
Real-time Tra�ic Estimation at Vehicular Edge Nodes
Gorkem Kar

WINLAB, Rutgers University
gkar87@winlab.rutgers.edu

Shubham Jain
WINLAB, Rutgers University

shubhamj@winlab.rutgers.edu

Marco Gruteser
WINLAB, Rutgers University
gruteser@winlab.rutgers.edu

Fan Bai
General Motors Research

fan.bai@gm.com

Ramesh Govindan
University of Southern California

ramesh@usc.edu

ABSTRACT
Tra�c estimation has been a long-studied problem, but prior work
has mostly provided coarse estimates over large areas. This work
proposes e�ective �ne-grained tra�c volume estimation using in-
vehicle dashboard mounted cameras. Existing work on tra�c esti-
mation relies on static tra�c cameras that are usually deployed at
crowded intersections and at some tra�c lights. For streets with
no tra�c cameras, some well-known navigation apps (e.g., Google
Maps, Waze) are often used to get the tra�c information but these
applications depend on limited number of GPS traces to estimate
speed, and therefore may not show the average speed experienced
by every vehicle. Moreover, they do not give any information about
the number of vehicles traveling on the road. In this work, we focus
on harvesting vehicles as edge compute nodes, focusing on sensing
and interpretation of tra�c from live video streams. With this goal,
we consider a system that uses the dash-cam video collected on a
drive, and executes object detection and identi�cation techniques
on this data to detect and count vehicles. We use image processing
techniques to estimate the lane of traveling and speed of vehicles
in real-time. To evaluate this system, we recorded several trips
on a major highway and a university road. The results show that
vehicle count accuracy depends on tra�c conditions heavily but
even during the peak hours, we achieve more than 90% counting
accuracy for the vehicles traveling in the left most lane. For the
detected vehicles, results show that our speed estimation gives less
than 10% error across diverse roads and tra�c conditions, and over
91% lane estimation accuracy for vehicles traveling in the left most
lane (i.e., the passing lane).

CCS CONCEPTS
•Information systems →Mobile information processing systems;
•Computer systems organization →Real-time system architec-
ture;

KEYWORDS
Object detection, Tra�c estimation, Vehicular sensing, Camera

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SEC ’17, San Jose / Silicon Valley, CA, USA
© 2017 ACM. 978-1-4503-5087-7/17/10. . . $15.00
DOI: 10.1145/3132211.3134461

ACM Reference format:
Gorkem Kar, Shubham Jain, Marco Gruteser, Fan Bai, and Ramesh Govindan.
2017. Real-time Tra�c Estimation at Vehicular Edge Nodes. In Proceedings
of SEC ’17, San Jose / Silicon Valley, CA, USA, October 12–14, 2017, 12 pages.
DOI: 10.1145/3132211.3134461

1 INTRODUCTION
With the evolution of technology, vehicles are becoming increas-
ingly connected and automated. They have evolved into rich sens-
ing platforms with a plethora of diverse sensors. While the stream
of sensor data can be communicated to and processed in a remote
cloud, bandwidth and latency challenges encourage processing of
this data near the edge and on the vehicles themselves.

Tra�c estimation. One sample application to use this data is
to estimate the tra�c. Existing work on tra�c estimation relies
on tra�c surveillance cameras or the GPS-based speed estimation
used by navigation apps. However, most roads are not covered
by tra�c cameras, and GPS-based works estimate the speed of a
few users that share their location information with the server
which might belong to outliers. Also existing GPS-based approach
can only determine the overall direction-level information; but
in many cases, lane-level tra�c information is critical for both
navigation and futuristic autonomous driving features. Therefore,
a new method that could be deployed widely and give better speed
estimation results is needed.

With high computing power and less power constraints, vehicles
provide plentiful opportunities to sense the dynamic environment.
We propose to use vehicles as edge compute nodes, focusing on
sensing and interpretation of tra�c from live video streams. Un-
like smartphones, that are constrained in compute resources and
available power, vehicles can support e�cient compute platforms
without the constraints of a small form factor compute node. Addi-
tionally, they provide wide reach into remote areas, where other
platforms may be unavailable.

With the help of the front facing cameras that are installed in
vehicles, we propose to record the tra�c and count the vehicles that
are traveling. Further, the average speed experienced by each driver
can be used to estimate the tra�c. Under free-�ow tra�c conditions
drivers have the �exibility to choose higher speeds. However, when
the density of vehicles increases, vehicle speeds tend to decrease.
Cameras allow capturing this information from many surrounding
vehicles, and often many oncoming vehicles. They can therefore
gather rich data about tra�c conditions.

Existing work. Well-known navigation applications such as
Google maps or Waze use the GPS traces of some users, that use

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Kar et al.

these apps on road, to calculate the speed of these vehicles to es-
timate the overall tra�c conditions. However, since these apps
are not used by every single driver on road, the calculated speed
belongs only to the drivers that report GPS traces, potentially intro-
ducing systematic bias due to uneven sampling. For instance, the
calculated speed could belong to a speeding driver in the left lane
or a cautious, slow driver in the right lane. Therefore, the estimated
tra�c information may not be accurate. By using tra�c cameras
that are deployed on roads more complete tra�c data could be
obtained at one location. The number of vehicles traveling, their
speeds, and congestion on a given road, are just a few questions that
could be answered using tra�c cameras and have been investigated
previously [38], [27], [33], [14] and [10]. However, the number
of deployed tra�c cameras is not su�cient to cover all roads and
vehicles, especially in remote areas.

This work seeks to overcome these challenges with a collab-
orative sensing system, with vehicle detection, vehicle tracking
and tra�c estimation components, as shown in Figure 1, by lever-
aging a dash-cam mounted in vehicle and a processor to process
the video stream. The vehicle detection component of such a sys-
tem could work continuously to detect vehicles and determine
bounding-boxes around each vehicle. The vehicle tracking com-
ponent then tracks the movement of each detected vehicle. With
the tra�c estimation component, we can then count the number
of vehicles on roads, estimate the lane in which they are traveling
and their speeds using image processing techniques.

The salient contributions of this work are summarized below.
� An automated tra�c estimation framework that manages

vehicle detection, vehicle tracking and tra�c estimation
using a dashboard camera that can achieve wide coverage
at low cost.

� We evaluate through multiple days of roadway experi-
ments on a campus road and a major highway, and show
it is possible to count the vehicles that are traveling on a
given road and determine their speeds. Our system can
detect about 90% of vehicles traveling in the left most lane,
estimate their speeds with about 10% error.

� Lane estimation for vehicles in the camera’s view. Our
system achieves more than 91% accuracy in lane estimation
for the vehicles that are traveling in the left most lane, a.k.a
passing lane.

2 RELATEDWORK

There has been much work about vehicle detection and tracking.
For vehicle detection, most works [10, 14, 26, 27, 33, 38] assume
that the camera is static and vehicles are detected by �nding the
di�erences of the images for that camera. Using well-known back-
ground subtraction techniques, the only moving objects, vehicles,
have been identi�ed and speed estimations are made. Zhu et al [38]
and Jung et al [27] have attempted to calibrate the tra�c camera
using scene information for a particular camera and managed to
count vehicles and estimate their speeds. Other works [14, 33] have
extended this idea and made it possible to cover any stable camera
by �rst calculating the relative position of the tra�c camera to ve-
hicles, then estimating the lane boundaries and �nally calculating
the mean vehicle speed for each lane. Beymer et al. [12] proposed

to use corner features to estimate the tra�c �ow. Hsu et al. [23]
propose to use entropy to estimate vehicle speeds.

Cameras are not the only sensors to detect and track vehicles.
Sonar and camera are being used at the same time [28], which
achieves vehicle detection at close distances (i.e., sonar distance).
Bruzzone et al [13] show that using multiple sensors provides better
accuracy in object detection.

In computer vision, for object detection a set of robust features
(SIFT [29], convolutional [17] etc.) from images is calculated and
then classi�ers are used to identify objects. Classi�cation is per-
formed by using a sliding window on some parts of the image. This
strategy has been used in many projects [15, 19, 35, 36].

Recently, the YOLO framework [32] created a single convolu-
tional network that can detect multiple objects in an image. It
requires a training phase at initialization to work on full images
and object coordinates. Then it can process the entire image, with-
out a need for sliding window, and provide relatively accurate object
detection, almost in real-time (with latency of 25 ms).

In the realm of object tracking, Xiang et al [37] proposed a multi
object tracking framework based on Markov decision processes
(MDP). They have two stages: �rst they collect ground truth trajec-
tories of pedestrians, then a second learning method takes place as
decision process is performed by current status and history of the
target. At every step, MDP attempts to track the target pedestrian
and collects feedback from the ground truth. Then a similarity
function is updated with the feedback. The authors manage to
track pedestrians 7% better than the second best tracker.

In another work [18], the authors proposed a framework to
estimate trajectories of nearby vehicles using four cameras placed
diagonally on the car. They modify the MDP tracker that’s also
being used in [37] to track vehicles. Since the movement of vehicles
is not as random as pedestrians, the tracking performance is much
better than in the previous e�ort. With 4 cameras, the trajectory
recall is over 90%.

Lane estimation and tracking have been investigated earlier [24,
30]. In these works, the camera, LIDAR, and GPS sensors are used
to extract road features such as lane markers and road curvatures,
to enable applications such as a lane departure warning system and
a driver attention monitoring system. However, only the lane that
the camera vehicle is traveling in, is estimated, not those for other
vehicles.

3 BACKGROUND AND APPLICATIONS

With rising tra�c congestion, many applications may bene�t from
an accurate estimation of tra�c on a particular road. Let us consider
the following examples.

Tra�c Flow Terms. Tra�c can be represented in several terms.
Tra�c �ow represents the number of vehicles that are passing a
reference point per unit time (e.g., vehicles per hour). Tra�c density
represents the number of vehicles per unit distance along the road.
The higher either number is, the more congested the road becomes.
As roads become more congested, vehicle speed decreases. There
exists a well-known relationship between tra�c congestion and
vehicle speed.

For ease of interpretation, tra�c congestion is often represented
through a set of discrete Levels of Service (LOS). Table 1 [22] shows

Real-time Tra�ic Estimation at Vehicular Edge Nodes SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

this quantization and the relationship between the foregoing param-
eters. In this table, level A represents free-�ow tra�c while level F
represents congestion. The unit for Tra�c �ow is vehicle/hour/lane
and the unit for the density is vehicle/mile. Knowing the average
speed of vehicles traveling on the road or the tra�c-�ow, LOS could
be determined simply through a table lookup. By using the same
table, it is possible to calculate how many vehicles are traveling per
mile (i.e., tra�c density on the road).

LOS Speed Range Flow Range Density Range
A Over 60 Under 700 Under 12
B 57-60 700-1100 12-20
C 54-57 1100-1550 20-30
D 46-54 1550-1850 30-42
E 30-46 1850-2000 42-67
F Under 30 Over 2000 Over 67

Table 1: Levels of Service of a road

The tra�c �ow and density are direct metrics that show the
congestion of roads, or simply the tra�c. With higher tra�c �ow
and density numbers, one might expect heavier tra�c on roads.

Real-time Car Mapping. With the deployment of DSRC sys-
tems, vehicles have the capability to communicate with each other
and learn the positions of nearby vehicles. However, for older
cars that do not support DSRC, their location would not be known
by other vehicles. Some newer vehicles come with built-in GPS
receivers but since they don’t transmit that information, nearby
vehicles are not aware of the location of these cars. Access to a �ne-
grained tra�c estimation system creates awareness of a driver’s
surroundings by mapping cars in real-time.

Rear-End Collision Prevention. Rear-end collisions are the
most common tra�c accident in the United States [1]. Vehicles
traveling in close proximity to the vehicle in front usually cannot
stop in time if the vehicle in front needs to stop suddenly. With
DSRC, such accidents are expected to decrease because each vehicle
supports DSRC, transmits their location and speed in real time.
Being able to stop, of course, depends on the speed of other vehicles
and the following distance. The earlier a stopped vehicle is detected,
the more time a following driver has to stop in time. A stand-
alone speed estimation system on each car, that does not rely on
technology that is unavailable on all vehicles, is the need of the
hour. A continuous speed estimation of the vehicles around a car,
can prevent many mishaps, such as rear-end collision prevention.

4 VEHICULAR EDGE NODES
Vehicles have evolved from mechanical systems to cyber phys-
ical systems, generating large amounts of real-time data. They
o�er high compute capabilities with far less power consumption
concerns compared to other mobile platforms. Vehicles are power-
houses of energy, traversing through our physical world, and with
the many sensors built in to them they are capable of sensing our
dynamic environments.

Vehicles are increasingly being installed with front facing cam-
eras. Originally, these cameras were intended for a speci�c purpose
such as lane detection, lane keeping, and evidence in case of theft

or vandalism. However, recently, with the trend in autonomous
driving, dashboard mounted cameras have been used for applica-
tions ranging from simple pedestrian/car detection [11, 16, 20, 21]
to enabling a self-driving system [31, 34]. In addition to enabling
vehicle speci�c or driver speci�c services, these cameras can be
leveraged for large-scale tra�c analytics. Cameras in each vehicle
have a unique perspective of the observed environment. For ex-
ample, a car driving in the left most lane has a clear view of the
cars driving in the same direction, as well as those in the opposite
direction. Similarly, a car in the rightmost lane is optimally placed
for detecting stalled vehicles. Each car can be enabled to process
raw video streams and compute high level semantic information.
Pre-processing raw video streams to extract high level information
optimizes bandwidth usage, reduces latency, and conserves privacy.

This information can then be shared with neighboring vehicles
or a centrally located map service. The cloud-based map service
can aggregate the information from a large number of vehicles
to provide an up-to-date map of the region, overlaid with precise
tra�c and other road conditions information. This constitutes a
more accurate and sophisticated assessment of regions, compared
to other approaches such as surveillance cameras, that do not cover
all areas. Such near real-time �ne grained tra�c analytics can
enhance tra�c �ow and regulations, optimize transportation, and
further assist in provisioning city services.

Using vehicles as edge compute platforms has become possible
because of the increasingly powerful computing resources that are
becoming available from multiple vendors.1 These energy e�cient
compute platforms bring cutting-edge processors and accelerators
to cars, enabling sophisticated and very deep networks to process
rich video data in near real-time. As we bridge the gap in hardware,
this work aims to demonstrate continuous large-scale tra�c volume
estimation techniques on distributed compute nodes, such as those
in vehicles, to demonstrate that such compute resources are not
just valuable for advanced driver assistance and automated driving
systems, but could also support a plethora of (potentially third-
party) analytics applications if the platform becomes more openly
programmable.

5 SYSTEM OVERVIEW
To leverage the computation capabilities of vehicular edge nodes
and to demonstrate their potential, we design and implement a
tra�c estimation system. Our goal is to detect and count vehicles,
estimate the lanes they are traveling in and calculate the speed
of each vehicle. The system consists of three main components:
Vehicle Detection, Vehicle Tracking and Tra�c Estimation as depicted
in the Figure 1. The Vehicle Detection module aims to detect all
vehicles in the camera’s �eld-of-view, in real-time. A bounding box
is generated for each vehicle, which is then used for tracking the
vehicle along its trajectory in the car’s view. With simple parking
lot experiments, we could detect up-to 6 vehicles in one frame.
For real road tests, we could detect up-to 5 vehicles traveling in
both directions. Once a vehicle is detected, the vehicle tracking
module extracts Scale Invariant Feature Transform (SIFT) feature
descriptors within each vehicle’s bounding box. A vehicle is tracked
by matching these feature descriptors between consecutive frames.

1A well-publicized example is the NVIDIA DrivePX 2 [4] platform.

SEC '17, October 12�14, 2017, San Jose / Silicon Valley, CA, USA Kar et al.

Algorithm 1 Vehicle Count Estimation

1: function unique_vehicle_detection(f) . record framesf of
vehicles traveling in the opposite direction

2: for each consecutive framesf i and f i +1 do
3: N=count_si f t_f eatures(f i ; f¹i +1º);

. Compare with the threshold
4: if N > 15then
5: unique(i)=f alse;
6: else
7: unique(i)=true;
8: end if
9: end for

10: end function
11: function Increase Count (unique) . Increase the count if the

unique vehicle is being seen minimum 5 times
12: count=count++
13: end function

To improve the con�dence associated with each detection, we focus
on �ve consecutive frames. If the same vehicle is identi�ed in at
least �ve consecutive frames, we recognize it to be the same vehicle.
The tra�c estimation module, �rstly, counts the vehicles in the
opposite lane by identifying unique cars based on frame to frame
feature tracking. Secondly, it estimates the lane that each car is
traveling in, by creating pseudo-lane markers. Thirdly, depending
on the lane that car is traveling in, we estimate the speed as shown
in Algorithm 3. Each component will be discussed in detail in the
next subsection.

For each frame,vehicle detectioncomponent outputs bounding
boxes around the detected vehicle(s). Since there could be multiple
bounding boxes, we always use the left most bounding box of the
left of the screen to identify the vehicle in the opposite lane. All
vehicles detected in the right half of the screen are traveling in the
same direction as the car with the dash-cam.

Ideally, a vehicle traveling in the opposite direction would be
detected in multiple consecutive frames. In order to get an accurate
vehicle count on roads, we need to identify each unique vehicle.
This can be achieved by �nding similarity for the vehicles in con-
secutive frames. With thevehicle trackingcomponent, we compare
SIFT features of the vehicles for those frames. If we have a high
number of matched feature points, those two vehicles should be
the same one. After analyzing the frames, we observed that for the
same vehicle in consecutive frames, there are minimum 15 matched
features. So we compare the feature points from di�erent frames
and if the number of matching features is greater than 15, those
frames correspond to the same vehicle and we do not increase the
count. Finally, we check if the object is identi�ed 5 times. For
some non-vehicle objects, our algorithm classi�es them as vehicle.
We exclude them by checking if we have minimum 15 matched
feature for 5 consecutive frames. This algorithm is summarized in
Algorithm 1.

One can claim that not all the feature points are coming from
the vehicle, but also the outside world, such as road segment or
trees. The feature point distinction is discussed intra�c estimation.

In tra�c estimation component, we can �rst calculate the number
of vehicles that are traveling by using the vehicle tracking results.

Algorithm 2 Traveling Lane Estimation

1: function Initialize (r) . We manually record
the trajectories of two vehicles from each lane and note down
the center coordinates for each bounding box for roadr and
calculate the line equations for each lane

2: ll _f low_line = a1 . x + b1
3: ml_f low_line = a2 . x + b2
4: rl _f low_line = a3 . x + b3
5: end function
6: function Pseudo Lane Marker Generation (r) . for a

particular roadr , record framesf of vehicles traveling in the
opposite direction

7: Initialize(r) . We calculate the lane markers
8: ll _marker= (a1+a2)/2 .x + (b1+b2)/2
9: rl _marker= (a2+a3)/2 .x + (b2+b3)/2

10: end function
11: function Estimate the Lane (bb) . Compare

the center coordinatescoordof the bounding boxbb with the
pseudo-lane markers

12: if coord> ll _marker then
13: le f t_lane_vehicles=le f t_lane_vehicles++
14: else if rl _marker< coord< ll _marker then
15: middle_lane_vehicles=middle_lane_vehicles++
16: else
17: right_lane_vehicles=right_lane_vehicles++
18: end if
19: end function

For each unique vehicle, we increase the total count. The second
step would be to estimate the lane of travel for each detected vehicle.
For the vehicles that are traveling in the same direction, we propose
to use Hough lines [3], to extract line segments based on Hough
transform. In this way, we detect the lines in the road and identify
each lane separately. For vehicles traveling in the opposite lane,
estimating the traveling lane is harder since we may not always
observe the lane markers. We propose to create pseudo-lane mark-
ers in the opposite direction and estimate the traveling vehicle lane
using those markers. The process is summarized in Algorithm 2.

In order to estimate the speed of each vehicle, we need to know
how far that vehicle has moved for consecutive frames. We �rst
calculate the distance change of the matched SIFT feature points
in real world for consecutive frames. For this, the camera should
be calibrated and this will be discussed in Section 6.4. In this way,
we can calculate how each feature point is moved in real world as
shown indistanceCalculationfunction in Algorithm 3. However,
not all the feature points may belong to the vehicle Therefore,
some points may move di�erently for consecutive frames and the
relative distance change for these points should be avoided when
calculating the speed. This is thedetectDistanceAnomalyfunction.
And �nally, by using the change of distance of the feature points of
the vehicle, we can calculate the speed of that vehicle as shown in
Speed Estimationfunction in Algorithm 3.

Our system does not require user interaction since it can auto-
matically detect vehicles and estimate the speed of vehicles. The
only exception is to estimate the lane for the opposite side tra�c.

Real-time Tra�ic Estimation at Vehicular Edge Nodes SEC '17, October 12�14, 2017, San Jose / Silicon Valley, CA, USA

Figure 1: System Overview.

Algorithm 3 Vehicle Speed Estimation

1: function distanceCalculation (L; f) . record framesf of
vehicles traveling in the opposite direction,L is the horizontal
distance between the vehicle and the camera

2: for each consecutive framesf i and f i +1 do
3: xi ; j ;xi +1; j =get_si f t_f eatures(f i ; f i +1);

. Calculate the path distance
4: for each SIFT featurej do
5: dj =calculate_path_distance(L;xi ; j ;xi +1; j);
6: end for
7: m¹dº=average(dj)
8: � ¹dº=std_dev(dj)
9: end for

10: end function
11: function detectDistanceAnomaly (m¹dº; � ¹dº;d)
12: for each SIFT featurej do
13: if m¹dº � � ¹dº < dj < m¹dº+� ¹dº then
14: validd=validd [dj
15: end if
16: end for
17: end function
18: function Speed Estimation(validd ; f ps)
19: Speed=validdxf ps
20: end function

For each road, we need theInitialize step in Algorithm 2 to create
lane markers for that road, once.

6 TRAFFIC ESTIMATION

In this section, we describe how to detect vehicles on roads, cal-
culate the speed, and lane of travel information to estimate tra�c.
While we discuss this in the context of vision, similar methods
could be applied to other vehicle detection methods such as LIDAR.

6.1 Vehicle Detection
To detect vehicles on road in real-time, we need an object detection
framework that can detect vehicles regardless of make, model or

color. The detection system must be robust, and resilient to per-
spective. Prior detection systems often use hand-tuned features
to recognize objects in a frame. Recently, convolutional neural
networks (CNN) have been proven to perform better than tradi-
tional object recognition frameworks. We use a state of the art
CNN-based object detection framework called YOLO [32], for de-
tecting vehicles. The network uses features from the entire image
to predict objects and marks bounding-boxes around them. With
this method, the image is divided into grids and in each grid cell,
predictions and con�dence scores are generated for di�erent ob-
jects. The higher the con�dence score, the likelihood of correct
object detection increases. YOLO is designed as a convolutional
neural network: the initial layers are responsible for extracting
features and the connected layers are responsible for predicting the
objects with con�dence scores. It is extremely fast and streaming
videos can be processed with less than 25 ms of latency per frame.
Unlike classi�er-based approaches, YOLO directly corresponds to
detection performance and the entire model is trained jointly. The
pre-trained models have been trained for 20 di�erent objects. Since
it is designed to identify a wide range of objects, the car detection
performance is not satisfactory. We extend the provided car dataset
with publicly available car datasets by Stanford University [6] and
University of Illinois [7].

6.1.1 Training.With the extended dataset, we are using more
than 8000 images of vehicles that are taken from every angle, to train
the network. The training was done in a server with a GPU, Quadro
K-5000 [2]. The training stage requires labeled images, where the
images have a bounding box for each vehicle. The training takes
about 16 hours for 8000 images, and is a one-time process. At the
end of the training process, a weight �le is generated. We use this
weight �le with the YOLO network to detect vehicles in real-time.
We also need to note that in the dataset, we are using the images of
cars including sedans, SUVs, coupes, wagons with di�erent colors
and years. However, we don't include the images of trucks or buses.
Therefore, the detection performance for those vehicles would not
be as high as personal cars. That said, YOLO can be trained with a
larger dataset to include all types of vehicles.

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Applications
	4 Vehicular Edge Nodes
	5 System Overview
	6 Traffic Estimation
	6.1 Vehicle Detection
	6.2 Vehicle Counting
	6.3 Lane Estimation
	6.4 Speed Estimation

	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Discussion
	9 Conclusion
	References

