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Abstract—In-vehicle context sensing can detect many aspects
of driver behavior and the environment, such as drivers chang-
ing lanes, potholes, road grade, and stop signs, and these features
can be used to improve driver safety and comfort, and engine effi-
ciency. In general, detecting these features can use either onboard
sensors on the vehicle (car sensors) or sensors built into mobile
devices (phone sensors) carried by one or more occupants, or both.
Furthermore, traces of sensor readings from different cars, when
crowd-sourced, can provide increased spatial coverage as well as
disambiguation. In this paper, we explore, by designing novel de-
tection algorithms for the four different features discussed above,
three related questions: How is the accuracy of detection related to
the choice of phone versus car sensors? To what extent, and in what
ways, does crowd-sourcing contribute to detection accuracy? How
is accuracy affected by phone position? We have collected hun-
dreds of miles of vehicle traces with annotated groundtruth, and
demonstrated through evaluation that our detection algorithms
can achieve high accuracy for each task (e.g., > 90% for lane
change determinations) and that crowd-sensing plays an indispens-
able role in improving the detection performance (e.g., improving
recall by 35% for lane change determinations on curves). Our re-
sults can give car manufacturers insight into how to augment their
internal sensing capabilities with phone sensors, or give mobile
app developers insight into what car sensors to use in order to
complement mobile device sensing capabilities.

Index Terms—Automotive engineering, Intelligent vehicles, Sen-
sor systems and applications.

I. INTRODUCTION

INDUSTRY is moving towards making automobiles pro-
grammable and customizable through apps. Automakers
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have created app developer portals, versions of mobile oper-
ating systems such as iOS and Android exist for cars, and cars
increasingly provide rich network connectivity options (LTE
cellular Internet connectivity, Bluetooth and WiFi).

The problem space: Vehicular context sensing. This conver-
gence between mobile computing and automobiles motivates
the problem space we consider: vehicular context sensing. We
use the term vehicular context to include both the environment
surrounding a vehicle at any point in time, and also whatever ac-
tions or operations the vehicle is performing at any point in time.
Examples of vehicular context include traffic regulators (stop
signs, traffic lights, speed limit signs), road surface anomalies
(potholes, bumps), road topography (grade, banking), as well as
vehicular actions (decelerations, lane departures, speeding).

Vehicular context information can be used in several ways.
Maps augmented with traffic regulators can be used by naviga-
tion devices and apps to warn inattentive drivers. Crowd-sourced
road-anomaly detection can help transportation agencies iden-
tify and prioritize road surface maintenance. Road topography
information can enhance the efficiency of vehicular transmission
subsystems, since, for example, a road-grade or banking-aware
transmission system can efficiently deliver power. Finally, a
record of vehicular actions can be used by insurance companies
to offer good driver discounts.

The design space of vehicular context sensing: There are two
general approaches to detecting (or sensing) vehicular context.1

One approach is to use the smartphone2 [3], [4]. The high de-
gree of penetration of mobile devices ensures that almost every
vehicle is likely (at least in developed countries) to have an
occupant (driver or passenger) with a smartphone. These de-
vices come both with positioning hardware and software (GPS,
WiFi based positioning, etc.) and many sensors (accelerometer,
magnetometer, barometer, and so on).

A second, less well-known, approach is to use the sensors
embedded in a car [5], [6]. Some modern cars have several
hundred physical and virtual (i.e., derived from physical) sen-
sors onboard, which describe, in near-real time, the operation
of several of the internal subsystems of the car. Examples of
sensor readings available over the CAN bus include: vehicle

1A third approach that has been investigated for some forms of vehicular
context, such as stop signs, is to use computer vision techniques. Despite limited
success (some vehicles now ship with vision based lane departure systems), the
efficacy of these approaches can be low under poor lighting or adverse weather
conditions. We leave it to future work to explore this approach in greater detail.

2Vehicular context sensing requires continuous sensor acquisition. While
prior work [1], [2] has pointed out that continuous sensing in mobile devices
can impede battery life, the car is one environment continuous sensing is feasible
because of the availability of power.
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speed, throttle position, transmission lever position, automatic
gear, cruise control status, radiator fan speed, fuel capacity, and
transmission oil temperature. These sensor readings are used to
control subsystems of the vehicle, but can also be exported to an
external device using the standard On-Board Diagnostics (OBD-
II) port available on all vehicles. Due to business, privacy, and
security considerations, many of these sensors were not previ-
ously exported to external devices but recently, Ford and General
Motors have made about 20 sensor types available through their
OpenXC platform and GM Developer Network, respectively.

It is tempting to believe that car sensors will always be supe-
rior and that in the long run vehicles will incorporate all useful
sensors. This is not true. First, smartphone platforms evolve
more rapidly (in 1-2 years), while the average lifetime of cars
is more than a decade [7]; thus, smartphones will always have
more modern sensors, which can include new types of sensors
or more accurate sensors. Second, car sensors are specialized
for vehicular control, not for context sensing, so it is likely that
the general purpose sensors on phones may be more appropriate
for some sensing tasks. Finally, it is unclear that cars will co-opt
phone sensors: especially for mass market vehicles, adding new
sensors can be expensive since these need to be engineered for
long lifetimes and may require careful design and engineering.

A degree of freedom available to both approaches is crowd-
sourcing. Crowd-sourcing vehicle context is quite practical
for both car-sensing and phone-sensing. For many years
now, some car manufacturers have had continuous telemetry
systems for trouble shooting (e.g., GM’s OnStar [8] system.
These systems relay car sensor data to a cloud service. More
generally, users can share traces of their car sensor readings or
phone sensor readings via a cloud service, since both cars and
phones are equipped with cellular connectivity. For example,
crowd-sourced navigation systems like Waze collect GPS traces
from users.} While crowd-sourcing raises privacy concerns,
we consider this design dimension in this paper in order to
understand how much crowd-sourcing would benefit vehicular
context sensing if and when privacy concerns are addressed.
Crowd-sourcing provides spatial coverage (e.g., data from
multiple cars can detect a road anomaly across a larger area),
can increase detection confidence, and can help disambiguate
contexts (e.g., traffic light vs. stop sign).

Finally, an important constraint in this design space is phone
position: users can place phones in positions which can reduce
sensing accuracy for specific tasks, so understanding how posi-
tion impacts the accuracy of context sensing is essential to an
exploration of the design space.

Contributions and Findings: In this paper, we make three
contributions.

Design space exploration: We provide a preliminary under-
standing of the design space of vehicular context sensing by
exploring four qualitatively different case studies of vehicular
context: lane change detection, pothole detection, road-grade
estimation and stop sign determination. These contexts are qual-
itatively different in the sense that one of them measures driver
behavior, another assesses the state of road infrastructure, a third
measures a feature of the topography and a fourth measures a
traffic regulation device. Moreover, stop sign and road grade

Fig. 1. Summary of findings.

represents persistent road features that do not change over years,
while a pothole is a road feature that could be updated in weeks
and lane change detection reflects the highly dynamic nature of
driver behaviors on roads.

Novel context sensing algorithms: For each of these context
sensing tasks, we design efficient car-sensing and phone-sensing
algorithms. In all cases, we design novel car-sensing algorithms:
to our knowledge, no one else has explored the design of stop-
sign detection, lane change detection and pothole detection by
using previously proprietary car sensors accessible via the vehi-
cle CAN bus. Moreover, our design of crowd-sensing for each
of these tasks is also novel, as is our exploration of the impact of
phone position. For lane-change detection and road-grade esti-
mation, our phone-sensing algorithms are also novel. Moreover,
for each task, at least one of these algorithms has high accuracy
(85% and above).

Results: Using empirical traces collected from multiple
drivers in different locations, we evaluate the accuracy of these
algorithms in order to understand whether one approach (car-
sensing or phone-sensing) strictly dominates the other.

Our findings (Fig. 1) suggest that neither approach is strictly
better than the other, but that crowd-sourcing is essential for
both. For example, car-sensing is superior for lane change de-
termination primarily because the wheel angle sensor can unam-
biguously determine shift maneuvers. However, just because the
car has a specialized sensor, that does not mean phones cannot
achieve comparable accuracy: for lane change determination,
although there exists a specialized yaw rate sensor that can be
used to compute lateral displacement of the vehicle, phone sen-
sors perform well in determining this quantity also. For each
of these algorithms, crowd-sourcing plays a crucial, but qualita-
tively different role: in some cases, it increases the confidence of
the detection, in other cases it provides spatial coverage, helps
compute an unknown quantity, or disambiguates between two
contexts that have similar manifested behaviors. Finally, we find
that different phone-sensing algorithms are sensitive to the po-
sition of phone in different ways. Drivers may mount phones on
the windshield, keep it in a cup-holder, or inside their pocket.
We find, for example, that a windshield mount is pathologically
bad for lane change detection because the phone’s gyroscope is
adversely affected by the car vibrations.

Collectively, our results suggest that, going forward, devel-
opers of algorithms for vehicular context should actively seek to
fuse phone and car sensor information, use crowd-sourcing in
designing vehicular context sensing, and carefully explore the
impact of phone position on accuracy.
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Fig. 2. Crowd-sourcing both car-sensors and phone-sensors to perform vari-
ous vehicle context detection tasks.

II. METHODOLOGY

We consider four vehicular context sensing tasks: determin-
ing when a driver has executed a lane change maneuver; de-
termining the locations of potholes and other anomalies on a
road surface; estimating road grade; and determining whether
(and in which direction) an intersection is governed by a stop
sign. All of them can plausibly be detected either using only
phone sensors or only car sensors. All of them also depend on
tracking motions or micro-movements of the vehicle: longitu-
dinal speed changes for stop signs, lateral movements for lane
changes, vertical movements (bumps) for potholes and tilt for
road grade.

However, they are also qualitatively different among some
dimensions. They sense different types of vehicular contexts
(anomalies, topography, vehicle dynamics etc.). Some make
binary decisions (lane changes), others estimate continuous val-
ues (road grade). Prior work has explored some tasks exten-
sively (potholes), but others to a lesser extent. However, none
have explored the broader question comparing car-sensing and
phone-sensing approaches, in part because prior work has not
had access to car sensors.

Our methodology is empirical. For each task (e.g., lane
change determination), we design one sensing algorithm us-
ing car sensors alone. We then design a similar algorithm (to
the extent possible) using phone-sensors alone. This approach
enables a head-to-head comparison between the two approaches
for each task, which we evaluate using traces from several hun-
dred miles of driving. By examining situations where one ap-
proach succeeds and the other does not, we are able to get spe-
cific qualitative understanding of the strengths and weaknesses
of each of these approaches.

Of course, such an approach can never be complete because
the space of possible vehicular contexts is large. Our results are
thus not intended to be definitive, but rather to take a first step
towards understanding this design space.

Both car and phone sensor algorithms can benefit from crowd-
sensing: using traces of sensor readings obtained from other ve-
hicles. But, because the availability of these sensors and their ac-
curacy can differ between cars and phones, the precise methods
by which crowd-sourced information is used can differ between
car-sensing and phone-sensing, and the benefits of crowdsourc-
ing can also be different between these two approaches. For each
algorithm, we devise a crowd-sensing component designed to
increase its accuracy.

Putting it all together (Fig. 2), we have designed a crowd-
sensing platform that collects vehicle and phone sensors. Using

Fig. 3. List of vehicle CAN sensors and derived phone sensors.

this, we have collected hundreds of miles of traces, to evaluate
the design space of various individual vehicle context detection
tasks.

Finally, the relative accuracy of car-sensing and phone-
sensing depends on two other key factors discussed below.

A. Sensor Availability and Accuracy

The same context can often be derived from different sensors,
but the achieved accuracy usually varies. For example, when
and whether a car is turning can be estimated from inertial
sensors, but a steering wheel angle sensor usually can give more
accurate information about slight turns. The relative accuracy of
car and phone sensing therefore depends on the extent to which
different types of sensors are available to applications on the car
and phone platform. Even when the same type of sensor (e.g.,
an accelerometer) is available on both platforms, however, the
accuracy of each sensor reading and the update rate can vary
between the phone and the car.

In this paper, we have obtained access to several car sen-
sors on late-model GM vehicles and compared them with a
standard set of Android smart-phone sensors to derive vehicle
movement. Fig. 3 lists the sensors that we considered for the
context detection tasks that are described in this paper. Each
of the vehicle sensors can be accessed, in near real-time, on a
smartphone using a Bluetooth enabled dongle in the OBD-II
port of the vehicle. While a few of the sensors listed (e.g., ve-
hicle speed or outside air temperature) have been available as
part of the OBD-II standard on most vehicles, the majority of
these sensors report their readings in a proprietary format on the
CAN bus. Access to such sensors is only becoming gradually
available to external applications through special vehicle manu-
facturer developer programs. We have used an extended version
of the CarMA software [5], [6] to collect traces of these sensor
readings for our evaluations, from several different vehicles.

The car provides a fairly complete set of sensors that describe
different driver actions such as activating turn signals, turning
the steering wheel, or opening the throttle, which are unavailable
on the phone. Both platforms carry GPS and inertial sensors for
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measuring vehicle motion. However, the phone platform tends
to provide higher update rates and contain a more complete set
of inertial sensors.

B. Sensor Placement and Movement

The accuracy of sensor readings can further depend upon
the exact location and orientation of the sensor in the vehicle.
Examples include readings from inertial sensors but also GPS
receivers, where the location and orientation of the antenna has a
significant effect on the received signal strength. Further, while
car sensors are generally mounted at a fixed position, the phone
position is often unknown and dependent on driver behavior.
The phone position might even change while driving, if the
phone slides or is moved by its user.

To understand how the accuracy of phone sensing depends
on phone position and movement, we consider three possible
positions: in a windshield mount, in the cup-holder, and in the
driver’s pocket (right side). These choices represent commonly
used positions that exhibit different movement characteristics.
In the windshield mount, the phone is mounted to the vehicle
body. In the cup holder the phone can slide occasionally when
larger acceleration forces act on the vehicle. In the pocket
position, the phone can be frequently affected by leg and body
movements of the driver. (We have chosen the right pocket,
because we expect more frequent movements corresponding to
gas and brake pedal use).

In all of these positions, the orientation of the phone in the
world coordinate frame and the vehicle coordinate frame is not
precisely known. When this information is needed, we estimates
the orientation as follows.

World Coordinate Frame Transformation: The Android Sen-
sorManager API provides a getRotationMatrix() func-
tion that estimates the orientation of the device in the world
coordinate frame based on accelerometer and magnetometer
readings. It essentially uses gravity and the earth’s magnetic
field to estimate the device rotation. In this world coordinate
frame, the y-axis points to the magnetic north pole and the
z-axis points to the sky.

Vehicle Coordinate Frame Transformation: In the vehicle co-
ordinate frame, the x, y, and z-axis are mapped to the lateral,
longitudinal, and vertical axis of the vehicle itself, and can be
different from the world coordinate frame. We use the coordi-
nate transformation algorithm presented in [9] to estimate the
phone pose in the vehicle coordinate frame. The algorithm first
filters the acceleration readings to identify the gravity force,
which generates the first unit vector. The second unit vector is
obtained by monitoring the axis along which acceleration and
deceleration occur when driving on a straight road. By the right
hand rule, the third unit vector is orthogonal to the first two.
This algorithm provides us with the rotation matrix R, which
can be used to rotate the phone’s alignment to match the vehicle
coordinate frame.

III. VEHICULAR CONTEXT DETECTION

In this section, we discuss car-sensing and phone-sensing
algorithms for the four context detection tasks discussed in
Section I. For space reasons, we present only enough detail

in our algorithms to help the reader understand the results pre-
sented in the evaluation in the following sections.

A. Lane Change Detection

Detecting a lane change is difficult, since lane changes can be
conflated with road curvature and with weaving within a lane.
Our algorithms address these by (a) finding a segment of the
trace (called the shift segment) that contains a shift maneuver,
and (b) measuring the lateral displacement of the vehicle within
the shift segment. The first step accounts for curvature and
the second deals with weaving behavior within a lane. Both
algorithms use crowd-sourced information.

Isolating Shift Maneuvers: We use two algorithms to identify
shift maneuvers, one each for car-sensing and phone-sensing.
To our knowledge, these algorithms, and their use of crowd-
sourcing, is novel.

Car-sensing: Our algorithm for lane shift determination for
car-sensing is motivated by Fig. 4 which shows the raw vehicle
sensor values of the yaw rate (the angular velocity of the car
about the vertical axis) and steering wheel angle, as well as
other inertial sensors from the phone. During a lane change,
the angular velocity first increases (or decreases depending on
the direction of the lane change), then decreases until it crosses
zero in the other direction. Intuitively, at this point, the car
is at the point of crossing the lane. Beyond this, the yaw rate
decreases some more and returns back to zero. This corresponds
to the car straightening up in the target lane, and is the key to
distinguishing between lane changes and turns at an intersection.
The steering wheel angle is positively correlated with the yaw
rate and exhibits a similar behavior.

Our detection algorithm declares any segment that contains
this sinusoidal pattern to be a potential shift segment (i.e., one
in which a shift maneuver occurs). It uses the steering wheel
angle sensor for this purpose since that sensor shows a more
pronounced pattern. An ideal algorithm for identifying the shift
interval (t1, t2) on a straight lane is: (a) when the wheel angle at
t1 and t2 are zero (i.e., the car is heading in the same direction at
the beginning and at the end), The shift segment interval can be
long or short depending on the driver’s propensity, so we need a
technique to verify that a shift maneuver corresponds to a lane
change; we use the lateral displacement calculation below for
this.

To identify a shift segment when the car is on a curved road,
we exploit the insight that crowd-sourcing can be used to deter-
mine what the wheel angle for other cars was at the locations
corresponding to t1 and t2 (call these locations l1 and l2). The
key challenge here is to establish a baseline for the sensor pattern
corresponding to the curvature without lane changes. Specifi-
cally, we take the median wheel angle from other traces, traces
without lighting turn signals, in S at l1 and l2 (call them w1

and w2 respectively). With the baseline, we can revise our ideal
algorithm for identifying the interval (t1, t2) as an interval con-
taining a shift maneuver as: (a) when the wheel angle at t1 is
w1 and at t2 is w2 and (b) the difference between wheel angle
sensor readings and the crowd value exhibits a sinusoidal pat-
tern. To deal with sensor noise, if two wheel angles are within
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Fig. 4. Relevant car-sensor and phone-sensor pattern during a lane change on a straight road segment. Generally, rotation descriptors, such as yaw rate, wheel
angle and gyro-meter display a sinusoid pattern, while absolute orientation sensor performs only a half of the sinusoid.

a small fudge δw of each other, we declare them to be the
same.

Phone-sensing: Our phone sensing algorithm detects shift
segments using changes to the car’s orientation, as computed
from the phone’s inertial sensors (gyroscope, magnetometer,
and the accelerometer [10]). During a shift maneuver, one ex-
pects orientation to increase first, then decrease until it reaches
the original heading. We use this intuition to identify the shift
segment (t1, t2) in a manner similar to that for car-sensing.

For phone-sensing as well, curved roads pose a problem, but
crowd-sourcing helps. In this case, we could take the orien-
tation readings at any location l between l1 and l2 from the
crowd-sourced traces S, and use these in a manner similar to
that discussed above. However, this requires that all phones are
mounted consistently with the same frame of reference, which
may not be the case since the phones can have random poses
when sensing in a car. Rather than transforming the absolute
orientation to the same vehicle frame, which can introduce er-
ror, we compute only the relative deviation from the curve by
comparing the change in the phone’s orientation and the change
in the curve’s, the latter of which is obtained using the radius of
curvature computed from crowd-sourced traces (described later
in 1). Our final algorithm for identifying a shift interval (t1, t2)
is: (a) the maximum deviation in orientation of the car between
t1 and t2 is comparable to δo , and (b) the orientation difference
increases and then decreases between t1 and t2.

Computing Displacement: For both car and phone sensors,
we compute the displacement within a shift interval the same
way: using the yaw rate (for the phone, this is computed from
the gyroscope sensor after performing appropriate coordinate
transformations to account for differently oriented phones). On a
straight road, we can integrate the yaw rate sensor ω to calculate
the total angular displacement (the total change in heading)
θ(t) at any time t within the shift interval. Then, integrating
vehicle speed (either from the car sensor or from phone GPS)
with respect to different angle (

∑t2
t=t1

v(t)sin(θ(t))Δ(t)), we
can compute the total lateral displacement. If this displacement
approximately equals the standard lane-width, we declare a lane
change has occurred.

Detection on Curve: To account for road curvature, one
straightforward approach is to use existing digital maps that pro-
vide road curvature data. Digital maps, however, use sequences

Fig. 5. Curvature data from digital maps: Sequences of coordinates (green
circles) define the paths of roads (in red). Digital maps provide curvature as the
radius of the circle (in blue) which the closest three points form.

of coordinates to define the paths of roads. Specifically, the way
these map services provide curvature is to use the radius of the
circle which the closest three points form. Fig. 5 shows the con-
nected dots (in red) that define a curve and one example curve
radius (in green). This approach has two drawbacks: it cannot
provide accurate curvature if all of the coordinates are not at
the center of the lane; the granularity of the curvature data is
dependent on the density of the defining points. For example,
a slightly curved highway on the digital maps can have only a
few sparse defining points which are hundreds of meters away
from each other. Besides interpolation, which is often unreli-
able, there are no definitive way for digital maps to provide
curvature data between two neighbouring defining points.

Instead, to get a fine-grained detailed curvature description,
we compute, from crowd-sourced traces, the angular velocity
component ω̄ that can be attributed to the curve. To do this, we
assume that, during a short time interval at a given location, the
radius of curvature of the lane is uniform. Then, we estimate the
average radius of curvature for each trace at that location and
use the average radius estimation to compute the angular veloc-
ity induced by the curvature at that location. Given the radius R̄
and a vehicle instantaneous speed v, the angular velocity com-
ponent ω̄ can be estimated by the speed divided by the radius of
curvature (1),

ω̄ =
v

R̄
=

v
1

NS

∑
i∈S

vi

ωi

(1)
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Fig. 6. RRM and lateral acceleration signal when car hits a pothole. The
vertical dashed-line marks the pothole.

where NS is the number of crowd traces in S, vi and ωi is
the linear and angular velocity of trace i at the same location.
To estimate lateral displacement x(l) at location l, we subtract
from the car’s angular velocity at a given location, the angular
velocity ω̄ induced by the curvature at that location, then use
the procedure discussed above (2).

x(I) =
I∑

i=0

vΔt(i) sin
( i∑

j=0

(ω − ω̄)Δt(j)
)

(2)

B. Pothole Detection

Car repair costs from potholes are estimated to be $6.4 billion
annually [11], and potholes can cause accidents [12]. Detecting
potholes is difficult: other road surface anomalies like expan-
sion joints, railroad, potholes, speed bumps, curbs can induce
similar vibration patterns as potholes; and different cars (or even
the same car during different drives) may experience different
vibration patterns from the same pothole differently, depending
on the exact angle of impact.

The goal of pothole detection is to identify, in each trace,
each location l that marks a pothole on the road. We detect
potholes from sensors that measure vertical acceleration, and
disambiguate them from other road surface anomalies by ob-
serving that potholes can have asymmetric impact on a vehicle.
Finally, we use crowd-sourcing to increase detection confidence.

Phone-sensing for pothole detection has been extensively
studied [3], [13]–[15] and has resulted in a commercially avail-
able app (Street Bump) for pothole detection, which we use in
this paper. In the rest of this section, we describe our car-sensing
algorithm for pothole detection, which, to our knowledge, has
not been described in the literature before.

Detecting Vertical Acceleration: Cars contain a Rough Road
Magnitude (RRM) car sensor, which continuously measures
(at 2 Hz, Fig. 6) the deviation of the car’s vertical acceleration
(caused by, say, hitting a pothole) from its at-rest baseline value.
To minimize the impacts caused by minor road surface irregu-
larities and inherent sensor noise, our algorithm only considers
RRM sensor measurements above a threshold value (τv , deter-
mined from extensive training data) as the triggering condition
for vertical detection.

Detecting Asymmetric Impulse: Road anomalies like small
cracks or expansion joints can also generate substantial vertical
acceleration. We observe, however, that most potholes have ir-
regular shapes and are of limited size, so they usually impact
only one side of the car wheels at a time, slightly tilting the car
to the other side. This tilting can be measured by the car’s lat-
eral acceleration sensors (Fig. 6). To accurately detect the lateral
tilting effect caused by potholes, we calculate the peak-to-peak

value of the lateral acceleration within the window where the
RRM sensor is above τv , then compare it against a lateral ac-
celeration determination threshold whose value we determine
from training data.

Crowd-Sourcing: To increase detection confidence, we flag
a pothole at a location l only if a majority of traces that pass l
detect a pothole at that location l.

C. Road Grade Estimation

Road-grade measurements can be used to optimize cruise
control fuel efficiency settings [16] or as input to a stability
control system in estimating sideslip [17]. Road grade can be
estimated from elevation changes, using either barometric sen-
sors or inertial sensors. There are web services that, given a
GPS location, output an elevation. In our experience these are
not fine-grained enough, for example, to form inputs to stability
control systems. We are unaware of any public available accu-
rate and fine-grain road grade data. We obtained survey maps
from the LA Department of Transportation, but found that these
maps have only coarse-grained elevation measurements. More-
over, as of this writing, no car sensors can estimate road grade
accurately. Some cars have a barometer, but these have poor
resolution. For example, in a 2008 Cadillac CTS, the resolution
of barometric pressure is 0.5 kPa which is approximately equiv-
alent to 40 meters elevation change at sea level. The inertial
sensors are insufficient for road-grade estimation. For example,
our test vehicle has a lateral acceleration sensor, no longitudi-
nal acceleration sensor, and a processed vertical acceleration
sensor designed for a specific task (rough road measurement).
Therefore, in the rest of this section, we discuss phone-sensing
algorithms that can provide fine-grained and robust road-grade
measurement for vehicles.

Phone-sensing: Our phone-sensing algorithm makes novel
use of a combination of inertial and barometric sensors. Inertial
road-grade measurements are most precise when there are no
external accelerations acting on the vehicle (when it is moving
at a constant speed or is stationary). The barometer can esti-
mate road grade in an accelerating vehicle, but can be affected
by local air currents. We propose to combine these two sens-
ing approaches to obtain accurate road grade measurements,
using measurements either from the same car or using crowd-
sourcing. The accelerometer can correct for any discrepancies in
the barometer under no acceleration conditions, and the barom-
eter can continue to estimate road grade under regular accel-
eration and deceleration conditions. The phone can determine
whether the car is accelerating or decelerating by transforming
the accelerometer readings to the vehicle’s frame.

The atmospheric air pressure obtained from a barometer on a
phone can be converted to elevation using a standard pressure-
height equation [18]: h = 44 330 ∗ (1 − ( p

p0
)

1
5. 255 ). Here, p0 is

the air pressure at the sea level and p is the measured air pres-
sure at current location. Once elevation changes are known,
road grade can be determined using differences in height of
successive readings, and the distance traveled.

For an inertial sensor mounted with its axis aligned to the
direction of vehicle movement and gravity, measuring road
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Fig. 7. Typical relevant sensor pattern passing a stop sign.

inclination translates to computing the pitch angle of the sen-
sor. Pitch is defined as the forward tilt of the device and can
be obtained from the accelerometer readings on a smartphone.
These readings are first transformed into the vehicle frame of
reference discussed earlier.

Then, as the car moves up an incline, gravity now has com-
ponents on both the y and z axis (with respect to the car
frame). The pitch angle, α, is calculated around the x-axis as,
α = arctan(Ay/Az ). Here Ay and Az are the raw accelerome-
ter readings along the y and z axis respectively, while α repre-
sents the road grade.

D. Stop Sign Detection

A stop sign detection algorithm must address several chal-
lenges: drivers rarely come to a full stop; stopping can be
conflated with congestion or traffic lights; and any detection
algorithm must distinguish 2-way and 4-way stop signs. Our
algorithms are based on detecting a prevalent characteristic of
stopping at a stop sign: a deceleration followed by an accelera-
tion. They address other challenges either using map informa-
tion, or crowd-sourced traces.

Determining Stops: To determine a stop pattern, our car-
sensing and phone-sensing algorithms identify a stop segment
within a trace where a stop is most likely to have occurred.

Car-sensing: Fig. 7 shows the timeseries of several car sensors
at a stop sign. This figure motivates the following algorithm to
identify a stop segment: (a) the segment begins at the point where
the brake sensor transits from being active to being inactive, (b)
it ends at the rising edge of the throttle position, and (c) the car
speed reaches zero during some point in the interval.

This is an idealized description. Some drivers may not come
to a complete stop, so we use a small speed threshold: if the
speed is below this threshold, a stop is said to have occurred.
Moreover, a car may stop several times if it is queued up behind
other cars at the stop sign. In this case, we use the last speed
reading before the rising edge of the throttle position in order to
make a stop determination.

Phone-sensing: Phones do not, of course, have access to sen-
sors that directly measure human activity (braking etc.). Mo-
tivated by Fig. 7, we use the vehicle speed to determine stop
segments. We use the haversine formula [19] to derive estimated
speed from two successive GPS coordinates. Then the estimated
speed is obtained by dividing the distance by the difference of
the timestamps associated with each coordinate. Other elements
of the algorithm are similar to car-sensing.

Disambiguation: To distinguish stopping at a stop sign from
other stopping activity, we use map information: to qualify as a
stop segment, the car’s location must be within a distance thresh-
old of an intersection (as determined from an online map). To
distinguish from congestion-related stops, a significant fraction
of stop segments must exist at intersection I before that inter-
section is marked as having a stop sign. Finally, to distinguish
between 4-way and 2-way stop signs and between stop signs
and street lights, we use crowd-sourcing. If there exists a stop
segment S at intersection I , but k other traces with the same
heading as S (where k is a small integer) that do not contain
a stop segment at I we say there is no stop sign at I in that
direction.

IV. EVALUATION

We use the four previously described context sensing ap-
plications to evaluate the relative accuracy of car-sensing and
phone-sensing, both with and without crowd-sourcing for the
best phone position for the given sensing task. We then eval-
uate how accuracy for these tasks varies with phone position.
To conduct these experiments, we have built infrastructure that
continuously captures car and phone sensor readings, uploads
them to a cloud database, and computes spatial indexes to im-
prove query speeds. Describing this infrastructure is beyond the
scope of this paper.

A. Car-Sensing vs. Phone-Sensing

1) Lane Change: The Dataset. To evaluate lane change al-
gorithm, we collected traces from six different drivers both on
a flat and straight urban road (dataset Straight) and a hilly area
with straight and curved road segments (dataset Curve). In each
experiment, a passenger collected ground truth measurements
by explicitly recording lane changes made by the driver using
a custom-built mobile app. In total, our traces cover around
200 miles, containing over 300 instances of lane changes for
which we have ground truth, so we use these to compare car-
sensing and phone-sensing. To extract crowd-sourced road cur-
vature, we use 20% of the traces.

For phone-sensing, for reasons discussed below, we rigidly
mounted the phone on the center console. Then, we transformed
the inertial sensors to the world frame of reference. We also
report results for phone-vehicle, an alternative in which inertial
sensor readings are transformed to the vehicle frame discussed
earlier.

Results: Since our lane-change algorithm is essentially a bi-
nary classifier (did a lane-change happen or not?), we use stan-
dard measures of accuracy for binary classifiers, precision and
recall [20]. Fig. 8 discusses the results of our evaluation. It is
interesting that our novel car-sensing algorithm has high pre-
cision both on Straight (94.51%) and Curve (93.38%) roads.
Crowd-sourcing further significantly improves recall in curvy
road (from 47.58% to 83.70%) where curvature is unknown
in previous work [21]. In contrast, phone-sensing has signif-
icantly lower performance, especially recall (58.33%). When
transforming sensor readings from global to vehicle coordi-
nate frame (the phone-vehicle case), straight road has similar
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Fig. 8. Car-sensing vs phone-sensing: Lane change detection.

phone-sensing precision (68.78%) and recall (64.21%). How-
ever, motion sensor errors introduced by curvy roads affect the
accuracy in determining the second unit vector, which could
potentially reduce algorithm precision. Thus, car-sensing per-
forms significantly better than phone-sensing for lane-change
determination.

The insight for this performance difference is as follows. Both
car-sensing and phone-sensing are able to robustly compute lat-
eral displacement. Even though the car-sensor has a dedicated
yaw rate sensor that is designed to provide angular velocity
about the vertical axis, the phone’s inertial sensors are also able
to achieve comparable accuracy with careful re-orientation and
compensation. The real difference in the results comes from
the shift maneuver determination step. The wheel angle sensor,
which measures shift maneuvers directly, can be used to accu-
rately estimate these maneuvers even on curved roads, but this
step is much less accurate when using the orientation sensors
on the phone.

We have also evaluated the efficacy of crowd-sourcing for this
task. It turns out that crowd-sourcing is crucial, especially in the
dataset Curve, where most lane changes happen on curved seg-
ments. In this case, detection precision is improved from 87.50%
to 93.38%, recall from 47.58% to 83.70%. Crowd-sourcing pro-
vides an accurate description of road curvature (either through
curve radius or road orientation) which other traces can use
as a baseline to estimate lane displacements; without this, as
other work has shown [21], it is hard to estimate lane changes.
By contrast, the benefits of crowd-sourcing for phone-sensing
is less-evident (precision is improved by 28.61% (9.89%) in
dataset Curve (Straight), with 10.09% (11.43%) recall trade-
off; estimating curvature from crowd-sourcing is less accurate in
this case, since the coordinate frame transformation introduces
significant error. Today’s maps do not have road curvature in-
formation at sufficiently fine granularity for our purposes (and
it’s not clear they ever will), so crowd-sourcing will likely play
an important part in lane change determination.

2) Pothole: The dataset. Our dataset was collected on a
stretch of 4-mile road segment with various types of potholes.
Simultaneously, we also firmly mounted the smart phone on
the windshield to collect detection results from the Android

Fig. 9. Car-sensing vs phone-sensing: Pothole detection.

Fig. 10. Crowd-sourcing contribution for pothole detection.

street bump application [14]. This application records the pot-
hole traces, including timestamps, GPS locations and the smart-
phone accelerometer measurements. For ground truth identi-
fication, we used another windshield-mounted smartphone to
record the video during the entire data collection. We manu-
ally identified, by inspecting the collected videos, a total of 23
potholes on this four-mile road; the overhead of manual identi-
fication limits the scale of experiments we can do in this case.
For evaluating our crowd-sourcing steps, we collected multiple
traces (8) on this road segment, among which 15 (10%) random
selected pothole encounter are used for both training and testing
data.

Results: For a similar reason as lane-change determination,
we use precision and recall to evaluate our pothole detection
algorithms. Fig. 9 shows the average precision and recall of
pothole detection. Without taking crowd-sourcing into account,
both car-sensing and phone-sensing have similar average preci-
sion (73.05% and 71.33%). The phone-sensing based approach
has much less recall because it fails to detect many small pot-
holes. However, with crowd-sourcing, our car-sensing based
pothole detection has 100% precision and 91.28% recall. Thus,
crowd-sourcing improves the precision and recall by about
30%. In contrast, for phone-sensing approach, while it has very
high precision (about 100%) with crowd-sourcing, but its recall
performance is fairly dismal (27%) at higher levels of crowd-
sourcing. This is because the crowd-sourcing does not drasti-
cally improve the already inferior recall performance of phone-
sensing. Fig. 10 shows the detection results of both car-sensing
and phone-sensing after crowd-sourcing. In this figure, the
x-axis represents x randomly chosen traces, and we report the
precision and recall averaged over these x random choices. This
illustrates the benefit of increasing levels of crowd-sourcing.

The drastic difference between car- and phone-sensing ap-
proach is primarily because the phone sensors are much less
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sensitive to the road vibrations and can only detect very sig-
nificant potholes (even though the phone is mounted on the
windshield). In other words, car-sensing has higher accuracy
because cars have specially engineered sensors calibrated and
positioned to detect rough road conditions and lateral acceler-
ations (since these sensors are important for stability control).
The improvement from crowd-sourcing in accuracy comes from
the fact that not all vehicles traversing a lane will encounter the
pothole depending on where the pothole is; crowdsourcing im-
proves spatial coverage.

3) Road Grade: The Dataset. To evaluate the efficacy of
the road grade sensing techniques, we conducted experiments
along two selected roadways of different grades. One was a
nearly flat road, while the other had an 18◦ incline. We collected
two datasets, with ten traces each, on these streets. We marked
30 locations on each road segment, separated by a meter. One
dataset was collected by coming to a standstill at each marker. At
this point we recorded the ground truth by placing an inclinome-
ter on the car floor, obtained accelerometer data from the fixed
sensor and from the smartphone and then moved to the next spot
and repeated the process. Recall that, in the real world this data
can be collected when the car is moving at a constant speed or is
stationary. Our second dataset was obtained by simply driving
on this road segment with no stopping. At each iteration, we
collected the ground truth from the car, the barometer readings,
the accelerometer in the sensor and the smartphone.

Results: We assess the accuracy of road-grade algorithms by
measuring the error with respect to ground truth. The calculated
road grade is shown in Figs. 11 and 12 for flat and inclined
road experiments, respectively. In Fig. 11, the fixed sensor and
accelerometer data from the phone (windshield mounted posi-
tion) was collected using the first dataset (with stops), and the
barometer dataset (driver’s pocket position) was collected using
the second dataset (no stops). It is evident from this experiment
that road grade estimations from the emulated car sensor (fixed)
and smartphone inertial sensors are very close to the ground
truth. The barometer, however, does not work well for small
variations in road grade, and exhibits large errors. This may
have been caused by frequent, sudden accelerating and braking.
For the 18◦ incline, with the accelerometer in windshield posi-
tion and barometer in the pocket position, it is evident that both
the barometer and the inertial sensor measurements are inline
with the ground truth.

To examine if crowd-sourcing can provide us with better ac-
curacy, we compute road grade using the barometer and inertial
sensors for our second dataset (no stops). We calculated these

Fig. 14. Google map augmented with stop sign.

Fig. 15. Car-sensing vs. phone-sensing: Stop sign detection.

values using a different number of traces each time and com-
puted the error. As evident from Fig. 13, the average error for
the barometer approach improves slightly with crowd-sourcing,
but is not significantly affected. It must be noted that in the
continuous driving dataset, the inertial sensor readings at the
beginning and end of a trace are not accurate due to accelera-
tion and deceleration of the vehicle. This causes a small error in
accelerometer measurements, that corrects itself as the number
of traces increases.

In summary, road-grade estimation is a context sensing task
that can be accurately implemented using phone sensors, but
cannot be realized using currently available car sensors.

4) Stop Sign: The Dataset. We collected traces from 6 dif-
ferent drivers, during different times of day and different days
of a week over a period of around 9 months. The traces cover
over 500 miles, with 11 traffic light, 74 stop signs at 55 intersec-
tions, among which 14 of them are two way stop signs, 16 are
one way stop signs, and the rest 4-way stop signs. We collected
ground-truth by recording stop signs as they encountered them,
using a custom-built mobile app. Fig. 14 shows the groundtruth
stop signs detected.

Results: In our evaluation, even though car-sensing (preci-
sion 93.24%, recall 83.78%) uses more dedicated sensors such
as the brake and throttle, phone-sensing has comparable pre-
cision (90.32%) and recall (85.71%) (Fig. 15). Phone-sensing
has slightly lower precision when a vehicle passes through a
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Fig. 16. Crowd-sourcing contribution for stop sign detection.

Fig. 17. Phone position: Windshield, cup-holder, pocket.

green light at speeds lower than the speed threshold, yielding
false positives. Car-sensing does not suffer from this problem
because it uses additional signals: the brake and the throttle.
Thus, for this task, it appears that phone sensing and crowd
sensing are qualitatively similar.

Furthermore, crowd-sensing appears to play an important part
in increasing the accuracy of stop sign detection (Fig. 16). For
car-sensing, crowd-sourcing increases precision by nearly 15%
but commensurately reduces recall, due to potential inappro-
priate stop sign behaviors, such as not decreasing the speed
low enough. For phone-sensing, crowd-sourcing increases pre-
cision by 6% and reduces recall less significantly. Moreover, we
also find that car-sensing needs fewer crowd-sourced traces to
converge to its highest accuracy than phone-sensing: this is be-
cause the car-sensors can generally detect stops more accurately
by directly measuring breaking and throttling activity, requiring
less disambiguation.

B. Sensitivity to Phone Positions

Phone-sensing performance has assumed a favorable fixed
position. To understand how the phone-sensing results change
when the phone is carried in a less favorable position, we now
revisit each of the applications and compare the phone sens-
ing results across the windshield mount, cup-holder, and driver
pocket positions (see Fig. 17).

Lane Change: Fig. 18 shows that the precision and recall
for the phone-sensing lane change detection varies significantly
with phone positions. The cup-holder performance (75.14%) is
close to the original fixed position (76.57%), while the pocket
and windshield positions show degraded performance, particu-
larly on curved roads.

One might expect the highest performance with a rigid mount-
ing to the vehicle body and performance to diminish when the
phone is in the drivers pocket and subject to driver movements.

Fig. 18. Phone position sensitivity: Lane change detection.

Fig. 19. Phone position sensitivity: Pothole detection.

We were surprised, however, by the relatively poor performance
of the windshield mount. We now suspect that the mount ampli-
fies vibrations that affect the gyroscope readings, a cornerstone
of the algorithm that is used to calculate the lateral displacement.

Pothole: Fig. 19 shows the phone-sensing pothole detection
performance for different phone placements. While the perfor-
mance of the windshield and cup-holder positions is quite close,
the pocket position is an outlier: the phone barely detects any
potholes at all in this position. We believe that this is because
the bump is largely absorbed by the seat and human body.

If the crowd-sourcing mechanism is not engaged, we also
observe that the position of windshield mounted phone has sim-
ilar precision to the position of cup-holder, while recall at the
windshield is much worse than in the cup-holder. We attribute
this to the cup-holder being close to the center of the vehicle
and therefore feeling bumps on any of four wheels. In con-
trast, the windshield mounted phone is biased towards the front
wheels and may not detect the bump if only a rear wheel hits the
pothole.

It is also worth noting that crowd-sourcing reduces both pre-
cision and recall for phone-sensing approach, in both the cup-
holder position and windshield position. Our hypothesis is that
phone-sensing in these positions is likely to produce incon-
sistent detection results across different traces, but our current
crowd-sourcing mechanism (based on majority voting) requires
consistent observations to produce a consensus. We have left a
detailed understanding of this to future work.

Road Grade: Fig. 20 shows the pitch errors encountered with
the inertial phone-based road grade estimation across different
phone placements. We concentrate here on the inertial approach
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Fig. 20. Phone position sensitivity: Road grade estimation.

Fig. 21. Phone position sensitivity: Stop sign detection.

since phone placement is unlikely to affect barometer sensors.
We observe that the windshield mounted position provides us
with results that are comparable to the fixed inertial sensor unit
(which emulates an embedded car sensor). The pitch error with
respect to the ground truth is about 0.25◦ in both cases and
could likely be further reduced through improved calibration.
However, the error in road grade estimation increases when the
phone is placed in the cup holder or in the driver’s pocket. This
can be caused by small changes in the phone orientation due to
leg movement or sliding in the cup holder. Note, however, that
even in the pocket position the mean error is only about 0.5◦.

Stop Sign: Fig. 21 shows the performance of phone-sensing
based stop sign detection across the different phone positions.
The results are not very sensitive to phone placement. Since our
algorithm only uses GPS and not inertial sensors, it appears that
the phone was able to receive a sufficiently strong GPS signal
in all positions during our experiments. One might expect that
the results do become more sensitive to phone placement in
situations when the GPS signal quality is diminished.

The implications of these results are summarized in the next
section.

V. LESSONS LEARNED

Our primary finding is that neither car-sensing nor phone-
sensing alone is likely to satisfy all applications, and that a
hybrid-sensing approach, in which car sensors are paired with
phone sensors will be necessary to compute vehicular context.
An equally important result is that crowd-sensing of these hybrid
traces can significantly improve accuracy.

This finding is important because the choice between phone
and car sensors will not go away in the future. Smartphone
platforms evolve more rapidly (in 1–2 years), while the average

lifetime of cars is more than a decade (11.4 years in 2012 [7]);
thus, smartphones will always have better sensors than cars.
Second, car sensors are specialized for vehicular control, not
for context sensing (this is discussed in more detail below),
so it is likely that the general purpose sensors on phones may
be more appropriate for some sensing tasks. Finally, cars are
unlikely to co-opt phone sensors: especially for mass market
vehicles, adding new sensors can be expensive since these need
to be engineered for long lifetimes.

Our four case studies highlight the importance of hybrid-
sensing and crowd-sourcing. In lane change determination, car-
sensing outperforms phone sensing but for a very subtle reason:
even though it has a dedicated yaw rate sensor, phone sensors can
equally well compute lane displacements. What really makes a
difference is the fact that the phone sensors cannot reliably
measure when a shift maneuver has actually happened, while
the car sensors have a direct measure of this quantity. In pothole
detection, the presence of well engineered sensors in the car that
directly measure frame vibrations resulting from rough road,
and also lateral acceleration, helps car sensing be much more
accurate. In road grade estimation, our study shows the opposite
result: in this case, phones have general-purpose barometer and
inertial sensors that are quite accurate in estimating road grade,
but at least the cars we had access to do not have any sensors
that we could have used for road-grade determination. Finally, in
stop sign detection, car-sensing and phone-sensing performed
comparably well. Even though there are specialized sensors
in the car to directly measure stopping activity initiated by a
driver, phone sensors perform quite well in part because crowd-
sourcing compensates for the fact that phone sensors can only
indirectly measure stopping activity.

A second interesting lesson that emerges is the design phi-
losophy of sensing between the car and the phone. Cars have a
large number of sensors, some of which are aggregated or pro-
cessed virtual sensors from some underlying physical sensors.
A good example is the yaw rate sensor, which returns the angu-
lar velocity about the vertical axis, computed from an on-board
gyroscope. This gyroscope, however, is not directly accessible.
Phones, on the other hand, have a few sensors to which soft-
ware has direct access (the gyroscope and the accelerometer are
examples). This is not surprising: cars have not been designed
for programmability, but phones have, and phone sensors are in-
tended to serve several different applications, while car sensors
are designed to serve specific control needs, and were not orig-
inally intended to be exposed to external software dynamically.
This is another reason why we believe that the hybrid-sensing
model is the one that is most likely to meet the needs of vehicular
context sensing.

A challenge in incorporating phone-sensing, lies in its sensi-
tivity to phone position. The best phone position depends on the
exact measurements taken. A rigid windshield mount generally
works well but performs poorly in applications that depend on
precise inertial measurements while the car is moving, since
the windshield mount can act as a lever and amplify vibra-
tions. With the phone in the drivers’ pocket, the accuracy is
generally reduced compared to more rigid phone positions. The
performance in this position is particularly poor for vertical ac-
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celeration measurements (e.g., pothole detection) since the seat
and body dampen the vertical forces. In our experiments, the
cup-holder position showed the most consistent results across
applications but it carries the risk that the phone itself will move
inside the cup-holder when stronger acceleration forces act on
the car.

We also learned that crowd-sourcing helps different algo-
rithms in different ways. For lane changes, crowd-sourcing helps
compute a various spatial quantity, namely curvature, curve ori-
entation, etc. For pothole detection, crowd-sourcing helps in-
crease detection confidence, and for road-grade it can enhance
spatial coverage.

These observations are qualitatively reinforced by another
task, stop-sign detection, for which we designed car-sensing
algorithms, and used an existing phone-sensing algorithm. We
have omitted a detailed discussion of this task, for space reasons.
However, for this task, phone-sensing performs comparably to
car-sensing, and both algorithms are insensitive to phone posi-
tion. Crowd-sourcing can significantly affect precision and re-
call for this task, since it can be used to distinguish between stop
signs and traffic lights (where a significant fraction of vehicles
do not stop at the intersection).

These observations also point to opportunities to support de-
velopers of vehicular context through system services and con-
text sensing frameworks. Most important, such infrastructure
should facilitate hybrid-sensing with phone and car sensors but
also allow for crowd-sensing. It should accommodate the need
for trace augmentation, the derivation of a type of sensor in-
formation from other related sensors, when a specific sensor is
unavailable. In addition, such infrastructure should offer mecha-
nisms for detecting and adjusting to different phone placements
and orientations. Our experience suggests that designers of ve-
hicular contexts can leverage such capabilities for a broad range
of future vehicular context sensing applications.

VI. RELATED WORK

Lane Change Detection: The automotive industry has incor-
porated vision-based lane departure sensors [22] inspired, in
part, by lane marker detection algorithms from the computer
vision community [23], [24]. In general, these approaches are
known to suffer from occlusion and poor visibility. Other work
has used smartphone inertial sensors to detect vehicle dynamics
[21], [25], [26], such as detecting turns and phone poses [25],
or detecting turns, curves, lane changes [21] and abnormalities
such as weaving, swerving, side-slipping, U-turn [26] on straight
roads. Dongyao et al. [21] proposed using lateral displacement
to detect lane changes. In contrast, our paper discusses the first
design for lane change detection both for straight and curved
roads, using inertial and other sensors from both vehicle and
mobile devices. Both our car-sensing and phone-sensing ap-
proach can detect lane changes on curved roads with novel
crowd-sourcing techniques.

Road Surface Anomaly Detection: Road surface assessment
used a variety of sensing technologies. Vision-based pothole
detection [27], [28] is sensitive to ambient light, while laser
imaging (LiDAR) techniques [29] and sound pressure-based

techniques [15] are expensive. In an early accelerometer-based
approach [13], potholes were detected using a high resolution
accelerometer mounted to the vehicle. This line of work has led
to a mobile app [14], which we use for our comparisons. Another
piece of work [3] proposed a phone-sensing based approach
for pothole detection. We are aware of no other work that has
attempted to quantify the efficacy of car-sensing based pothole
detection.

Road Grade Estimation: Road grade is important information
widely used in various vehicle applications [16], [17]. Several
existing road grade estimation approaches rely on vehicle kine-
matic information [30], [31] but require knowing vehicle mass,
which can vary with loading, or require other aspects of vehicle
geometry and assume limits to road grade [32]. High accuracy
GPS is has also been used to estimate grades with or without
inertial sensors [17], [33]–[35], but it is known that GPS ex-
hibits more than 10 m inaccuracy in obstructed environments.
Elevation data from cloud services [36] can be used to estimate
roadgrade, but are often erroneous on multi-level road infras-
tructures. Prior work has used specialized barometers to estimate
the road grade [37], sometimes to complement GPS elevation
estimation [38]. In contrast, our work explores the efficacy of
phone-based road-grade estimation, using barometric sensing
and inertial-sensing.

Stop Sign Detection: Previous work [4], [39] collected GPS
traces for a specific set of intersections, and differentiated stop
signs from traffic lights, using either heuristics or machine learn-
ing. Our phone-sensing algorithm is inspired by theirs, and our
accuracy results are comparable to theirs, but their work does
not incorporate car-sensing.

VII. CONCLUSION

In the near future, detecting vehicular context, a monetizable
quantity, will become an important problem. Mobile operating
systems for vehicles will allow apps access to hitherto propri-
etary vehicle sensors and be able to link with mobile phones.
We provide, to our knowledge, the first analysis of context sens-
ing based on internal vehicle sensors and its comparison with
phone-sensing algorithms for a variety of qualitatively different
vehicular context sensing tasks, all of which have several appli-
cations. Overall, we find that one approach does not dominate
another and that phone sensing would benefit from better tech-
niques to compensate for phone position. Thus, a hybrid model,
where car manufacturers partner with mobile device manufac-
turers to develop applications and methods for determining con-
text, and make heavy use of crowd-sourcing, is likely to be most
effective in the future for detecting vehicular contexts.
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