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ABSTRACT
Head-mounted devices (HMD) for Augmented Reality (AR) are
gaining traction thanks to a growing number of applications in the
areas of image guided therapy, computer aided design, cargo pack-
ing, manufacturing and digital field service. However, providing an
always available, intuitive and user friendly input for these devices
remains a challenging problem. This paper explores recognizing
dynamic, micro finger gestures using capacitive coupling for in-
teracting with a head-mounted device. Electrodes are attached to
fingertips of users gloves and capacitive coupling among all pairs
of electrodes is measured quickly to infer the real-time spatial re-
lationship between fingers. The system is able to recognize fine,
low-effort finger gestures, such as swiping, sliding, tap, double-tap.
We evaluated our prototype with 14 gestures executed by 10 subjects
and found a 97% accuracy of gesture recognition.

CCS CONCEPTS
• Human-centered computing → Interaction design; Ubiquitous
and mobile computing; • Computer systems organization →
Sensors and actuators.
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1 INTRODUCTION
Head-mounted devices (HMDs) for Augmented Reality (AR) are
transforming modern workspaces thanks to their ability to overlay
digital information onto the physical world. There are a growing
number of applications of these devices in different industries, such
as image-guided therapy [1], site productivity improvement for con-
struction workers [2], online support for field service workers [3],
training new employees [4]. However, providing inputs to these de-
vices while being user friendly, intuitive and ensuring an immersive
experience remains a challenging problem: the current input tech-
niques mostly require users to hold a tablet or smart phone in one
hand or both hands or require hands to be present in the field of view
of a sensor. This often leads to inconvenient interactions and limits
the device usage in mobile scenarios. For example, camera-based
detection of in-air gesture interfaces (Microsoft HoloLens [5]) re-
quires users to raise a hand to eye level, which can cause fatigue
over longer periods of use and is also impractical in some scenar-
ios, such as repair and maintenance. Voice input can be convenient
for some simple instructions or information, but can be disturbing
in a common workplace setting. Therefore, to advance the usage
of the head-mounted devices, an always-available, low-effort, and
expressive input method is required.

Input methods using hand or finger gestures can satisfy this need.
Current techniques being used for hand/finger gesture recognition
include off-body sensing (cameras [5], radar [6], acoustic [7]) and
on-body sensing (inertial sensors [8], impedance tomography [9],
magnetic sensors [10]). Some approaches seek to reconstruct arbi-
trary hand poses, but generally rely on cameras, which require the
hand in the field of view and significant computational overhead,
or visible light sensing [11], which also requires user hands to be
inside the sensing space. In addition, gestures being recognized often
include large movements of the fingers or the whole hand, which can
be tiring to users during/after long periods of usage. The existing
gesture recognition techniques fall short of satisfying the needs for
controlling HMDs in working environments because of the follow-
ing reasons: unable to operate outside a specific region of sensor
operation; heavy instrumentation on the hand or in off-body sensors;
difficult to detect low-effort finger gestures that are more suitable
for HMD controller.

In this paper, we propose HandSense, a light-weight, always-
available system to recognize a series of dynamic, micro finger
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Figure 1: HandSense concept. While Augmented Reality head-
mounted devices start to find applications in areas like manu-
facturing, repair and maintenance, providing inputs for these
devices with low-effort from users remains a challenge. Hand-
Sense offers an always-available, user-friendly dynamic, micro
finger gesture recognition system for these devices.

gestures that are highly suitable for controlling HMDs. The key
idea in HandSense is measuring and classifying pairwise profiles of
capacitive coupling between electrodes placed on all fingertips. Ca-
pacitive coupling between two electrodes is a monotonic function of
the distance between them; it therefore allows inferring distance be-
tween two corresponding fingertips. Given the structural constraints
of the human hand, the inferred fingertip distances allow recognizing
micro finger gestures.

This approach is motivated by the observation that there exists a
large and important class of augmented reality applications where
users typically wear gloves (e.g., in the medical, maintenance / repair,
manufacturing, or certain e-sport domains). The electrodes can be in-
tegrated into the fingertip sections of such gloves, akin to how many
gloves already contain conductive materials at the fingertip to enable
touchscreen use. Placing electrodes on each fingertip can therefore
be much less intrusive than one might initially assume. Note also,
that in contrast to more heavily sensor-instrumented gloves for sens-
ing hand motions, such as DataGlove [12] or fiber-optic gloves for
VR applications [13], HandSense only requires electrodes as sensing
elements, which can be fashioned from cheap conductive materials
such as copper tapes or conductive thread (connecting to an exter-
nal processing unit possibly placed inside user’s smartwatch or a
wristband), thus the gloves can be particularly useful in medical or
high wear and tear working environments. While currently intended
for gloves, advances in skin electronics [14] (perhaps electrodes and
traces back to the on-wrist device) may allow HandSense techniques
to be used even in applications where users do not wear gloves.
Overall, note that electrodes and traces are not active components,
thus the fabrication can be low-cost.

Another aspect that helps HandSense better serve as a gesture con-
troller for HMDs is its low-effort, always-available property. Since
the system relies only on interactions between sensing elements
on fingers, it is not limited by the working range or suffered from
occlusion from external sensors (e.g. cameras [5], radar chip [6]).
In addition, HMD users in working environments often have their
hands occupied (e.g. therapists working on medical devices, cargo

workers holding packages); in these cases performing finger gestures
with small movements in any place is the more preferred method
over whole-hand movement onto the virtual dashboard, which is
inconvenient and interrupting to the workflow.

There are several challenges in realizing the HandSense system.
First, the human hand is a large conductive surface, thus the dom-
inant capacitive coupling of the fingertip electrodes is through the
hand and the signal is much less dependent on the relative distances
between the electrodes. To further increase the dynamic range of
the detection of spatial relationship between electrodes, we seek to
reduce the unwanted influence of the hand through the use of an
additional ground electrode on each finger. Second, to be able to
detect quick, dynamic, micro finger gestures, the capacitive coupling
measurements should be fast to provide frames of link measurements
quickly. We use synchronous undersampling technique, which is
a light-weight, low complexity method for estimating the received
signal amplitude. Third, as over-the-air capacitive coupling between
finger electrodes decreases quickly with distances, the link measure-
ments between non-adjacent fingers are less usable in the capacitive
profile. We identified an additional through the hand capacitive cou-
pling path between all fingers, thus enabling more types of finger
gestures to be recognized.

In summary, the major contributions of this paper are as follows:

• Proposing a placement configuration for electrodes on finger-
tips to enable measurement of capacitive coupling between
each pair of fingers with minimal effect from user’s hand.

• Designing a light-weight capacitive profiling system for mea-
suring pair-wise capacitive coupling between fingers, which
are then used for finger gesture clasification system.

• Identifying three types of finger interactions detected by the
capacitive profiling system, which enable more dynamic, mi-
cro finger gestures to be recognized.

• Designing and implementing a glove prototype and evaluating
HandSense in recognizing a set of 14 different micro finger
gestures based on data collected from 10 subjects.

2 RELATED WORK AND BACKGROUND
The advent of HMDs for Augmented Reality starts to bring to mod-
ern workplace intriguing applications, where information being over-
laid on physical world in workers’ views exposes new insights and
improves their productivity. Existing modalities of interacting with
devices, including keyboards, mice, track-pads and touch screens,
are not suitable for HMDs to smoothly blend workers’ experience
with HMDs with their normal workflow. Input methods using hand
or finger gestures are better candidates for these new devices, as
they are less likely to interfere with the workflows and require less
effort from users. In this section, we review related work on hand
or finger gesture recognition techniques, both hand-instrumented
and hand instrumentation-free approaches, then present an overview
of the advantages our proposed system, HandSense, has over these
techniques. The background of capacitive coupling, which is the
sensing technique used in HandSense, is also discussed.

2.1 Existing finger gesture recognition techniques
Hand-instrumented approach. Data gloves are a reliable way of
sensing hand gestures and movements, and have been in use since



HandSense: Capacitive coupling-based Dynamic, Micro Finger Gesture Recognition Sensys’19, November 2019,

the early seventies. Early gloves such as the Sayre Glove [13] used
optical fibers with an LED on one end and a photoreceiver on the
other. Bending a finger bent the optical fiber reducing the amount
of received light and provided information about the gesture made.
Gloves such as the Data Glove [12] and Digital data entry glove
[15] focused on sensing the amount of finger flexion using bend
and flex sensors to infer hand and finger gestures. More advanced
gloves such as the AcceleGlove [16] and CyberGlove [17] were
sensor dense and usually had a mix of flex or bend sensors, touch
sensors, inertial motion sensors, tilt sensors, ultrasonic sensors, LED
and photosensors sensors, with sensors mostly affixed to the glove.
AcceleGlove [16] was equipped with inertial sensors (accelerome-
ter and gyroscope) which measured roll, pitch, yaw and provided
absolute angular position to help reconstruct the exact posture of
the hand. While this class of "data gloves" were rich in providing
data generated from different parts of the hand, the sensors were
not cheap and due to their large numbers the gloves were bulky,
cumbersome to carry and usually restricted the movement of the
users hands. Further, the sensors could not translate small changes
in flexion to finer or dynamic gestures and they also usually required
a user-specific calibration procedure.

Magnetic field sensing is another technique used to track the
position of fingers. Chouhan et al. [18] affix a strong magnet to the
palm and Hall sensors on fingertips. uTrack [19] users wear a pair of
magnetometers on the back of their fingers and a permanent magnet
affixed to the back of the thumb and Finexus [10] is able to track
precise motion of multiple fingertips by instrumenting the fingertips
with electromagnets. All of these methods use a source element that
creates a magnetic field and a small sensor that reports its position
and orientation with respect to this magnetic source by measuring
change in magnetic field when the fingers are moved. Though these
methods of sensing do not require line-of-sight between the source
and sensor, the entire system is often clunky and heavily dependent
on the range of magnetic field.

Electric field sensing can also be used to measure change in dis-
tance. CapBand [20] and GestureWrist [21] detect changes in wrist
contour by measuring the capacitance between a series of electrodes
integrated into a wristband. Electrical Impedance Tomography [22]
is a similar paradigm employed for hand gesture recognition. Tomo
[23] and Touche’ [24] recover the inner impedance distribution of
the wrist and forearm using pair-wise measurements from surface
electrodes surrounding them. The surrounding electrodes measure
changes in muscle tension to detect performed gestures. Hence, ges-
tures need to be performed with some effort to be detected. Also
these techniques find it hard to detect dynamic and fast gestures.

Hand-instrumentation free approach. Cameras can be used to
capture hand movements directly to infer the gestures being per-
formed. Several systems such as the HoloLens [5], DepthTouch [25],
6D Hands [26], Keskin et al. [27] and Microsoft Kinect [28] capture
raw images or video of the hand and process them using sophisti-
cated computer vision algorithms to determine hand position and
gestures being made. While camera-based techniques do not require
the user to wear or carry extra devices, thus making the experience
of using the system immersive and intuitive, they often raise privacy
concerns and come with large computational overheads. For gesture
recognition, they also require large datasets for reliable classification.
These approaches also assume that the hands are always in the field

of view of the camera (i.e., no occlusion) and external illumination
conditions will always permit capturing data of satisfactory quality.
Moreover, integrating camera modules leads to bulky systems.

Acoustic systems such as the FingerIO [7] and SoundTrak [29]
transform a device (smart-phone[7] or ring [29]) into an active sonar
system that transmits inaudible sound signals and tracks the echoes
from fingers at its microphones. These systems rely on line-of-sight
between the source and the microphones and the surface surrounding
the transmitter and receiver greatly influence reflections.

Light based technique Aili [30] uses a table lamp and few low-
cost photoreceivers to reconstruct a 3D hand skeleton in real time.
ZeroTouch [31] makes use of infrared LEDs and sensors for hand
pose sensing. While ZeroTouch only tracks fingers in a 2D plane,
Aili reconstructs 3D hand poses. SensIR [32] detects hand gestures
with a wearable bracelet using infrared transmission and reflection.
However, these solutions find it hard to translate small changes in
flexion to micro and dynamic gestures. They also require the hands
to always be in the field of view of the sensor.

Other WiFi based techniques used to perform hand gesture recog-
nition are WiFi channel state information (CSI) [33], WiFi received
signal strength (RSSI) [34] and more recently radar based systems
[6]. WiGest [34] leverages changes in WiFi signal strength to sense
in-air hand gestures around the user’s mobile device. Whereas, WiG
[33] attempts to achieve a fine-grained gesture recognition only by
observing abnormalities in CSI. Similarly, SignFi [35] recognizes
upto 276 sign language hand gestures using CSI. WiDraw [36] har-
nesses the angle-of-arrival values of incoming wireless signals at
the mobile device to track the user’s hand trajectory. More recently,
Google’s Project Soli [6] proposed a 60GHz radar chip and based
on the principles of radar sensing to detect micro movements of fin-
gers. Similar to camera and light based techniques, WiFi and radar
based sensors require line of sight between transmitter and the hand.
Further, these techniques also necessitate proximity to transmitters
and receivers.

HandSense approach. In terms of form factors, our proposed
system HandSense is closest to the hand-instrumented systems based
on gloves described above. However, due to the heavily instrumented
sensors used to collect useful data, these systems tend to be expen-
sive, bulky and cumbersome for users to wear. Other systems based
on more lightly instrumented form factors, such as wristbands, are
not able to sense micro gestures or dynamic movements of fingers.
The hand-instrumentation free approaches (e.g. cameras, radars,
acoustic sensing, etc.) also have their own limitations: they require
the surrounding environment to be stable, well illuminated, they
expect the hands to be in the field of view and they also have a
high computation overhead. The limitations of the above approaches
make them difficult to be used as hand gesture control methods for
HMDs in working environments, where workers have their hands
usually occupied, and/or move freely in space.

HandSense is able to overcome these problems by making use
of capacitive sensing. As demonstrated in the next sections, this
sensing modality has the following advantages: 1) HandSense is
always available; it infers the relative spatial relationship between
fingers, hence, the hands can be anywhere independent of field of
view and gestures can still be recognized, 2) by its sensitivity to
close range movements capacitive sensing allows recognizing micro
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finger gestures, 3) sensing electrodes are cheap and the glove is light-
weight even with embedded electrodes in it, and 4) low computation
overhead.

2.2 Capacitive sensing
Capacitive sensing is an ubiquitous sensing technology in human-
computer interaction. It works by measuring the capacitance varia-
tion between two or more conductors. In the most basic form, the
capacitance between two parallel plate conductors is C = ϵ0ϵrA

d ,
where ϵ0, ϵr are the free space and relative dielectric constants,
respectively, A is the area of the conductor plate and d is the dis-
tance between the two conductors. While there are many forms of
capacitors, the capacitive coupling between two conductors is al-
ways affected by only these three factors: electrode size, dielectric
between electrodes and distance between them.

The measurement technique in HandSense is closely related to
the shunt-mode capacitive sensing [37]. In this mode, a capacitive
link is established between two electrodes, in which one electrode is
powered by an AC signal and the displacement current is measured
at the other electrode. The displacement current is proportional to
the capacitive coupling amount between the two electrodes. Each
sensing electrode can be configured as either a transmitter or a
receiver. For n electrodes, there are n(n−1)

2 distinct measurements
for all transmitter-receiver combinations. Note that the electrodes
are in fixed positions with careful calibration to better detect the
appearance/position of human body parts.

While also using excitation-response measurement approach as
in the shunt-mode method, the electrodes in HandSense are placed
at mobile positions; in particular on fingertips. It then uses the pair-
wise capacitive coupling measurements between electrodes to infer
micro gestures performed by users. Measurement with this particular
electrode placement presents both challenges and opportunities: on
one hand, it is difficult to calibrate the measurement system with
mobile electrodes, and the large surface of the user’s hand causes
most capacitive coupling between electrodes to pass through the
hand. On the other hand, distance between fingers when performing
gestures is small enough for a capacitive coupling measurement
to work. Also, the relative motion between fingers is constrained
(fingers can only flex and move in certain directions). HandSense
optimizes the electrode placement to only expose the capacitive
coupling path associated with finger gestures, including close-range
over-the-air coupling and intended through-the-hand finger commu-
nication, while reducing the unwanted coupling in the back channel
between electrodes.

3 HANDSENSE OVERVIEW
HandSense is able to recognize a set of dynamic, micro finger ges-
tures that are suitable for use in conjunction with head-mounted
devices. This is enabled by placing electrodes on each of the five
fingertips of a hand and inferring the spatial relationship between
them through capacitive measurements from all the pairs of elec-
trodes. HandSense, therefore, is self-contained: unlike approaches
using cameras, on-body or external RF sensors, HandSense is able to
detect finger gestures when the hand moves anywhere in space, even
when it is not in the field of view (FoV) of a head-mounted devices

or hands are occluded. The system is also able to detect fast move-
ments (comparable to the speed of a quick swipe), thus allowing
the gestures to be low-effort to users. The availability everywhere
and the ability to detect fast, low-effort gestures make HandSense a
highly suitable input method for head-mounted devices.

On-finger electrode design. A simple method to infer close dis-
tance / proximity between two electrodes in free-space is by mea-
suring the capacitance between them as capacitance is inversely
proportional to the distance between electrodes. However, a naive
configuration of affixing one electrode on each finger comes with
problem: a large amount of the coupling between the electrodes
would be through the hand as opposed to over the air. This is because
the hand is more conductive than air and most of the capacitance
coupling between the two electrodes would be through the lower
impedance path along the hand. Hence it becomes difficult to mea-
sure the small change in capacitive coupling through the air on top of
a large capacitive coupling through the hand when the fingers move
closer or further away from each other. To solve this problem, we
propose adding a ground electrode underneath each signal electrode
to minimize the capacitive coupling between the signal electrode and
the user’s hand. More discussions about this design is in Section 4.

Minimally instrumented glove design. HandSense consists of
a central controller board worn on a user’s wrist and a glove which
is used to equip the user’s fingertips with sensing electrodes. Note
that the glove only requires passive components; electrodes and
traces. This makes HandSense particularly useful in high wear and
tear environments, such as healthcare, wellness and fitness, auto-
mobile/factory shop floor, assembly line. A user can connect their
own smartwatch/wristband with a new glove to use with his head-
mounted device.

Light-weight pair-wise capacitive coupling measurement tech-
niques. HandSense is based on the insight that most finger gestures
can be inferred from a profile of pair-wise capacitive coupling mea-
surements between fingertip electrodes. Furthermore, since Hand-
Sense seeks to recognize dynamic finger gestures, the pair-wise
capacitive coupling profile contains not only measurements at one
instant in time but a time series of measurements, providing richer
data for finger gesture classification. For typical dynamic, micro
finger gestures (e.g. sliding, tapping), which can last under 1 second,
the measurement system should repeatedly sample all finger-pairs
fast enough to deliver sufficient data points to infer the gestures.
We employ several techniques to satisfy this requirement: (a) fast
switching between electrodes to act as transmitters and receivers,
(b) a synchronous undersampling measurement technique to quickly
estimate the instantaneous received signal in each link. The syn-
chronous undersampling technique is light-weight in both hardware
and firmware: it avoids the needs of expensive components such
as mixers, phase shifters, and low pass filters, as in the traditional
synchronous detection technique. The on-board firmware only re-
quires a moderate ADC sampling rate and minimal computational
overhead, as opposed to the Discrete Fourier Transform technique.
Such low requirements made it easier to integrate the controller
electronics into low-cost wristbands for HMD users. We describe
these techniques in more detail in Section 5.

Finger gesture recognition. With the above electrode place-
ments and measurement techniques, we describe three different
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Figure 2: System overview

(a) A glove with electrodes
attached on fingertips and
connected with a wrist-
worn device.

(b) Cross-section view.

Figure 3: Electrode placement.

finger interactions that HandSense can recognize: direct over-the-
air finger proximity, finger touching, and indirect through-the-hand
electrode communication. These finger interactions produce signal
signature in the time series data, which can be used for recognizing
more finger gestures. With this time series data of measurements on
pair-wise links, we investigate different neural network based tech-
niques to classify the finger gestures. More details are in Section 6.

Design overview. Fig. 2 illustrates the overall design of Hand-
Sense. The sensing electrodes are attached on a glove at the fingertip
sections. These electrodes are connected with a central controller
board, called CapProfiler, which could be embedded inside a smart-
watch or wristband. Inside this board, a microcontroller controls
the signal transmission through a signal generator module, receives
signal from an analog receiver circuit, and coordinates timing of
different transmitter-receiver links. Received signal amplitudes cal-
culated from the measured signal on all links are packaged into
frames and sent over Bluetooth to a remote host, which can be a
head-mounted device the user is wearing. The time-series signal
sequences of all the communication links are then passed through a
trained end-to-end neural network model to classify into different
finger gestures.

4 DESIGN OF ON-GLOVE ELECTRODES
The electrodes (conductor plates) act as both transmitting and re-
ceiving elements in HandSense. They are placed on the top bone
(distal phalanges) of each finger (Fig. 3(a)). The rationale for placing
the sensing electrodes in these positions is that the fingertips are
the most active parts of the hand, and they take part in almost all
gestures. While we seek to measure the capacitive coupling between
each pair of electrodes over the air (small dielectric), the higher di-
electric constant capacitive coupling path through the hand presents
a challenge to HandSense. In addition to acting like a resistor, the

outermost layer of skin (epidermis) acts like a capacitor if placed
in contact with a piece of metal. The underlying tissue represents
one plate of a capacitor and the metal surface the other. The dry
epidermis represents the less conductive material or "dielectric" in
between. In our case we use an AC source to excite the electrodes,
this AC source "shorts" out the natural resistance of the epidermis
allowing the current to bypass that part of the hand’s resistance and
making the hand’s total resistance much lower. This resistance fur-
ther reduces with increasing frequency of the current. This means
that the dominant signal path goes through the hand (the less resis-
tive path) as opposed to through the air. According to the National
Institute for Occupational Safety and Health (NIOSH) the resistance
offered by the human body is in the range of 1000 to 100,000 Ω
[38] and the capacitor with A = 2cm2, d = 3cm with air as dielectric
has a capacitance of 590pF and an impedance of 26MΩ [39]. Hence
a weaker amount of capacitive coupling over the air between two
signal electrodes in the presence of a stronger capacitive coupling
through the body would be more difficult to measure. This is detri-
mental to our system as we wish to estimate the over-the-air distance
between fingertips based on the capacitance between the fingertip
electrodes.

To address this challenge, we place a ground electrode between
each signal electrode and the finger, with insulation layers in between
to prevent shorting of the electrodes (Fig. 3(b)). It is evident from
Fig. 4 that there is not much change in amplitude at 100kHz when
the ground plane is absent, whereas in the case with the ground plane
we can see that there is a drop in amplitude when fingers are moved
apart to a distance of 3cm.
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Figure 4: Received signal at 100kHz in one-electrode vs. two-
electrode designs. Here d is the distance between the two fingers
during its transmitting-receiving session.

Adding a ground electrode underneath the signal electrode closer
to the signal electrode than the skin helps, as it is at a lower potential
than the skin. Hence it couples stronger with the signal electrode. It
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also provides a common ground to the smart watch/device which
measures the voltage. Without the ground electrode, the transmit-
ting signal would couple to the user’s hand and then couple to the
receiving electrode.

Note that there are other advantages in having a defined ground
electrode: 1) the ground plane ensures that the signal is always
coupled to the same ground potential across all fingertips as each
fingertip has the same ground electrode underneath the signal elec-
trode. Without this common ground, each signal electrode is coupled
to its own dynamically changing finger potential, 2) generally fre-
quency multiplexing (i.e., each finger is assigned a pre-determined
frequency of operation) techniques are used to uniquely distinguish
received signals from different fingers. But since we are measuring
distance using capacitance, fingers that are far away from each other
produce signals that have very low amplitude. Having a common
ground plane ensures that the calculated signals are also with respect
to the same potential which means that all the fingers can be excited
with the same frequency signal.

5 DESIGN OF THE CAPACITIVE PROFILING
SYSTEM

The central controller board of HandSense, called CapProfiler, can
be embedded inside a wrist-worn device such as a smartwatch or
wristband, which leaves only electrodes on the glove. CapProfiler
board follows modularized design: signal excitation, reception, as
well as signal processing are all integrated on board, and the system
can be put to use once the user connects glove with sensing elements
with the CapProfiler board. To further lower the cost of making
CapProfiler boards, we seek a design with low complexity hardware
and light-weight measurement techniques in firmware.

5.1 Transmitter and receiver design
Capacitive Coupling Transmitted Signal. At any given time, Hand-
Sense transmits a sinusoidal wave as an excitation signal to an elec-
trode and measures the received displaced current from a nearby
unexcited electrode to infer the capacitive coupling between the two
electrodes. The choice of transmitting frequency is dictated by sev-
eral factors. On one hand, as the impedance through the air between
the two electrodes is XC = 1

2π f C , the higher the frequency is, the
lower the inter-electrode impedance is, causing more displacement
current at the receiving electrode. On the other hand, higher trans-
mitting frequency requires higher ADC sampling rates and real time
processing capabilities. In HandSense, we choose 100kHz sinusoidal
wave as our excitation signal.

Electrode

Vcc/2

Rf

Cf

OPA340

Vcc/2
+

-

Rg
Vcc

Vcc

INA126

Vcc

LMV324
To ADC

++

--

Figure 5: Analog receiver frontend

Analog receiver frontend design. We design a simple sensi-
tive analog receiver frontend circuit connected to an electrode as

shown in Fig. 5. The displacement current measured at the receiv-
ing electrode is amplified through a transimpedance amplifier. The
amplifying gain of the transimpedance amplifier (OPA340) is set by
the feedback resistor Rf following the formula: Vout /Iin = −Rf . It
also has a capacitor in parallel to create a lowpass filter to filer out
unwanted higher frequency components and harmonics. Since the
board is powered using a single supply a bias voltage of Vcc/2 is
provided at the non-inverting terminal. This forces the DC output to
about Vcc/2. The difference between this filtered, amplified output
voltage and a bias voltage Vcc/2 is further amplified by a second
stage using an instrumentation amplifier (INA126). This ensures
that we amplify just the small received signal. The instrumentation
amplifier has a default gain of 5 and additional gain can be set by
using Rд . The output from the instrumentation amplifier is fed to a
voltage follower with a low output impedance before being fed to
the microcontroller ADC.

Multiple transmitters and receivers. We utilize a round-robin
approach for multiplexing between different capacitive links, where
one link is the capacitance between a pair of fingers (i.e., thumb to
index finger is one link, thumb to middle finger is another link). We
also observe as expected that links are symmetric (e.g., the middle-
to-ring finger signal is the same as the ring-to-middle finger signal).
The two multiplexers, one for transmitting and one for receiving,
iteratively choose each of the electrode links, wait for the ADC to
sample enough data points before switching to another link. By using
the multiplexers we reuse the same signal generator and frontend
receiver circuits, further simplifying our hardware design.

5.2 Estimation of received signal amplitude
A common technique to calculate the signal amplitude at a given
frequency from ADC samples at a fixed sampling frequency is using
Discrete Fourier Transform (DFT). However, this technique requires
a high sampling rate, at least twice the frequency of interest, thus
causing high processing overhead for the microcontroller. Moreover,
we only need to compute signal amplitude for the transmitted fre-
quency, thus most of the frequency spectrum produced by DFT is
redundant. To avoid sampling data at high speed for high frequency
signal (100KHz), we estimate the received signal amplitude by syn-
chronous undersampling measurement technique, which was first
proposed by Smith [37] and described in more detail in [40]. This
technique can be seen as digital equivalent for synchronous detection
method in analog domain.

Synchronous detection is a common measurement technique for
recovering the amplitude of the received signal at the transmitted fre-
quency. Fig. 6(a) shows a typical hardware setup for the synchronous
detection measurement method. The sinusoidal signal of frequency
f from the transmitting electrode induces at the nearby receiving
electrode a received signal consisting of attenuated version of the
transmit signal plus noise. The received signal is multiplied with the
original transmitted signal to produce sidebands at +2f and -2f fre-
quencies and also a DC value. A subsequent low pass filter removes
these sidebands, and the remaining DC value is proportional to the
amount of displacement current on the receiving electrode. This
assumes the phase of received signal and transmitted signal have
the same phase. In practice, the received signal is demodulated with
both the transmitted signal and its 90-degree-shift version, to recover
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(a) Synchronous detection. (b) Synchronous sampling. (c) Synchronous undersampling.

Figure 6: Measurement methods for estimation of received signal amplitude.

the in-phase (I) and quadrature (Q) components. The received signal
magnitude is then calculated as

√
I2 +Q2.

Input :ADC sample array S (number of samples = 4n)
Output :Received signal amplitude
I = Q = 0
for i = 0 → n − 1 do

I = I + (S[4i] − S[4i + 2])
Q = Q + (S[4i + 1] − S[4i + 3])

end
I = I/n
Q = Q/n

return amp =
√
I2 +Q2/2

Algorithm 1: Calculation of received signal amplitude using syn-
chronous undersampling technique.

Implementing synchronous detection would require significant
hardware cost (including mixers, phase shifters, and low pass filters).
Moreover, the heavy low pass filtering after the mixer makes it slow
to response to fast signal. Synchronous sampling seeks to remove
these hardware components while still being able to estimate the
amplitude of the received signal at the transmitted frequency.

Fig. 6(b) shows a full period of a sine wave of frequency f with
DC offset. If we sample at 4f sampling frequency, the 4 samples on
each wave cycle are separated by 90 degrees each. Let S1, S2, S3, S4
be four samples on a wave cycle, when mapping these values onto an
equivalent circle, we observe that r1 = |S2−S4 |/2 and r2 = |S1−S3 |/2.
Applying Pythagoras’s law for the shaded triangle, we also have

r =
√
r21 + r

2
2 . This leads to the amplitude of the sinusoidal wave can

be estimated as: r =
√
(S1 − S3)2 + (S2 − S4)2/2.

The synchronous sampling technique is fast: it only requires four
samples to calculate the signal amplitude. However, it requires the
sampling rate of 4f , which can exceed the capability of some micro-
controllers when the transmitted frequency is high (e.g. 100KHz).
To reduce the required sampling frequency, we instead use synchro-
nous undersampling. We assume that inside a small time window,
signal is repetitive, so instead of sampling S1, S2, S3, S4 on the same
cycle, we sample them on continuous cycles. Now the samples are
taken 450 degrees each, and the sampling frequency can be reduced
to 4f /5. The formula to estimate the signal amplitude remains the
same. To increase SNR, we accumulate values of S1, S2, S3, S4 over
many cycles, average them before calculating the signal amplitude.
Algorithm 1 shows the full procedure.

In our implementation, we use an ADC sample array of size
16 to calculate the received signal amplitude for each link. With

sampling frequency of 80KHz, it takes 200us for capturing these
16 samples into a buffer. We implement ADC with Direct Memory
Access, which frees the CPU from sampling process. In the main
CPU process, we delay 1ms after switching the multiplexers to
ensure the DMA buffer contains only samples after the link is stable.
Therefore, a frame containing 10 measurements from 10 links takes
10ms, which leads to the measurement frequency of 100Hz in our
implementation.

6 MICRO DYNAMIC FINGER GESTURE
RECOGNITION

Typical finger gestures can be categorized into two groups: static
gestures (such as making the victory sign, spiderman sign, okay sign)
and dynamic gestures (such as swiping, sliding, tapping). HandSense
focuses on the later group of gestures, especially the dynamic, micro
gestures. These gestures are more suitable for interacting with the
head-mounted devices for workers on manufacturing or construction
sites: when the users hands can be busy with interacting with objects
on the site, moving a few fingers to perform a gesture is less likely
to disrupt the workflow. The gestures can be performed by finger
muscles, as opposed to large hand muscle groups, thus reducing
fatigue over longer use cases as well.

HandSense is highly suitable for detecting these type of dynamic,
micro finger gestures. The system is capable of providing frames
of link-wise measurements at rate of 100Hz, thus capturing more
data points to recognize these fast, micro finger gestures. In addi-
tion, we realized that the finger movements in these gestures are
more correlated with the relative position and velocity of each fin-
ger with regard to the other ones, as opposed to absolute position
and velocity of individual fingers with regard to another coordinate
system. Approaches using inertial sensors [8, 16, 41] or bend sen-
sors [12, 15, 17] are able to track individual finger joints, but find
it difficult to infer dynamic gestures being performed. Link-wise
capacitive coupling measurements in HandSense provides better
representation of these dynamic finger gestures.

In this section, we first show the three finger interactions that
HandSense is able to recognize, then describe the neural network-
based approaches to the problem of classifying finger gestures.

6.1 Recognition of different types of finger
interactions

With the configuration of electrodes on the fingertips, we identify
three finger interactions that can be recognized with HandSense. In
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(a) Closed fist gesture. (b) Pinch gesture. (c) Tap gesture.

Figure 7: Illustrations of finger interactions recognized by HandSense.
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Figure 8: Received signal vs. distance (Thumb to index finger)

this section, we illustrate the signal signature of each finger inter-
action with an example gesture. For better visualization, we also
include the time boundary for each gesture in gray boxes.

a. Direct over-the-air electrode proximity detection. Fig. 8 we
show the mean and standard deviation of the received signal at a re-
ceiving electrode when the transmitting and receiving electrodes are
on the index finger and the thumb respectively, and two electrodes
are kept in parallel at different distances. The received signal de-
creases exponentially with increase in distance between transmitting
and receiving electrodes. We observe that beyond 5cm, the received
signal stays at a minimum level, which is the capacitive coupling be-
tween signal traces on the processing board, thus electrode distances
more than 5cm are hard to detect.

As an illustration, consider the closing fist gesture shown in
Fig. 7(a), in which all the fingers are curled toward the palm to
make a fist. The time series of 4 links of adjacent fingers (pinky-ring,
ring-middle, middle-index, index-thumb) all show signal increase as
the fingers in each pair move close toward each other.

Note that since the capacitive coupling amount depends not only
on distance between electrodes, but also on orientation of electrodes
to each other, as well as possible capacitive coupling to the user’s
hand, there is no direct mapping between received signal amplitude
and electrode distance. However, as we are interested in dynamic
finger gestures, the relative change in time in each data stream is the
more important feature to recognize different gestures.

b. Detection of finger touching. When the two electrodes touch
each other (i.e., the insulation over the signal electrodes), the capaci-
tive coupling between the two would be the strongest. This strong
capacitive coupling produces saturated readings at the output of the
frontend receiver. An example of this finger interaction is the index
pinch gesture (Fig. 7(b)), in which index finger tip taps on thumb
tip. The index finger electrode acts as transmitter and the thumb
electrode acts as receiver. The received signal at the thumb electrode
quickly increases and saturates at 0.5V when the two fingers touch
each other.

c. Indirect through-the-hand electrode communication. The
short range (under 5cm) of the over-the-air electrode proximity
detection makes the capacitive link between far apart fingers (e.g.
thumb-to-pinky) seem unusable. However, we can take advantage of
the palm as a communication channel between them. We discovered
that when two electrodes are touching near the center of the palm
at the same time, since the human hand is conductive, there is some
capacitive coupling through the hand between the two electrodes. We
can take advantage of this fact to use in some intuitive and low-effort
finger gestures.

As an illustration, consider the tap gesture shown in Fig. 7(c), in
which the thumb taps onto the surface of the index finger. The middle,
ring, and little fingers are curled into the palm and thus electrodes
on these fingers are coupled to the user’s hand palm region. Fig. 7(c)
also shows the time series signal on three channels, from thumb
to middle, ring, and little fingers, when the user performs multiple
tap gestures. As can be seen in this figure, when the thumb taps the
base of the index fingers, received signals on all these three channels
increase because of more capacitive coupling through the hand in
each link. This provides features to differentiate this gesture in the
classification step.

6.2 Neural network-based gesture classification
The input to HandSense’s gesture classification system is a time
series data of data samples, each contains received signal ampli-
tudes in 10 links being calculated from the CapProfiler board. There
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are different approaches for the problem of time series classifica-
tion [42]. Classicial machine learning techniques, such as SVM,
Decision Tree, Logistic Regression, require manual feature extrac-
tion from the raw sensor data before feeding into their classifiers.
However, handcrafted features have several challenges, such as task
or application dependence, reliance on domain knowledge, difficulty
in transferring to a new type of sensor data [43].

We instead employ a data-driven approach. In particular, we
seek to train end-to-end models that allow raw sensor data as input
data for gesture classification. We utilize several common neural
network-based methods for Time Series Classification problems,
in particular Multi Layer Perceptron (MLP), Convolutional Neural
Network (CNN), and Long Short-Term Memory Network (LSTM).
The architectural details of each network is as follows.

Multi Layer Perceptron (MLP). As a baseline, we started with
a simple neural network model as follows: Each input sequence is
reshaped to a column vector of size 10 × [number of time steps].
The input layer is fully connected to a hidden layer, which is in turn
fully connected to an output layer. The number of hidden neurons is
set to approximately 2/3 × (number of input neurons + number of
output neurons).

Convolutional Neural Network (CNN). CNN is used frequently
with time series data problems, thanks to its ability to learn spa-
tial/temporal relationship in the input data. In our experiment CNN
network architecture, each input sequence is reshaped to a two-
dimensional feature matrix, one dimension size is 10 (number of
links being calculated), the other dimension is the time steps in the
sequence. We pad input data with zeros to make input sequences
of the same size. These input sequences are then used to train a
Convolutional Neural Network (CNN). Our CNN consists of two
convolutional layers, each followed by a max pooling layer. The
kernel sizes for the convolution layers are 5 × 10 and 20 × 1. The
pool sizes are 2 × 1 and 20 × 1. We use Rectified Linear (ReLU)
activation function after each convolutional layer and dropout of rate
0.4 after the fully connected layer. The initial learning rate is set at
10−3.

Long Short-Term Memory network(LSTM). LSTM is a spe-
cial kind of recurrent neural network (RNN) that is capable of learn-
ing long-term dependencies. Compared to standard feedforward
neural networks (e.g. MLP and CNN) that feeds the whole sequence
as an entire input, LSTM is able to learn the dependencies from
time-series data by feeding the sequence to the network step by
step. We experimented with a LSTM network with one hidden layer
consisting of 50 LSTM units. Dropout layers and L2 regularization
are used to avoid over-fitting the model. We set the initial learning
rate to 10−3.

7 EVALUATION
In this section, we present our developed prototype, the set of dy-
namic, micro finger gestures used in our experiments, then describe
the data collection process from users. Next, we evaluate the capa-
bility of HandSense in recognizing these gestures.

7.1 CapProfiler prototype
We designed a capacitive profiler board consisting of the following
components: a Teensy 3.2 microcontroller [44] to do the central
processing, a SparkFun Minigen signal generator [45], which is

(a) CapProfiler board. (b) Glove prototype.

Figure 9: Prototype.

centered around the chip AD9837 [46], to generate sinusoidal wave,
a custom analog receiver front-end circuit for displacement current
measurements, two 8-channel CD74HC4051 multiplexers [47] for
transmitting and receiving directions, and CC2650 BoosterPack [48]
for Bluetooth data streaming. The signal generator generates a 1V
peak-to-peak 100KHz signal. Fig. 9(a) shows the fabricated board.

We use a cotton glove and attach electrodes around its fingertips.
The electrodes are connected to the central processing board by
coaxial cables to avoid affect from environment noise (Fig. 9(b)).

7.2 Gesture set
HandSense is able to recognize different types of finger interactions
as described above, giving us an opportunity to specify intuitive
and low-effort finger gestures for operations on a head-mounted
device. We design a set of such gestures, illustrated in Table 1. These
gestures are highly suitable for operations on head-mounted devices,
for example:

• Sliding (right to left or left to right): to rewind or fast forward
any video

• Swiping: to scroll up or down a document
• Tap, double tap: to select an item on screen
• Closed fist: to close the current document or window
• Knob turn: to rotate displayed objects
• Pinch (between thumb and the remaining four fingers): to

select between different options by pressing virtual buttons

The gestures in the set also demonstrate the capability of Hand-
Sense in recognizing the finger interactions described in Section 6.For
example, the knob turn gestures take advantage of changing dis-
tances over time between thumb, index, and middle fingers. The
pinch gestures illustrate the ability to detect the transition from far
to near over-the-air electrode proximity and to the finger touching
state. The through-the-hand electrode communication can be seen
in gestures involving the thumb touching the palm, such as single
and double touch, sliding, or swipe. Also, most gestures require
only small amount of motions and can be performed by muscles
controlling the fingers, rather than those involving larger muscle
groups. Note that the gesture set includes certain pairs of gestures,
such as sliding right to left vs. left to right, knob turn clockwise vs.
counter-clockwise, which can be challenging to classify and may
easily be misclassified with each other.
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1. Finger rub
2. Sliding

(right to left)
3. Sliding

(left to right) 4. Knob turn (CW) 5. Knob turn (CCW) 6. Closed fist 7. Swipe down

8. Swipe up 9. Single touch 10. Double touch 11. Index pinch 12. Middle pinch 13. Ring pinch 14. Little pinch
Table 1: Full gesture set used in our experiments. Note that the illustrations do not include the hand glove.

7.3 Data collection and preprocessing
Ten subjects wore the glove on the right hand and performed the ges-
tures; the glove is equipped with electrodes on fingertips, connected
with the CapProfiler board worn on the subject’s wrist, as described
in above section. Each gesture is captured 25 times, with experiment
sessions lasting about 30 minutes per user. To simplify analysis, the
start and the end of each gesture are manually marked by pressing a
button. In total, we captured 10 × 25 × 14 = 3500 sequences with
different lengths. This dataset is used in most of our experiments.

Based on the markers of the start and the end of each gesture,
sequences are extracted into individual gesture windows. The time
series data is further processed by a Hampel filter, followed by a
moving average filter, before being given as input to the classification
system.

7.4 Gesture recognition performance
We use common metrics for multi-class classification: precision,
recall and F1-score, to evaluate the performance of each model in
recognizing different finger gestures. We use 10-fold cross validation
for evaluating these performance metrics. Table 2 shows these met-
rics for three models: Multi Layer Perceptron (MLP), Convolutional
Neural Network (CNN) and Long Short-Term Memory network
(LSTM).

Model Precision Recall F1 score
MLP 0.909 0.903 0.903
CNN 0.945 0.942 0.942
LSTM 0.976 0.975 0.975

Table 2: Classification performance of different neural network-
based methods.

MLP achieves 0.909 precision, 0.903 recall and 0.903 F1 score,
which is a good baseline for the classification. This shows that with

a simple fully connected layers model, the discriminative signatures
in the capacitive profiling are already able to provide reasonably
high accuracy in finger gesture classification. However, since MLP
concatenates time series sequences on all the links into a single 1D
input vector and samples are treated as independent neurons, it loses
the temporal dependency within a single link as well as across links.
For example, in swipe down gesture, the capacitive coupling amount
should increase then decrease in this order: thumb-index, thumb-
middle, thumb-ring, then thumb-little. As we will see, most of the
misclassifications in MLP happen within close pairs of gestures:
sliding right to left vs. left to right, knob turn clockwise vs. counter-
clockwise, swiping up vs. down, single-touch vs. double-touch.

CNN performs better than MLP (0.945 precision, 0.942 recall
and 0.943 F1 score). This is because CNN keeps the 2-dimensional
data (10 links × number of time steps) as input to the network, and
its 2D filters are able to learn the temporal dependency within each
link (e.g. received signal rises and falls when fingers move closer
and further away) as well as across links (e.g. swipe down gesture,
as described above).

LSTM has been widely recognized to achieve excellent perfor-
mance on time series data classification. Compared to CNN, LSTM
has better memorization of the long term dependencies of the past.
Based on our results in Table 2, we show that LSTM achieves the
best performance in all three metrics (0.976 precision, 0.975 recall
and 0.975 F1 score).

Fig. 10 shows the confusion matrix of the finger gesture classifi-
cation with the three neural network-based methods, using 10-fold
cross validation. As expected, we can see that most misclassifica-
tions are within pairs of close gestures: sliding left to right vs. right
to left, knob turn clockwise vs. counter-clockwise. CNN performs
better than MLP in differentiating gestures in each pair, thanks to
its awareness of temporal dependency in the data stream. LSTM
further shows its superior performance on detection of compounding
gestures such as single touch and double touch. Knob turn (clock-
wise, counter-clockwise) are the most challenging gestures for all
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Figure 10: Confusion matrix of finger gesture classification using three neural network-based models.
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Figure 11: Sensing data from two subjects performing knob
turn (CW) gesture (gesture 4).

three models. When doing raw data analysis, we identify several
possible reasons for these more likely misclassified gestures. They
are hard to perform (feedback from users), meaning the collected
signal might not have been consistent across users or even for the
same user. Another reason is the estimation of fingertip distance in
our current prototype. Fig. 11 shows two gesture instances for knob
turn (clock-wise) gesture from two subjects. Intuitively, the gesture
recognition for this gesture depends on distinctive features in signals
in three links: middle-thumb, index-thumb and middle-index. We
can see peaks in signals in middle-thumb and index-thumb links
for subject 2, while these peaks disappeared in subject 1 case. This
is because subject 1 has his fingers far apart when performing the
gesture, while current prototype of HandSense can only recognize
finger tip distance smaller than 5cm (as seen in Fig. 8). We believe
the system will have better gesture recognition accuracy when longer
distances can be recognized, which can be achieved by increasing
the electrode size, increasing the gain and/or extending the dynamic
range of the receiver. We leave this optimization to future work.

Overall, the three neural network-based methods have high ges-
ture recognition performance on our collected dataset, proving the
distinctive signatures in the data stream collected from our measure-
ment technique. Note that this exploration of neural network-based
methods is by no means an exhaustive search for the model with
the highest recognition performance. Instead, the focus is on the
suitability of this new measured capacitive coupling profile in recog-
nizing fine-grained finger gestures. The results in this section provide
a promising baseline, and we leave additional analysis of suitable
machine learning techniques for future work.

7.5 Microbenchmarks

Precision Recall F1 score

0.8

0.9

1
100Hz 50Hz 25Hz 10Hz

Figure 12: Effect of the measurement rate on classification per-
formance.

Capacitive coupling measurement rate vs. classification accu-
racy. We evaluate the effect of the measurement rate on the classifi-
cation accuracy of HandSense. From 100Hz-rate dataset collected
from the above process, we downsampled the data stream to simu-
late data collected at 50Hz, 25Hz, and 10Hz measurement rate. On
these new datasets, we use the same CNN network architecture and
10-fold cross validation to evaluate the classification performance.
Fig. 12 shows Precision, Recall, and F1 scores for these measure-
ment rates. We can see that the classification performance degrades
as the measurement rate decreases. This shows the advantage of our
light-weight measurement technique in delivering high-rate mea-
surements to classify fast, dynamic finger gestures more accurately.

Glove independency. Gloves used in HandSense system serve
only as a convenient means to connect finger electrodes to the Cap-
Profiler board on a wrist-worn device. To illustrate that the glove
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being used has little effect on the classification performance of Hand-
Sense, we asked one of the ten subjects above to wear a Hyper Tough
Gripping Glove (Fig. 13) and collected another set of experiments
from this subject. We then trained a CNN model using data collected
from previous set of ten subjects when they wore the cotton glove,
and tested this model on the newly collected data. The classification
achieves 0.979 precision, 0.977 recall, and 0.977 F1 score, proving
that training the HandSense classifier on only one glove allows the
user to use other gloves as well.

Figure 13: Different glove.

8 DISCUSSION AND FUTURE WORK
While current prototype provides reasonably high accuracy in finger
gesture recognition, future work is needed to make HandSense fit
for practical applications. We identify several of such aspects in
this section, including power consumption, glove usability, gesture
spotting and segmentation and cross-user training.

Power consumption. For fast prototyping, our current CapPro-
filer prototype uses off-the-shelf modules, including a Teensy 3.2
microcontroller [44], a MiniGen signal generator module [45], and
TI CC2650 BoosterPack for Bluetooth module [48]. At 3.7V supply
voltage, the average current drawn in this unoptimized prototype is
90mA when Teensy is in active mode and 57mA when it is in sleep
mode, with the breakdown for each component shown in Table 3.
This means the CapProfiler board consumes 330mW in active mode
and 211mW in sleep mode. While this is high power consumption,
we believe power consumption can be reduced in an optimized pro-
totype, given the simple functionalities of the CapProfiler board.
Several power optimization methods can be: replacing MiniGen
module with a simple microcontroller’s pin toggle at the transmitted
frequency, lowering measurement rate (increasing microcontroller’s
sleep time) while HandSense is in idle mode. We leave the power
optimization of the CapProfiler board as the future work.

Component Current drawn
Teensy (active mode) 38mA
Teensy (sleep mode) 5mA
Analog receiver frontend 2mA
CC2650 BoosterPack 10mA
MiniGen 40mA

Table 3: Current drawn in each component in our CapProfiler
prototype.

Usability. Gloves are already prevalent in some workplace sites,
such as repair and maintenance, and HandSense is easily adopted in

these areas. While the current HandSense prototype remains bulky
with coaxial cables connecting the finger electrodes with the Cap-
Profiler board, given the minimal requirements for the glove (only
finger electrodes and traces are needed), we believe it is possible to
design cheap gloves with all sensing elements weaved into the fabric.
Also, with the advance of skin electronics [14], the electrodes and
traces can be attached directly to the user’s hand, thus potentially
enabling more applications of HandSense in consumer electronics.

Gesture spotting and gesture segmentation. Current system
assumes well-defined start and end points of each gesture as the
input to the classifier. We focused more on the sensor design and
the suitability of measurement signal for the task of finger gesture
classification. To be able to develop HandSense into a real-world
system, other challenges still remain, such as detection of registered
finger gestures versus random motion, segmentation of consecutive
finger gestures, which we leave for future work.

Cross user training system. The performance metrics reported
in previous section is for 10-fold cross validation, which simulates
a per-person trained gesture classification system. We also experi-
mented with the leave-one-person-out approach on the same dataset,
and achieved lower performance (MLP: 0.682 Precision, 0.681 Re-
call, 0.649 F1 Score; CNN: 0.712 Precision, 0.701 Recall, 0.671 F1
Score; LSTM: 0.822 Precision, 0.815 Recall, 0.813 F1 Score). We
believe with larger dataset, a more generalized model can be built to
support cross-user training scenarios.

9 CONCLUSION
In this paper, we introduce HandSense, a system based on pair-wise
capacitive coupling measurements between electrodes placed on
fingertips to recognize dynamic, micro finger gestures suitable for
operations in Augmented Reality applications. We proposed a place-
ment configuration for electrodes on the fingertips that minimizes
the effect from the human hand to better associate the capacitive
coupling measurements with inter-electrode distances. We designed
a light-weight measurement technique based on synchronous un-
dersampling to capture high-resolution capacitive profiling of fast,
dynamic , micro finger gestures. The capacitive profiling is used in
three end-to-end neural network-based models for gesture classifi-
cation. Experiment results with our HandSense prototype show an
average classification accuracy of 97% over a set of 14 dynamic,
micro finger gestures from 10 different subjects. It achieves this accu-
racy without restrictions on hand position (as compared to cameras,
for example) and with relatively lightweight instrumentation of the
glove that enables use in environments where gloves are regularly
changed. We believe our technique is a promising input interface
to be used in conjunction with head-mounted augmented reality
devices in working environments, which allows users to control the
interface through finer gestures that are less interrupting to their
workflow.
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