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ABSTRACT
Information sharing in connected vehicle systems helps each par-
ticipating vehicle to have a more complete and expanded sensing
range beyond its own sensing capability. When sharing visual traf-
fic information among vehicle nodes, it is of great significance to
identify overlapping components and associate objects in common
to create an accurate and complete surrounding scene. This paper
Extends FusionEye, a study of perception sharing, by exploring
deep learning approaches for real time vehicle verification tasks.
We propose two deep neural network architectures inspired by
ResNet and train the neural networks using FusionEye’s dataset.
Preliminary results show that when learning from vehicle’s appear-
ances and kinematic information, the verification accuracy reaches
92%, which provides possible solution for real time system.
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1 INTRODUCTION
Complete and accurate awareness of the surrounding traffic en-
vironment is crucial to the robustness of automated driving and
advanced driver assistance systems (ADAS). For a smart vehicle,
the particularly important information it needs to acquire while
driving on the road is the positions and status of other surrounding
vehicles as they are the major moving participants of the traffic.
Knowing its surrounding vehicles’ positions can help smart vehi-
cles make better decisions of driving behavior and thus reduce the
probability of accidents. Current vehicles are capable of capturing
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its surrounding environments using its on-board sensors, such as
cameras or lidars, which rely heavily on line-of-sight sensing. How-
ever, these sensors suffer from limited sensing ranges as well as
occlusions and thus are incapable of acquiring full information of
the surrounding environment, which degrades the performances
of smart vehicles or autonomous driving systems.

Besides increasing the quantity of sensors on vehicles, which
increases a vehicle’s cost and technological complexity, researchers
have been exploring approaches leveraging connected vehicle sys-
tems to share traffic information between each other so that one
vehicle may have information beyond its sensing capability with
the help of mobile networks. In such connected vehicle systems,
a vehicle can announce its own status including GPS position or
velocity to other vehicle nodes [3], broadcast estimated locations
of the surrounding vehicles in its view [6], or even share its own
perception in the form of dense point clouds among the vehicle
network [13].

The sharing of visual information between vehicles need to be
both complete and accurate, as there can be overlaps between two
views. For these connected sharing systems, how to handle the
visual information in common is significant to creating a correct
global map or scene of the environment. More recently, Fusion-
Eye [10] proposed a framework for sharing and associating sur-
rounding vehicles’ locations using different visual features and
criteria. It uses a bipartite graph merging algorithm to determine if
a detected vehicle’s profile image captured by on-board cameras of
two different observing vehicles belong to the same vehicle. In the
topology association phase, it uses both position information as
well as visual representation of the detected vehicle to find an opti-
mal matching of a bipartite graph and makes association decisions
based on the matching. However, the algorithm has a limitation in
that it assumes there are always vehicles in common in two views.
Even if there are no common vehicles, the merging algorithmwould
still generate a match between two views and thus create false posi-
tives as it associates two different vehicles as if they were the same
one.

This work seeks to improve FusionEye’s accuracy and address
the above limitation. Intuitively, our goal is to find a more robust
representation for each vehicle’s profile image so that it allows
generating a dissimilarity score between two vehicles that is large
for different vehicles and small for the same ones. This enables
further pruning of the bipartite graph links with high dissimilarity
scores to avoid false positive predictions. Unlike FusionEye, which
adopts hand crafted features to represent each vehicle, we resort
to deep neural networks to learn a dissimilarity metric for each
vehicle. The idea of metric learning has been explored intensively
and achieved remarkable results in the field of computer vision for
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face verification problems [9][17], in which most of the face images
are of unique size and free of occlusion or drastic illumination
variance. However, our vehicle images are captured in motion with
various image sizes, large illumination variance and cropping or
occlusion of the vehicle body. Thus it is worth exploring whether
metric learning using deep neural networks can help associating
vehicles from different views in real time connected vehicle systems.

In this paper we adopt the Siamese architecture, a common
approach for object verification tasks, and propose a network ar-
chitecture based on ResNet-18 [8] to solve the vehicle verifica-
tion/association problem. We train the network using appearances
(i.e., raw pixel information) and kinematic information (GPS mea-
surements and estimated depth information) of the detected vehi-
cles, to learn a robust dissimilarity representation of each vehicle
image. In the evaluation, we compute the Euclidean distance be-
tween the network output features of vehicle pairs and determine
their similarity based on the computed score. We compare our asso-
ciation accuracy with FusionEye’s merging accuracy and observe
that our method significantly improves the association accuracy.

2 NETWORK ARCHITECTURE
2.1 Siamese Architecture
For our vehicle association problem, we wish to find a representa-
tion for each detected vehicle such that their distance is small if
they are similar and large if dissimilar. This task of representation
learning has also been explored in the field of face/person verifica-
tion. While a typical pre-trained ImageNet [4] deep neural network
is good for classification, the corresponding Siamese architecture
can be adopted to solve verification problems. A diagram of Siamese
architecture is shown in Fig. 1. In the training phase, two branches
of the architecture are trained with shared weights using a batch of
image pairs and their similarity ground truth as inputs, and the out-
put features of each branch is fed into the loss function to compute
the difference between the similarity of each batch and the ground
truth. In the test phase, only one branch of the Siamese architecture
is used and serves as a feature extractor that outputs discriminative
feature vectors of the input query images, and we can compute
Euclidean distance between these features to determine the simi-
larity between the testing images. In the experiment, we adopt and
modify the ImageNet pre-trained ResNet-18 [8] as the main body of
our Siamese architecture, as shown in Fig. 2. Considering ResNet’s
outstanding performance on the ImageNet dataset, we anticipate it
to behave as a good feature extractor at the starting point of the
training process and further fine-tuning it can make the network
generalize well to our vehicle dataset.

2.2 Contrastive Loss
Unlike recognition and classification tasks, where the output of a
deep network is usually a vector of probability of each category,
the output of our network is a high dimensional feature vector
that can be used to compute similarity score with other output
features under Euclidean distance. We adopt contrastive loss [2][7]
during the training process, which “pulls” the features of dissimilar
pairs of vehicles further apart and “pushes” those of similar pairs
closer together in the high dimensional space. The contrastive loss

Figure 1: Siamese architecture

function is expressed as:

L =
1
2N

N∑
i=1

(1 − y)d2 + (y)max(marдin − d, 0)2 (1)

where N represents the total number of training sample pairs, y
denotes the similarity ground truth for each pair. We use “1” to
represent dissimilar and “0” to represent similar. d = | | fa − fb | |2
with fa and fb being the output features of the two branches of the
Siamese network that is shown in Fig. 1 and the hyper-parameter
marдin denotes the threshold that quantifies the sensitivity of the
loss function. For similar pairs (y = 0), the distance of their output
features fa and fb is directly accumulated to the loss. For dissimilar
pairs, if the distance of the output features does not exceed the mar-
gin, its value will contribute to the loss for optimization. Otherwise,
the loss function will ignore the difference. Thus we can under-
stand marдin as a factor that essentially describes the strictness
of “pulling” and “pushing”, the largermarдin becomes, the further
the difference between features of a dissimilar pair fa and fb will
be, which makes the representations of dissimilar vehicles more
distinctive. However,marдin being too large will make the network
difficult to train, or even hard to converge. In the experiment, we
choose the value ofmarдin to be 2.0 after hyper-parameter tuning.

3 EXPERIMENT
3.1 Dataset
We construct our dataset from the frames collected in Fusion-
Eye [10]. In FusionEye’s experiment setups, two observing vehicles
A and B are driving side by side and recording their front views at
the same time so there are some overlaps among the surrounding
vehicles in each observing vehicle’s recorded frame. The observing
vehicle’s GPS measurement for every frame is also attached and
all the observed surrounding vehicles in that frame are deteced by
YOLO [14] and their relative distances to the observing vehicle is
also estimated.

Considering our deep neural network’s input being a pair of
images, each sample in our dataset should consist of a pair of vehicle
patches. To construct such a sample of our dataset for the vehicle
verification task, we first crop the bounding box patches from a
pair of FusionEye frames at one timestamp and extract the two
observing vehicles’ GPS measurements along with all detected
vehicles’ estimated distances (with respect to the observing vehicle)
from that timestamp’s frame pair. Then we pick one vehicle patch
from the left observing vehicle’s frame and the other from the right
observing vehicle’s frame along with their estimated distances,
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Figure 2: Detailed architecture of the modified ResNet in our experiment. Input is an image of size 224 × 224, and output is a
feature vector of size 128 × 1

Table 1: The arrangement of meta-information in a sample
of our dataset

Vehicle1’s
directory

Vehicle2’s
directory

Vehicle1’s
distance
to the

observing
vehicles

Vehicle2’s
distance
to the

observing
vehicles

GPS of
two

observing
vehicles

similarity
ground
truth

Figure 3: A batch of sample images, batch size: 8. Notice a
sample contains two images in a column. We can see the
dataset contains vehicle images of various sizes under vari-
ous illumination conditions and different level of occlusions

GPS measurements and similarity ground truth to form a sample.
Table. 1 shows the composition of a typical sample in our dataset.
Suppose there arem and n detected vehicles in the left and right
frames respectively, we generatem × n samples from that pair of
frames.

It is worth mentioning that the images in our dataset have vary-
ing sizes since the sizes of the YOLO bounding boxes are not neces-
sarily the same. In order to let the image fit the input dimension of
our deep learning architecture, we resize all images to be 224 × 224.
Fig. 3 shows a batch of samples after resizing. In total, we have 2777
pairs of vehicle patches, and we use 4/5 of the dataset (around 2222
pairs) as training set and the rest 1/5 (around 555 pairs) as test set.

To reduce over fitting, we apply data augmentation by randomly
rotating the image within 20 degree clockwise or anti-clockwise
during the training processes.

3.2 Learning from Appearances
We are interested in whether appearances information alone can be
a good representation of the vehicle images. Thus we first decide to
only use the pixel information from each sample to train the deep
architecture. The network architecture is shown in Fig. 1 We made
several modifications to the pre-trained ResNet-18 architecture as
shown in Fig. 2. Considering the size and complexity of our dataset
is much smaller and less complicated compared to ImageNet, we
reduce the network’s complexity by dropping the ”conv4_x” block
and the “conv5_x” block from the ResNet-18 architecture. Thus, the
output feature has a dimension of B × 128 where B represents batch
size.

3.3 Learning from Appearances and
Kinematics

FusionEye shows that information such as relative distances can
also be used to associate vehicles. Thus, besides appearance infor-
mation we also incorporate each vehicle’s estimated depth as well
as observing vehicle’s GPS measurements in the training processes.
To be more specific, we first compute the vertical relative distance
between two vehicles A and B using GPS measurements and lane
width:

DGPS =
√
(GPSAx −GPSBx )

2 + (GPSAy −GPSBy )
2 − L2 (2)

where L represent the lateral distance between the two observing
vehicles. Since in FusionEye’s experiment two vehicles are driving
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Figure 4: Network architecture for training using appear-
ance and location information. Notice that the kinematic in-
formation is computed as a scalar and concatenated to the
output feature of the deep network and then fed into an-
other fully connected layer

side by side, the lateral relative distance betweenA and B is approx-
imately the lane width. Then for a pair of vehicles in the dataset,
we compute a one dimensional score for each vehicle patch in the
pair (u,v) as the following:

[su , sv ] =

{
[|du − DGPS |,dv ], if du ≥ dv .

[du , |dv − DGPS |], if du < dv .
(3)

If vehicle A and vehicle B are observing the same vehicle, then
theoretically we should have:| |du − dv | − DGPS | = 0. This means
that if image u and image v are the same vehicle’s profile, the value
of |su −sv | should be small. Based on this observation, we construct
a new feature by concatenating this score to the 128 dimensional
appearance output feature:

[f ′u , f
′
v ] = [[fu , su ], [fv , sv ]] (4)

Thus, each vehicle patch is now represented by the new 129 di-
mensional feature vector and the Euclidean distance between two
features would still be small if the two vehicles are similar. Finally,
we forward the 129 dimensional features into a fully connected
layer (input size: 129, output size: 64) to let the network learn by
itself how much the distance score and appearance feature should
contribute when determine if two vehicles are the same. Fig. 4
illustrate the architecture.

We train our deep neural network using one NVIDIA 1080Ti
GPU with batch size of 32 (which contains 64 images). The starting
learning rate is set to be 0.001, we reduce the learning rate by the
order of ten every time the loss or validation accuracy plateaued.

4 PRELIMINARY RESULTS & ANALYSIS
4.1 Training Results
First we train the architecture discussed in Sec. 3.2 using only ap-
pearance information from the dataset. During training we perform
validation on both training set and validation set after each epoch,
and compute vehicle verification accuracy in terms of F-score in
order to have a direct comparison with FusionEye’s results. Fig. 5(a)
shows the final receiver operating characteristic (ROC) curve for
both training set and validation set after 150 epochs of training.
Noticed there are many F-scores corresponding to a single ROC
curve as each point on the ROC curve represents a threshold for
the binary classification (similar or dissimilar). The red and blue
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Figure 5: ROC curve and history of F-scores for training us-
ing appearance information only

star on the ROC curves represent the optimal threshold for the
classifiers to have the maximum F-score. Fig. 5(b) shows the history
of these F-scores. We can see from the plot that the training process
converges well and reaches high accuracy around 92%.

Then we train the architecture discussed in Sec. 3.3 to learning
a metric from both pixel values of the images as well as kinematic
information such as each vehicle’s estimated distance and GPS mea-
surements of the camera equipped vehicles. Fig. 6 shows the ROC
curve and training history in terms of F-scores after 300 epochs
of training. Since we add another fully connected layer to the pre-
trained ResNet, the training process takes more time than simply
training on appearance information. Here we observe similar per-
formance in terms of area under curve for ROC curves as well as
F-scores compared to the results of appearance based training. To
compare our approach with FusionEye’s bipartite association al-
gorithm, Table 2 shows that using deep learning we can learn a
more robust representation. It is worth mentioning that such repre-
sentation is also compatible with bipartite association algorithm in
FusionEye since we can compute edge scores using the Euclidean
distances of the output features of the network. Another advantage

Workshop Presentation  RisingStarForum’19, June 21, 2019, Seoul, Korea

10



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
os
it
iv
e
R
at
e

Receiver operating characteristic

Training AUC: 0.9978

Training F-score: 0.9796

Validation AUC: 0.9778

Validation F-score: 0.9381

(a) Training and validation accuracy

0 50 100 150 200 250 300
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
-s
co
re

F-scores over training epoch

Training F-score

Validation F-score

(b) History of F-scores

Figure 6: ROC curve and history of F-scores for training us-
ing appearance information and kinematic information

Table 2: Vehicle verification accuracy comparisons

Method Accuracy (F-scores)
FusionEye’s

bipartite merging 0.87 ± 0.1

Learning from
appearance information 0.94 ± 0.02

Learning from appearance
and kinematic information 0.93 ± 0.02

of these representation is that it can reduce the number of false
positive in FusionEye’s prediction, as we could apply the threshold
derived from ROC curve and further filter out matches that are false
positive in FusionEye’s bipartite graph. The 64 dimensional feature
representation also provide potential opportunities for faster real
time transmission, as FusionEye transmitted 128 dimensional SIFT
features under certain configurations.
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Figure 7: TwoROC curves of verification using differentmet-
rics. Blue:metrics learned fromappearance information. Or-
ange: metrics learned from kinematic information.

4.2 discussions
Considering kinematic information (GPS readings and estimated
distances) is the core metric in FusionEye that helps to distinguish
two vehicle’s similarity at an accuracy of 86%, it is counter-intuitive
to observe that the accuracy of learning from appearance is no
less or even slightly better than the accuracy of learning from us-
ing both appearance and kinematic information. It seems that in
the context of deep learning, the kinematic information did not
contribute or even prevent the network to learn a more robust rep-
resentation. one possible explanation for this inconsistency could
be that similarity scores in FusionEye’s bipartite merging algorithm
is only compared with other scores “locally”, i.e., within each pair
of frames, while in our deep learning experiments the scores from
all pairs of vehicles are taken into account when plotting the ROC
curve. Because GPS measurement and distance estimation in Fu-
sionEye has noises, different frame pairs at different timestamps
may have different noises of GPS readings. Although these noises
won’t affect the comparisons of scores for that timestamp’s bipartite
graph and the kinematic information is useful to determine whether
two vehicles are same or not, it does not guarantee a good ROC
curve when we use all the kinematic information scores to build
a classifier. To further substantiate this analysis, we predict each
vehicle pair’s similarity solely using their kinematic information
and compute verification accuracy as showed in Fig. 7. Compared
with the blue ROC curve resulted from appearance metrics, the
orange ROC curve with significantly lower area under curve (AUC)
indicates that metrics learned from kinematic information failed to
separate themselves apart in terms of Euclidean distance for sim-
ilar and dissimilar vehicle profile images. Unlike metrics learned
from appearance information, where a similar vehicle pair has a
smaller similarity score (distance) and a dissimilar vehicle pair has
a greater one, the scores under the kinematic metrics don’t have
such a good binomial distribution for accurate binary classification.
Since we only show preliminary results in this paper, we are still
analyzing how we can fully utilize the kinematic information to
help us further increase the verification accuracy.
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5 RELATEDWORK
For object verification, association or re-identification tasks, deep
learning approaches and Siamese architectures were first explored
in face domain instead of vehicle domain. DDML [9] used a Siamese
network with a generalized logistic loss function to learn a Ma-
halanobis metric to obtain robust feature representations for dif-
ferent face images. Yi et al [19] proposed a Siamese architecture
with Cosine layer to compute similarity between two features and
adopts binomial deviance cost function for network training. Sim-
ilarly, Ahmed et al [1] adopted a Siamese network followed by a
cross-input neighborhood difference layer and a summarize layer
to describe the differences of two feature vectors for person re-
identification problems. Other variations on the Siamese architec-
tures have also been extensively explored recently. In FaceNet [15],
a triplet loss function was proposed for robust similarity metric
learning between a triplet of images. Ding et al [5] proposed a simi-
lar approach where a 3-branch deep architecture was adopted along
with the triplet loss function to address person re-identification
tasks.

More recently, researchers have begun to explore deep learning
methods in the vehicle domain. DRDL [11] proposed a two-branch
deep neural network model with coupled cluster loss function that
is inspired by triplet loss and incorporate each vehicle’s attribute
labels to learn a robust metric. Furthermore, studies have shown
that besides pixels values, spatial or temporal information is also
valuable for vehicle verification tasks. Wang et al [18] used deep
neural networks to extract features from 20 keypoints from a ve-
hicle and aggregated them to construct a discriminative feature
vector and refer to spatial and temporal information of each vehicle
to further verify the vehicles’ similarity. Liu et al [12] proposed
PROVID, in which appearance features resulted from a deep convo-
lutional neural network (CNN), license plate difference measured
by a Siamese network and spatial-temporal information are fused
to address vehicle verification problems. Shen et al [16] adopted a
chain MRF model with a deeply learned pair-wise potential func-
tion to generate visual-spatial-temporal path proposals, which are
further evaluated by a Siamese-CNN+Path-LSTM model to obtain
similarity scores between pairs of query vehicle images.

6 CONCLUSIONS
In this paper we propose an approach for vehicle verification under
the framework of connected vehicle systems. The proposed deep
learning architectures generalize well and achieve high verification
accuracy on real world dataset of reasonable complexity. The re-
sults shown in this paper is only preliminary and more experiments
are expected to fully utilized the kinematic information besides
pixel information of vehicle’s profile image to further improve the
association accuracy under more complicated circumstances. The
high accuracy and low dimensionality of the feature representation
indicate the potential deployment in the real time systems. For fu-
ture work, it is worth exploring in real time scenarios by deploying
the deep learning architectures to connected vehicle systems and
evaluating communication performances in terms of transmission
latency and bandwidth requirement.
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