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Abstract—This paper explores the feasibility of localizing and
detecting activities of building occupants using visible light
sensing across a mesh of light bulbs. Existing Visible Light
activity sensing (VLS) techniques require either light sensors to
be deployed on the floor or a person to carry a device. Our
approach integrates photosensors with light bulbs and exploits
the light reflected off the floor to achieve an entirely device-free
and light source based system. This forms a mesh of virtual
light barriers across networked lights to track shadows cast by
occupants. The design employs a synchronization circuit that
implements a time division signaling scheme to differentiate
between light sources and a sensitive sensing circuit to detect
small changes in weak reflections. Sensor readings are fed into
indoor supervised tracking algorithms as well as occupancy and
activity recognition classifiers. Our prototype uses modified off-
the-shelf LED flood light bulbs and is installed in a typical
office conference room. We evaluate the performance of our
system in terms of localization, occupancy estimation and activity
classification, and find a 0.89m median localization error as
well as 93.7% and 93.78% occupancy and activity classification
accuracy, respectively.

I. INTRODUCTION

Building-wide occupancy detection and activity sensing
promises to enable a new class of applications across smart
homes, elderly care, and retail marketing. In smart homes,
for example, it could enhance control of lighting, heating,
ventilation, and air conditioning based on sensed and predicted
activities across rooms. Useful information ranges from basic
occupancy and movement tracking to activity inference (e.g.,
sleeping, cooking, eating, watching TV or media). In elderly
care, activity sensing allows quick detection of emergencies
or changes in routine. In stores and showrooms, foot traffic
statistics for individual aisles or product display areas are
invaluable for ad placement and arranging products.

Existing occupancy sensing technologies. These activities
are currently detected by a number of dedicated sensing
systems, with Infrared (IR) motion sensing being especially
prevalent. Passive or Pyroelectric Infrared (PIR) sensors de-
tect the radiated IR energy from humans and animals [26].
However, PIR sensors require line-of-sight coverage, which
increases the number of required sensors to cover a certain
area. For example, previous work [24] required one sensor
per 4 meter square area. PIR sensors are also sensitive to other
heat sources (e.g., hot appliances, sunlight and open window
), and they are designed to detect movements, not presence,

which limits its tracking of stationary users. For more fine-
grained detection in a small area, light barriers detect motion
when transmission between an IR transmitter and receiver is
obstructed. Other device-free solutions have relied on cameras
[14]. Although they are effective and ubiquitous in public
places, cameras raise privacy issues, especially in residential
areas. More recently, Wifi-based activity sensing (e.g., [23]),
has been proposed, which generally achieves large coverage at
lower accuracy and faces more challenges to scale to buildings
with many occupants. Besides such device-free sensing, other
approaches leverage user devices like smart watches and smart
phones (e.g., [12]). The disadvantage of these approaches is
that users need to continuously carry, wear, and usually charge
them.

More recently, fine-grained localization and activity sensing
using visible light has been investigated. Current VLS work
mainly uses active techniques (users are required to carry
sensors or devices) and focuses on line-of-sight communi-
cation between transmitter and receiver [15], [27]. Among
passive (device-free) techniques, LiSense [16] demonstrates
fine-grained gesture and human skeleton reconstruction using
visible light sensing but requires deploying photodiodes on the
floor to obtain line-of-sight links with the transmitters. Ceil-
ingSee [25] converts ceiling mounted LED luminaries to act
as photosensors, to infer indoor occupancy, but requires dense
deployment (1.25m between nearby pair) of LED luminaries
because of reduced sensitivity of LEDs acting like photosen-
sors compared to dedicated photosensors. None of these tech-
nologies can therefore provide device-free occupancy sensing
beyond line of sight, which would enable building scale fine-
grained activity sensing with lower deployment overhead (i.e.
using fewer sensors).

EyeLight Approach. We introduce EyeLight, a device-free
occupancy detection and activity sensing system exploiting
opportunistic, indirect light sensing so that it can be integrated
in a set of networked LED light bulbs. EyeLight forms a mesh
of virtual light barriers among nearby light bulbs to sense
human presence as they move across the room. Exploiting light
provides attractive properties. Due to its nanometer wavelength
it is highly sensitive to small motion and objects when
compared to RF waves. Also, unlike most RF techniques, light
does not suffer from RF interference and cannot penetrate
through walls, which preserves privacy and makes it easier
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to determine in which room an activity occurred.
Contrary to conventional light barriers, however, no direct

line-of-sight is needed—the system exploits opportunistic re-
flections in the environment (e.g., shadows and reflections off
the floor). Indirect tracking of users based on their shadows,
enlarges the system’s operation range, compared to line-of-
sight based solutions like PIRs. This allows covering a space
with fewer sensors and provides more freedom in deployment
locations, making it easier to reuse infrastructure that already
exists (for example, recessed can lighting where power is avail-
able but, due to the recessed location, line-of-sight may not
exist to the entire space). Such reuse allows for building-scale
motion tracking and activity sensing with little installation
overhead (no additional building wiring is needed).

The prototype design makes use of the trend of LED light
bulbs increasingly containing electronics and having access to
plentiful power. Light bulbs are integrated with photosensors
and networked to coordinate signaling and to upload sensor
data for processing. We design barrier crossing detection
as well as occupancy and activity classification algorithms
based on sensed changes in the reflected light levels, for
example, due to a shadow. This work significantly extends
prior work [10] by 1) using dual purpose signaling light
(illumination without causing flicker to the eyes while sending
the signature of the node), 2) a room-scale prototype with
localization and activity recognition, as well as 3) enhancing
sensitivity to operate on different reflective surfaces and longer
sensing distances (up to 3 meters).

In summary, the major contributions of this paper are as
follows:

• exploring the feasibility of creating opportunistic meshes
of virtual light barriers between modified light bulbs by
exploiting reflections off room surfaces.

• proposing a sensitive photoreceiver design for lamp-based
light barriers that can detect light reflected from different
room materials, including dark floor carpet.

• designing light-based occupancy tracking and room ac-
tivity recognition algorithms and exploring their potential
when deployed across a room’s ceiling lighting system.

• designing and implementing a room-scale prototype sys-
tem and evaluating EyeLight in terms of localization
accuracy, estimating occupancy, and recognizing different
room activities based on 28.5 hours of recorded data.

II. BACKGROUND AND RELATED WORK

Visible light sensing can be implemented directly in il-
lumination systems. Adoption of LED lighting is growing
rapidly [1] due to their 75% lower energy consumption and
25 times longer lifetime than incandescent lighting. LEDs
can also be switched faster than incandescent and fluorescent
light sources, which allows rapid signaling with light sources
and enables novel applications [2]. Given the presence of
solid state devices and power converting circuits (AC to DC)
in LED light bulbs, it has also become easier to integrate
additional electronics in such devices, particularly since power

is plentiful. To be acceptable, signaling between lights usually
has to be impercetible for human observers.

Human light perception. Imperceptible signaling is pos-
sible because human eyes respond slower than photodiodes
to light changes. The critical flicker frequency (CFF) [13],
typically 100Hz, defines the frequency beyond which our eyes
cannot perceive time-variant light fluctuation and see only
its average luminance. This effect is similar to a low pass
filter with the CFF as cut-off frequency. While the exact
frequency depends on other factors (such as light intensity,
color contrasts, etc.,) sufficiently fast signaling can surpass the
flicker perception of human eyes, yet still remain detectable
by photosensor front-ends.

Our eyes also perceive light intensity logarithmically, in-
stead of relatively linearly like photosensors. Therefore, a
small change of light intensity that is perceivable in a dark
room can be invisible in a brighter room. A photosensor
calibrated for this range of light levels can easily detect such
differences, however.

Existing passive sensing techniques. A major approach to
occupancy sensing is using RF signal measurements, based
on RSSI ( [6], [11]) or time-of-flight [8]. Cameras are also
used for monitoring people indoors, but they raise privacy
concerns [7]. Other approaches, including Capacitance [22]
and Pressure [21] require sensors on the floor, which is not
practical for installation in several cases.

Light, both visible and infrared, has long been used for mo-
tion detection. Light barriers or curtains [3], [4], for example,
detect when a light beam between a source and a photosensor
is blocked by a moving object. Since light beams can be easily
focused through lenses, they allow more precise movement
detection than radiofrequency sensing. To ease deployment,
retro-reflective sensors package the light source and sensor
into a single device but this usually requires a retroreflector
that is carefully aligned to reflect the light back to the sensor.

Visible Light ([15], [20]), an emerging short range com-
munication technology, has been recently explored for indoor
localization applications, thanks to the growing use of LED
bulbs. More recent works [16], [25] explored the use of ceiling
lights in the visible light spectrum to track people indoor.
However, either the photosensors are deployed on the floor to
achieve line-of-sight to the ceiling lights, which significantly
complicates the deployment, or the LEDs are forward biased
to function as light sensors, which leads to lower sensitivity
and small coverage in the line-of-sight area.

Challenges in reflective light sensing. Is it possible to
achieve both large coverage and ease of deployment by form-
ing a mesh of opportunistic reflective light barriers?. Allowing
for indirect, reflective light sensing could extend the sensing
range, since movement can be detected not only directly in
line-of-sight of a sensor but also anywhere along the longer
reflected path of a light signal. Eliminating the line-of-sight
constraint also provides more freedom in placing the lights and
sensor. In particular, this approach would allow integrating all
necessary components into light bulbs, which would signifi-
cantly simplify the deployment process: the system could be
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installed by simply changing light bulbs. Note also, that power
requirements of the added electronics are met by the power
source to the LED light and does not require any battery or
additional wiring.

This approach introduces several challenges, however. First,
the detector now has to recognize much weaker light levels due
to two reasons: 1) received light power decreases proportional
to square of the distance and reflected paths tend to be longer
(for example, the distance with a floor reflection to an adjacent
ceiling light is more than double compared to the distance
with photosensors directly on the floor), and 2) most typical
room surfaces absorb or diffuse a substantial part of the light
(e.g. a dark carpet), thus the incident light power on the
photodiode is reduced. Second, the reflected paths are less well
defined. The exact path depends on the position and shape of
objects in the space and it is possible that the light reaches
the photosensor along multiple paths (akin to radio multipath
effects). Motion tracking, occupancy estimation, and activity
detection algorithms have to be robust to such effects. Third,
the receiver should be able to distinguish light from different
sources. In addition, any signaling technique used for this
purpose should remain imperceptible and not detract from the
illumination function of light bulbs.

A common method for detecting a weak signal is a cor-
relation detector with a known pseudorandom number (PRN)
sequence. This effectively spreads the signal bandwidth lead-
ing to a significantly enhanced signal to noise ratio. Applying
this to EyeLight is challenging, however. First, achieving
high processing gains requires long PRN sequences1. Given
the limited modulation rate of high power lighting LEDs,
these sequences would take seconds to minutes to transmit,
which is longer than the duration of human movement events
that we seek to detect. Second, transmitting continuous PRN
sequences with on-off keying would halve the brightness of the
ceiling lights, since one can expect equal number of on and off
symbols. Third, as a result of the spectrum spreading property,
PRN sequences introduce low frequency components, which
increases the chance of flicker for human eyes.

III. EYELIGHT DESIGN

EyeLight realizes an opportunistic mesh of reflected light
barriers through synchronized signaling from networked trans-
mitters and a pulse-based power measurement technique based
on sensitive receiver hardware. It relies on modified LED
light bulbs to transmit modulated light and contains sensitive
photodetectors to detect light signals. It coordinates signaling
among light sources so that a virtual light barrier can be
established between nearby pairs of lights without interference
from other participating light sources. These light barriers are
opportunistic since the light needs to reflect off surfaces in
the environment to reach the photodetector on an adjacent
light bulb. The key rationale for integrating both signaling and
sensing components in light bulbs is that it reduces installation

1For example, GPS system uses 1023-bit PRN sequence which repeats itself
every 1ms.
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Fig. 1: Overview diagram of components in EyeLight.

and maintenance costs, as power is already available at the
lamps.

It addresses the challenge of invisible modulation of LED
light bulbs together with self-interference free detection sen-
sitive enough to measure weak reflections through a syn-
chronous, pulse-based power measurement technique. Bulbs
emit a periodic pulse, which is short enough to remain
imperceptible, meaning it does not noticeably affect brightness
of the light and does not cause flicker. Receivers measure the
signal power of the pulse and compare it to the overall light
level to track movement and changes in the room.

The light nodes have wireless connectivity to report their
measurements to a server, where tracking and activity de-
tection algorithms process the datastream to monitor the
movements and activities of occupants. We assume that light
bulbs can be mapped with their location in the room during
installation. Self-localization algorithms may also be possible.
Fig. 1 shows an overview of the components in EyeLight.

Transmitted Signal. The transmitted signal should allow
the receiver to separate light emitted by one specific transmitter
from other ambient light sources, while remaining impercep-
tible to the human eye. In theory, this can be achieved with
straightforward ON-OFF signaling. Since flicker perception
depends on frequency, this raises the question of whether the
high power LEDs used in light bulbs can be switched fast
enough to remain imperceptible. We measured the rise and
fall time of an off-the-shelf LED bulb (Ecosmart 65W BR30)
and observed that the lamp takes about 0.1ms to rise to 90%
of its peak intensity and a shorter time to fall. This shows that
the light bulbs are fast enough for ON-OFF signaling without
introducing flicker to human eyes (previous research [13]
showed that the critical flicker frequency of human eyes when
perceiving a strong single light source is only about 100Hz).

In addition to eliminating flicker, the signal also should not
significantly affect the overall illumination level. We therefore
use periodic signaling, which only occurs in a short slot out of
a longer cycle. When ceiling lights are used to illuminate the
space, the light would briefly switch off during its slot, while
remaining on during the rest of a cycle. This design reduces
the lamps’ brightness by only a negligible amount. Conversely,
when lights are off, the lamps could briefly switch on during
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Fig. 2: Receiver

their slot to signal. Our implementation focuses on the former.
Supporting both modes would require additional calibration of
receiver sensitivity.

Receiver. Sensing reflected light off the floor with pho-
tosensors deployed on the ceiling is a challenging task. The
photsensor frontend needs a high sensitivity to receive weak
light and fast response time to detect the modulated signal.
These requirements are usually at odds with each other. We
achieve these requirements by carefully designing a receiver
circuit combining several components (Fig. 2b). Since we
require a fast light sensor to detect short pulse (under 1ms)
from the transmitter, we use a photodiode as our sensor.
The weak current generated by the photodiode is amplified
through a Transimpedance Amplifier. The amplifier acts as
the current-to-voltage converter—it converts and amplifies the
photocurrent generated by the photodiode to a voltage that
can be read out. The amplifying gain of the TIA is set by the
feedback resistor RF following: Vout/IP = −RF .

Compared to a simple detector (a photodiode in series with
a resistor R), the transimpedance amplifier has much faster
response time than the time constant RF ∗Cd (with Cd is the
internal capacitor of the photodiode). Therefore, we can use a
larger value of RF to increase the gain while maintaining fast
response at the front end. However, the value of the feedback
resistor cannot be arbitrarily large since it is limited by two
factors: large Johnson thermal noise (vn =

√
4kBTR(V )) can

reduce SNR of the frontend, and low input rolloff frequency
(fRCin = 1

2RFCin
) can limit our operating frequency. To

further boost the gain, we use a second stage amplifier:
an instrumentation amplifier (INA126). The output of the
amplifier is given by,

Vo = G(V+ − V−) + VRef

where VRef is a reference voltage being fed to the instru-
mentation amplifier, and G is a controllable gain. One can
consider the two inputs to the INA126 as output voltages from
two arms of a Wheatstone bridge [10], whose difference we
seek to amplify. The negative input V− is fed with the output
of the TIA, while the positive input V+ is fed with a constant
voltage from a voltage divider. Note that G and V+ are two
controllable factors that help the receiver adapt to different
light levels.

Multiple Transmitters and Receivers. The previous two
sections describe how a single pair of transmitter and receiver
can communicate through reflected light on the floor. When

multiple transmitters are in the room, each light node needs its
own identification—when the sensing module detects a light
level change because of a shadow, it needs to recognize which
light source created that shadow. Therefore, each LED bulb
needs a mechanism to send its own signature. This can be
done in the frequency domain, as in [16], or time domain.
We choose the time domain because of its simplicity when
combined with synchronization from the common AC power
signal, which our design assumes. As in other prior work [17],
the main idea is that each light fixture chooses its own time
slot, during which it signals.

For the time-slot based mechanism to work, the clocks of
all light nodes need to be synchronized. We implement this by
using the common 60Hz AC signal available from the mains
power [18]. Recall that a key motivation for incorporating
signaling and sensing into light bulbs was the easy availability
of power. We therefore also assume a common AC signal for
synchronization. Each zero-crossing event of the mains power
signal marks the start of a cycle for EyeLight, making the
cycle length half the period of the AC signal (about 8ms).

Given n light bulbs that can potentially observe signals
from each other, the system requires n timeslots to uniquely
assign a slot to each lamp, which lets the receiver identify
the signaling lamp based on the current time. Note that, as
in wireless systems, spatial reuse is possible and walls that
block light make the reuse of slots across different lamps in a
building even easier. This keeps the total number of required
time slots relatively small. The maximum number of timeslots
that can be supported is determined by the cycle length and
the lower slot duration bound derived from the LED rise time.

Besides signaling, each node also looks for signal from
other nodes through multiple receivers co-located with the
LED lamp. The photosensors point to different directions
to detecting signal from surrounding light nodes. For the
sampling scheme, we employ a Round-Robin approach to
maximize the number of samples per cycle: in each cycle,
we let only one photosensor sample the light level in its view,
then move to the next photosensors. This ensures each sensor
has high enough sampling rate for detecting the fast signal
from other nodes.

Fig. 3 shows an example of received light power at one
receiver over consecutive cycles. This receiver is on node 2,
so it observes a big dip in the second timeslot when node
2 signals. It also observes a smaller dip in the first timeslot,
when the adjacent node 1 does signaling. This dip shows the
effectiveness of our receiver design to sense weak reflected
signals off the floor from an adjacent node.

IV. TRACKING ALGORITHMS

The photodiode in each sensor converts the incident ra-
diant energy P to the output photocurrent Ip, making our
sensor a light power measurement device. In essence, our
tracking algorithms utilize signal power measurements over
time, and compare them with the baseline light power level
when the room is unoccupied. To improve the confidence of
our localization, we introduce two methods, Spike algorithm
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Fig. 3: Raw readings from one receiver.

for coarse-grained localization and Delta algorithm for fine-
grained localization.

The first method measures if there is any change in received
light power, which is caused by movement events surrounding
the light node position. We detect this change by continuously
taking average received power over an entire cycle for each
sensor and using a threshold-based detection to detect when
this average power deviates far away from base light level
(when the room is empty). This approach, which we call Spike
algorithm, only tracks movement at a coarse-level—it can only
detect if there is a movement event in an area surrounding the
spot on the floor a receiver is monitoring.

The second method aims at fine-grained level tracking—
it determines whether a change occurred on a specific
transmitter-receiver link. With multiple light nodes covering
a room and each carrying several receivers, we can effectively
create an opportunistic mesh of virtual light barriers to detect
when a subject is passing by. Since each light source in the
interference domain signals in a unique time slot, receivers
can simply check for the presence of the ON-OFF signal in
a particular time slot. If the signal can be detected the virtual
light barrier is connected, otherwise it is interrupted. This
technique is agnostic to most changes in ambient light level
that can occur. Over time, the system can then monitor changes
in the status of each link.

While the concept is intuitive, its implementation is chal-
lenging due to the complex light propagation environment. The
system uses reflections off random surfaces rather than direct
illumination or a special reflector as in a retro-reflective light
barrier. This means that the light level change when the virtual
light barrier is crossed can be small and it tends to differ for
every pair of lamps. Moreover, in contrast to conventional light
barriers, the illuminating signals are more diffuse and the field
of view of the sensor is wider to cover a larger area of interest.
In addition, multi-path can exist. This means that signals are
often only partially blocked when the barrier is crossed.

To address this challenge, EyeLight employs a delta tech-
nique. For a given transmitter-receiver link, it measures the
delta change in received signal power when the ON-OFF
transition occurs and compares it with a delta obtained under
reference conditions (i.e., an occupied room). The signal power
delta effectively captures how much light from the signaling
transmitter is reaching the sensor. It subtracts out all light from
other sources, assuming it remains constant over the duration
of one slot. If the measured delta significantly deviates from
the reference delta, it means that a change between the
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Fig. 4: Virtual light barrier crossing detection.

transmitter and receiver has occurred.
More precisely, let P jk

i,ON and P jk
i,OFF denote the mean

power measured by the k-th sensor on node j while node
i is in the ON and OFF phase of its signaling, repectively. We
define the delta as ∆jk

i = P jk
i,ON − P

jk
i,OFF .

Note that both the terms effectively sum all light power
reached at the sensor k, including both the power from ambient
light (natural light and illumination from lamps other than
i) and signaling light power received from lamp i. That is
P jk
i = P jk

ambient + P jk
i,received. During OFF phase of lamp i,

P jk
i,received becomes zero and assuming no change in ambient

lighting between ON and OFF phases, it follows that ∆jk
i =

P jk
i,received,ON . This means the delta value is effectively the

light power reflected from node i to sensor jk during the ON
phase of node i. When a person crosses the link between node
i and j, the person can either block light or reflect more light
from node i to receiver jk, depending on the exact position
and the reflectivity of the person’s hair, skin and clothes. In
either case, that causes P jk

i,received,ON , and in effect ∆jk
i , to

deviate from the normal level.
This observation becomes the key for our light barrier cross-

ing detection method called Delta algorithm (Algorithm 1).
Going back to the example of receiver jk, in each cycle, we
calculate the term ∆jk

i as described above, then check if this
term exceeds a preset threshold range. To reduce noise on
the series of calculated delta values, we first apply Hampel
filtering to remove outliers and then a low pass filter to smooth
the signal. The algorithm then uses a windowing approach (set
to 1s) and outputs a detection when the majority of delta values
in the window exceed the threshold. We set the threshold
based on the mean and the standard deviation of the delta
values in the baseline dataset (when the room is unoccupied).
(For our prototype, we empirically choose threshold to be
baseDelta±2∗baseStd). Fig. 4 illustrates one output example
of the delta detection algorithm, where receiver 2 on node 1
points to node 2’s direction, and a person passes 10 times the
light barrier between node 1 and 2.

Given detections from either the Spike algorithm and Delta
algorithm, we seek to infer the location of the person. For
Spike algorithm, based on detections of a user or her shadow
in the field of view of different receivers, EyeLight derives
the user location based on the positions that these receivers
are pointing to. We assign a weight for each receiver based on
the magnitude of the deviation of the received light power from
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Algorithm 1: Delta algorithm - light barrier crossing
detection

Input : readings from node jk, baseDeltas, baseSTD
Output: events

1 while next cycle exists do
2 cycle = getNextCycle()
3 for i = 1→ numOfNodes do
4 ∆

jk
i = P

jk
i,ON − P

jk
i,OFF

5 Update W
jk
i - running series of ∆

jk
i

6 hampelfilter(W
jk
i )

7 lowpassfilter(W
jk
i )

8 if |∆jk
i − baseDeltas

jk
i | > 2 ∗ baseSTDjk

i then
9 increase count(eventsjki )

10 end
11 if end of 1-sec window then
12 if (count(eventsjki ) > window / 2) then
13 detection

jk
i = True

14 end
15 count(eventsjki ) = 0
16 end
17 end
18 end

the baseline level. The final location of the user is estimated as
the weighted average of the locations to which the receivers are
pointing to. For the Delta algorithm, we estimate the location
of the user to be the center point between the transmitter and
the location the receiver is pointing to.

Note that Spike algorithm and Delta algorithm compliment
each other. The Spike algorithm provides better coverage
(any movement in an area surrounding the receiver would be
detected) but its location estimation is coarse-grained. In con-
trast, the Delta algorithm easily pinpoints which transmitter-
receiver link the person crosses, but it loses track of a person
that does not cross a light barrier link. To obtain both large
coverage and fine-grained localization, one can combine the
results from both algorithms, for example, by calculating the
centroid of their estimated locations.

V. ROOM ACTIVITY AND OCCUPANCY RECOGNITION

In this section, we introduce the room activity recogni-
tion and occupancy classification module. The study focuses
on a conference room, with activities and occupancy levels
categorized as in Table I. This module uses a supervised
machine learning approach based on a feature vector of light
power measurements. For other types of rooms, our activity
classifier needs to be trained separately to classify different
set of activities that commonly happen in these rooms.

The features to be used have to cover all the room’s dif-
ferent activity spots, thanks to the non-LOS nature of shadow
based tracking. Based on our hypothesis, detecting the room’s
occupancy and different activities can be inferred from the
sources of movements and light settings at different locations.
For example, during a presentation activity, the ambient light
is usually dimmed and most light received is coming from
the projector. One can think of using the delta values and
base light level readings during OFF phase of the transmitter

TABLE I: Room activity and occupancy categories

Activity Occupancy
Index Room Activity Human Count Category
0 Empty Room 0 Empty Room
1 Sitting at/near Table 1 Single Person
2 Whiteboard Discussion 2-3 Few People
3 Projector Presentation > 3 Many People
4 Single Person Rehearsing
5 Conducting Experiments

for the feature vectors. However, limiting the features to only
these two values might cause losing information needed for the
classification. Also, the effectiveness of these features depends
directly on the base light level, that may change from time to
time. Therefore, to capture the temporal and spatial variability
of light settings, we use the readings from all the receivers
in the room; values for each receiver are 12 average readings
of 6 timeslots (including ON and OFF phases). We include
the readings from all the time slots since this enables our
system to distinguish the source of the lights from multiple
directions. The readings are averaged over a span of time
window w. We choose w to be long enough to capture the
different activities and movements by users indoors. Since
humans walk on average 1.4 m/s [19], we vary this time
window from a second to a minute long. We only report the
time window that maximizes the classification accuracy.

Our activity and count recognition approaches uses en-
semble learning, specifically AdaBoost.M2 [9]. In Adaboost,
the classification results of other learning algorithms (’weak
learners’) are combined into a weighted sum that represents the
final output of the boosted classifier. AdaBoost is able to tweak
adaptively the weak learners without prior knowledge about
their performance. We use regularized linear discriminant
analysis (LDA) learners as weak learners. We train the room
activity and occupancy ensemble classifiers with the feature
vectors labeled with the activity index and occupancy category
label, respectively.

VI. EYELIGHT PROTOTYPE AND TESTBED

In our prototype, we use an off-the-shelf Ecosmart 65W
BR30 LED bulb as the transmitter for each light node. This
light bulb contains an AC-to-DC module to provide DC power
source to a series of LED chips. For our experiments, we
remove this AC-to-DC module and feed 40V DC source
directly from a DC power supply to the LED chips. We
use a microcontroller (MSP432) to control a power MOSFET
(IRFL520) as a switch to drive much larger current needed for
the LED lamp. For timeslot assignment, to support 6 nodes,
we divide each cycle (8ms) into 6 even timeslots.

In the transimpedance amplifier, we use the LF356 op-amp,
which has low input noise voltage and suitable for photosensor
amplifier task. The feedback resistor is 10MΩ to maximize the
transimpedance gain. In the later stage, further amplification is
achieved by using INA126, an instrumentation amplifier with
low noise characteristics.

We use TI MSP432 Launchpad to control both transmitter
and receiver operations. The MSP432 Launchpad also offloads
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Fig. 5: EyeLight testbed. There are 6 light nodes with distance
between adjacent pair is 2.5m. The room has a central table,
a number of chairs, and a projector screen.
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Fig. 6: The distribution of different activities and occupancy
categories in the dataset.

data measurement through Wi-Fi to our processing server with
the help of a TI CC3100 BoosterPack.

We built 6 light nodes and placed them inside a conference
room (size 7.5×6m2, ceiling height 2.74m), as shown in
Fig. 5. All circuit components for each light node were
placed on a woodplank together with the LED light bulb. We
placed 4 receivers around each LED bulb, pointing to different
directions; each photodiode is titled θ = 100 compared to
the vertical line. This placement of photodiodes increases the
number of virtual light barriers in the room to detect human
presence. To construct groundtruth, we placed a ZED depth
camera [5] in the corner of the room. The camera records
videos of the room with depth information, and these videos
are later manually processed to rebuild the positions of all
persons inside the room.

VII. EYELIGHT EVALUATION

We collected data using our testbed in a conference room
for 5 days over multiple weeks. For each day, we recorded
data during normal working hours, the total number of hours
recorded being 28.5 hours. Different users entered the room,
including visitors, staff, faculty and students. Different lighting
settings and different chairs organizations have been conducted
during these days. We collected the base light level for the
Spike and Delta algorithms at the beginning of each day.

A. Light barrier crossing detection accuracy

The output of the Delta detection algorithm for each pho-
toreceiver is a binary detection: for each second, whether
there is shadow casted by the adjacent node on the floor
where the receiver is looking at. To evaluate the accuracy
of our Delta detection algorithm, we conduct an experiment

1.2 1.3 2.3 2.4 3.3 3.4 4.2 4.3 5.2 5.3 6.1 6.4

Receiver

0

20

40

60

80

100

%

TPR

FPR

(a)

0 1 2 3 4 5 6

Location Error (meters)

0

0.2

0.4

0.6

0.8

1

C
D

F

Spikes

Delta

Combined

(b)

Fig. 7: (a) TPR and TNR of delta detection algorithm. (b)
CDF of localization error.
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in which several test subjects walk in the room across all
the lamps. Fig. 7a shows the True Positive Rate (TPR) and
False Positive Rate (FPR) of the delta detection algorithm
for different photoreceivers. TPR is the ratio of the correctly
detected events over the total number of proximity events,
and FPR is the ratio of the incorrectly detected events over
the total number of testing cases when no person is in the
vicnity of a sensor. The receivers in the figure are the ones
pointing to an adjacent light bulb. The average TPR across all
receivers is 82.17% and the average FPR is 5.77%. Among
all receivers, only receiver 5.3 has low TPR (6%). Given our
conference room has dark carpet with low reflected light, the
TPR and FPR value reported here are reasonably good. Also,
this is the performance for each single receiver; we expect that
by combining multiple receivers together, the accuracy of the
whole system would be higher.

B. Localization error

Fig. 7b shows the localization error for single-person track-
ing scenarios, using three different methods: using only spikes
detection, using only delta detection, and combined. Delta
detection shows lower localization error (median 0.89m and
90 percentile of 2.5m) than spikes detection (median 1.18m
and 90 percentile of 2.56m). However, the spikes detection
is achieving this localization error while covering 94% of the
time in which the user is inside the room compared to 69%
for the delta detection. It is clear that there is a tradeoff here
between the coverage and localization accuracy. Therefore,
we also propose the combined version of the two algorithms,
which achieves a 0.94m median error and better coverage rate
than the delta detection.
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C. Room Activity Recognition and Occupancy Estimation

We evaluate our room activity recognition classifier by 10-
fold cross validation over the whole collected dataset using
random partitioning. Each feature vector represents the av-
erage readings over a 5-second period, which maximizes the
classification accuracy. Fig. 8a shows the confusion matrix for
the classification results of our activity recognition classifier.
Each column represents the actual activity performed by
the user and each row shows the activity as classified by
our system. The overall classification accuracy is 93.78%;
however, if we break down the TPR for each activity, we
can see the performance degrades for categories 2: whiteboard
discussion, 4: single rehearsal and 5: conducting experiments.
These activities represent a small fraction of the collected data
as presented in Fig. 6a, and therefore, the classifier likely
has not enough data to accurately capture the true model of
these classes. Also, class 3, presentation in the dark, is easily
misidentified as class 0, empty room, since the room is almost
dark, and during presentation there are not many movements
to capture. However, we expect collecting more data specially
for these classes will decrease the classification error.

EyeLight is able to distinguish 4 classes of occupancy of a
room, by classifying the readings coming from all the nodes
inside. Each feature vector represents the average readings
over a 10-second period, which maximizes the classifica-
tion accuracy. We used the same evaluation procedure of
the activity recognition classifier (10-fold cross validation).
Fig. 8b shows the confusion matrix for occupancy estimation
classifier. The overall accuracy of the classifier is 93.7%, while
the TPR for single person class is lowest among all the classes
with 86%. A single person staying in a conference room
is not a common event, so the dataset for this class is not
enough. Detecting a single person is thus more challenging
than multiple persons specifically, since the collected data for
single-person class is also the lowest among the four classes
as in Fig. 6b. Moreover, a single person induces low effect
on the light especially when not moving (e.g., sitting near
the table and working with on a laptop). Therefore, we moved
from five-second feature vectors, as in the activity recognition,
to a ten-second feature vector in order to capture more of
these rare movements for a single user. Again, we expect
that collecting more data for this class would improve the
classification accuracy.

D. Microbenchmark experiments

Distance between nodes. We increase the distance between
the two nodes and measure the delta values received in one
receiver for each distance between two nodes (Fig. 9a). As the
distance between two nodes increases, the delta value becomes
smaller; starting from 3.5 meters, this delta is too small to
distinguish from noise, rendering EyeLight ineffective to use.

Number of nodes. We measure the localization median
error of two algorithms (Spikes and Delta) with reducing
number of nodes to cover our conference room (Fig. 9b). Note
that there is no data for single node case of the Delta algorithm
detection, since it needs at least a communication link between

two nodes. As expected, the location accuracy reduces as
the number of nodes decreases, because either the number
of guarded locations (for Spike detection) or the number of
virtual light barriers (for Delta detection) decreases.

Ambient light. We test different ambient light settings in
our conference room: no ambient light, only ceiling lights
turned on, only side lights turned on, both ceiling lights
and side lights turned on. The mean and standard deviation
of delta values for each light setting over a period of time
is shown in Fig. 9c. For each ambient light setting, the
standard deviation is small, allows the delta algorithm to work
efficiently. However, the mean value of deltas slightly differs
between light settings, suggesting that the system might need
to calibrate for several times a day, when the ambient light
setting is changed.

Different types of carpets. Another factor that affects
the efficiency of the delta-based virtual light barrier crossing
detector is the reflectivity of the floor carpet materials. The
carpet inside our conference room is dark, and thus reflects
less light. To see the applicability of our detection algorithm
on other types of carpets, we tested a light node facing
different types of carpets (Fig. 9e) and compute the delta
values (Fig. 9d). As can be seen, two other carpets have
brighter surface, giving much larger delta values. Therefore,
we believe EyeLight is also suitable to work with other room
carpet, with even better performance. For other floor types,
such as tiles, wood, due smoother surface, they reflect light
even better than carpets, thus are also applicable in EyeLight.

Lamp shade. In all previous experiments, we tested with
commercial light bulbs without lamp shades. To show the
effect of lamp shade on the transmitted signal, we compared
the average delta values for lamps with and without lampshade
(Fig. 9f). The result shows that with lamp shade on, the
average delta value actually increases. One might think that
lampshade would reduce the intensity of the light from the
transmitter, weakening received light power at the receiver.
In fact, however, the lamp shade distributes light more evenly
over the floor area under the lamp, thus improve the sensitivity
of the receivers looking at different spots on the floor.

VIII. DISCUSSION AND CONCLUSION

We proposed a device-free indoor tracking, occupancy esti-
mation and activity recognition system that can be integrated
in light-bulbs. The key idea is to create a mesh of reflective
virtual light barriers across networked light bulbs to detect
occupant movement. We found that our high-sensitivity photo-
sensing circuit can detect minute light changes (shadows) even
on dark carpeting, and that a time division pulse signaling
scheme allows differentiating the light nodes causing shadows
on the floor. With our 45 m2 conference room prototype
system with 6 light bulbs each carrying 4 receivers, we further
found that the sensing system can achieve a 0.89m median
localization error as well as 93.7% and 93.78% occupancy
and activity classification accuracy, respectively.

Our current system still has several limitations that could be
addressed in future work. First, EyeLight requires more than
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Fig. 9: (a) Delta values for different distance between two nodes. (b) Location median error for different number of nodes. (c)
Delta values for different ambient light settings. (d) Delta values for different types of floor carpets.(e) Types of carpet in (d).
(f) Effect of lamp shade.

one lamp per room for fine-grained user tracking. Fortunately,
the small size of LED lights makes it easier to add additional
lights in rooms. Second, EyeLight so far focuses on tracking
a single person per room. It could track multiple persons
as long as they cross different virtual light barriers, while
multiple persons walking together leads to mixed shadows.
Third, EyeLight needs to adapt to different light settings, such
as different times of the day, rooms with outdoor light passing
through windows. Currently our prototype works in a confer-
ence room without windows, where measured illuminance of
light reflected from the floor is under 5 lux. In a room with
outdoor light entering through windows, the current receivers
saturate. However, techniques like Adaptive Gain Control, as
used in other systems dealing with high dynamic range, can
be added to EyeLight to improve its robustness. An adaptive
system is also needed to keep track of the change of the
baseline light level. We leave such designs for future work.
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