friends of a user, and dramatically
reduces the overhead otherwise will appear in the phase two.
Most of the time, the average number of friends nearby is
less than 5. Even when the average number of friends of
a user is 500, the simulation data still shows maximum 15
friends nearby. Following this result, we further show an ac-

01025 50 100 200 500
2.5

3

3.5

4

4.5

number of friends

o
v
e
rh

e
a
d

 b
it

s
 i
n

 l
o

g
 s

c
a
le

1% friends in the same block

2% friends in the same block

3% friends in the same block

no phase 1 (filtering) process

Figure 12: An active user’s total communication
overhead during a 5-hour period.

2% 5% 10% 20% 30% 40% 50% 60%
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ratio of friends

a
c
c
u

ra
c
y
 e

n
h

a
n

c
e
d

side length 100

side length 200

side length 400

side length 800

side length 1600

Figure 13: By using polygon based method, the ac-
curacy of friend locator applications is improved.
When the size of the area of interest and/or the den-
sity of friends increases, the enhancement increases
first and then becomes stable.

tive user’s total communication overhead during the 5-hour
period in Fig. 12. We assume each user updates the location
every 20 seconds and uses the most accurate level, which is
4 in this case. The length of location bit sequence is 1 byte
for everyone. We also assume for every 100 friends, a user
uses a special secret key and the active user’s area of in-
terest is a rectangle. According to the proposed algorithm,
the communication overhead for the active user with every
friend in the same block is 72 bytes2. As can be seen from
the figure, by using two phases, we can dramatically reduce
the communication overhead for an active user except when
a user has a very small amount of friends, because at that
time, periodically uploading location information occupies
the most communication overhead.

Next, we show the improvement on accuracy by using
the proposed polygon decomposition method compared to
previous work Pierre [19] which is based on Homomorphic
Encryption. The homomorphic encryption method can be
used to determine if two users have Euclidean distance less
than a pre-defined value. In the simulation, we randomly
pick 200 users and assume they are looking for friends in-
side a square. For Euclidean distance based method, users
always use the smallest circle to cover the square, and then
the accuracy is defined as when a friend is found inside the
circle area, what is the probability that this friend actually
is inside the real area of interest. The side length of the
square varies as shown in the figure. We also vary the ratio
of friends an active user has among all the users. It can be
seen in Fig. 13, when the side length increases and/or the ra-

2The active user sends 32 bytes Ãi
∗1 , receives 8 bytes x̃2,

sends 32 bytes U i
− bi, and ignore last 1 bit results message.

tio of friends increases, the proposed method improves more
on the accuracy, until the improvement reaches some stable
values. These values are very close to the ideal theoretical
analysis results which will not be shown in this paper due
to the page limit. Clearly, Euclidean distance method is not
flexible enough to describe a user defined area of interest.
For irregular area, even for a square, the Euclidean distance
method can not achieve accuracy rate of 1. However, poly-
gon based method is more flexible in covering different types
of irregular areas.

5. RELATED WORK
In this section, we review some prior work in the pri-

vacy field, starting with privacy-preserving technique in user
query location based service (LBS) and followed by partic-
ular location privacy techniques in friend locator and then
some theoretical work in multi-party secure computation.

5.1 Privacy in Common User Query LBS
A common and practical technique people used for pri-

vacy preserving is anonymization, for example in [2, 6]. Es-
pecially, in k-anonymity model [7, 4, 14], the user privacy
is protected by k-anonymity when the information for the
individual contained in the release cannot be distinguished
from at least k-1 individuals whose information also appear
in the release. However, k-anonymity is not suitable for pro-
tecting privacy in friend locator applications in which users’
identifications have to be known by others.

5.2 Privacy in Friend Locator
In Friendlocater [17], users are considered in proximity at

certain level if their current locations are within the same
cell or in two adjacent cells of that level. Users’ location in-
formation in terms of cell is converted into an encrypted tu-
ple before being sent to the server. Friendlocater protects a
users’ privacy by reducing the accuracy of the proximity de-
tection algorithm. Our proposed algorithm, however, could
accurately detect proximity between a pair of users based on
their requirements. Continuing effort from the same group
is shown in [15], however, the same issue still exists. In
Pierre [19], Zhong et al. proposes three privacy protocols:
Louis, Lester and Pierre which are all based on cryptogra-
phy method. The problem of Louis and Lester is one of
the users will know other user’s exact locations or distances
and pierre still has issue in the accuracy of proximity detec-
tion. The Hide&Crypt protocol [12] is a hybrid approach in
which a secure computation is performed only after a filter-
ing step based on obfuscated locations. Different from our
proposed algorithm, Hide&Crypt does not have privacy pro-
tection during the filtering step. Furthermore, Hide&Crypt
can only detect proximity based on the Euclidean distance
between two users. Finally, the secure phase in Hide&Crypt
is still based on spatial granularity (minimum uncertainty
region). Longitude [11] can’t guarantee privacy if the server
and one of the users cooperate.

In [10], Manweiler et al. uses k-ID anonymity to protect
user privacy. However, the overhead is too large and the
privacy is not guaranteed in the situation where some clients
and the server cooperate.

5.3 Secure Multi-Party Computation
The proposed convex polygon decomposition approach con-

verts a friend locator problem to a secure multi-party com-

putation problem. However, it is very inefficient to use a
secure multi-party computation method to solve friend lo-
cator problem without any modification. For example, the
original solution in the famous Yao’s millionaire problem
[18] is impractical if the range of unknown variables is large.
In [1], Atallah and Du present a secure two-party protocol
for the point inclusion problem which is equivalent to the
friend locator problem. However, they convert this problem
into a secure two-party vector dominance problem, which
then again needs to solve Yao’s millionaire problem. In [8],
the authors solve the point inclusion problem by converting
area of interest into polygon, which is similar to the second
phase in our algorithm. However, their work can’t prevent
one user from using degenerate polygon to identify the lo-
cation of another user. In our algorithm, since the edges of
the polygon has to be multiplied by the same matrix, other
users can easily detect such attacks.

6. CONCLUSIONS
We have proposed a dual-resolution system and algorithm

that can protect user’s privacy in friend locator applications.
Compared to previous work, our work introduces the fol-
lowing contributions and/or improvements. First, it uses a
multi-level grid and variable-length bit sequences to repre-
sent users’ locations, which reduces the overhead. Second, a
dual-resolution structure helps reduce the total system over-
head. Third, the proposed differential permutation method
also helps to achieve privacy while balancing it with the
overhead of every individual user. Fourth, this is to our
knowledge, the first work to point out that dividing the geo-
graphical location into small cells based on population den-
sity improves privacy compared to traditional geographical
splitting. Fifth, by converting a user’s area of interest into
multiple convex polygons, we could exploit the property of
linear operation to achieve high privacy. This approach pro-
vides a privacy protection for an individual user even when
the friends and the server are collaborating. Sixth, the poly-
gon decomposition method also provides flexible and accu-
rate way to define a user’s area of interest especially for ir-
regular shapes. The numerical and simulation showed that
the proposed privacy preserving system can achieve high pri-
vacy, efficiency, accuracy and flexibility.

7. REFERENCES
[1] M. J. Atallah and W. Du. Secure multi-party

computational geometry. In Proceedings of the 7th

International Workshop on Algorithms and Data

Structures, WADS ’01, pages 165–179, 2001.

[2] D. L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Commun. ACM,
24:84–90, February 1981.

[3] W. Du and Z. Zhan. A practical approach to solve
secure multi-party computation problems. In IN NEW

SECURITY PARADIGMS WORKSHOP, pages
127–135, 2002.

[4] B. Gedik and L. Liu. Location privacy in mobile
systems: A personalized anonymization model. In
Distributed Computing Systems, 2005. ICDCS 2005.

Proceedings. 25th IEEE International Conference on,
pages 620–629, june 2005.

[5] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proceedings of the

nineteenth annual ACM symposium on Theory of

computing, STOC ’87, pages 218–229, 1987.

[6] D. Goldschlag, M. Reed, and P. Syverson. Onion
routing for anonymous and private internet
connections. Communications of the ACM, 42:39–41,
1999.

[7] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal
cloaking. In ACM MobiSys, pages 31–42, 2003.

[8] G. Kφien and V. Oleshchuk. Location privacy for
cellular systems; analysis and solution. In Privacy

Enhancing Technologies, volume 3856 of Lecture Notes

in Computer Science, pages 40–58. Springer Berlin /
Heidelberg, 2006.

[9] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable
block ciphers. In CRYPTO’02, pages 31–46, 2002.

[10] J. Manweiler, R. Scudellari, Z. Cancio, and L. P. Cox.
We saw each other on the subway: secure, anonymous
proximity-based missed connections. In Proceedings of

the 10th workshop on Mobile Computing Systems and

Applications, HotMobile ’09, pages 1:1–1:6, 2009.

[11] S. Mascetti, C. Bettini, and D. Freni. Longitude:
Centralized privacy-preserving computation of users’
proximity. In Proceedings of the 6th VLDB Workshop

on Secure Data Management, SDM ’09, pages
142–157, 2009.

[12] S. Mascetti, C. Bettini, D. Freni, X. S. Wang, and
S. Jajodia. Privacy-aware proximity based services. In
Mobile Data Management, pages 31–40. IEEE
Computer Society, 2009.

[13] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and
S. Jajodia. On the impact of user movement
simulations in the evaluation of lbs privacy- preserving
techniques. In the 1st International Workshop on

Privacy in Location-Based Applications, 2008.

[14] M. F. Mokbel, C. yin Chow, and W. G. Aref. The new
casper: Query processing for location services without
compromising privacy. In VLDB, pages 763–774, 2006.

[15] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu.
Private and flexible proximity detection in mobile
social networks. In Mobile Data Management’10,
pages 75–84, 2010.

[16] D. Stehle and R. Steinfeld. Faster fully homomorphic
encryption. Cryptology ePrint Archive, Report
2010/299, 2010. http://eprint.iacr.org/.

[17] L. Šikšnys, J. R. Thomsen, S. Šaltenis, M. L. Yiu, and
O. Andersen. A location privacy aware friend locator.
In Proceedings of the 11th International Symposium on

Advances in Spatial and Temporal Databases, SSTD
’09, pages 405–410, 2009.

[18] A. C. Yao. Protocols for secure computations. In
Proceedings of the 23rd Annual Symposium on

Foundations of Computer Science, SFCS ’82, pages
160–164, 1982.

[19] G. Zhong, I. Goldberg, and U. Hengartner. Louis,
lester and pierre: three protocols for location privacy.
In Proceedings of the 7th international conference on

Privacy enhancing technologies, PET’07, pages 62–76,
2007.

