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ABSTRACT
This paper explores the potential for wearable devices to
identify driving activities and unsafe driving, without re-
lying on information or sensors in the vehicle. In partic-
ular, we study how wrist-mounted inertial sensors such as
those in smart watches and fitness trackers, can track steer-
ing wheel usage and inputs. Identifying steering wheel usage
helps mobile device detect driving and reduce distractions.
Tracking steering wheel turning angles can improve vehicle
motion tracking by mobile devices and help identify unsafe
driving. The approach relies on motion features that allow
distinguishing steering from other confounding hand move-
ments. Once steering wheel usage is detected, it also use
wrist rotation measurements to infer steering wheel turning
angles. Our preliminary experiments show that the tech-
nique is 98.9% accurate in detecting driving and can esti-
mate turning angles with average error within two degrees.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; H.5.m [Information In-
terfaces and Presentation(I.7)]: Miscellaneous

Keywords
Driving Safety, Driver detection, Smart Watch, Smart Phone,
IMU Sensors

1. INTRODUCTION
While the emerging ecosystem of mobile and wearable de-

vices is often viewed as a distraction that can lead to ac-
cidents (e.g., [7, 10, 12, 14]), it also presents opportunities
to prevent accidents through safety services. Mobile and
wearable safety apps differ from conventional built-in auto-
motive safety systems, which are typically constructed as
stovepipe systems focusing on a specific risk and employ
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dependable systems techniques such as multiple levels of re-
dundancy, quantifiable guarantees on both the timing and
paths of state transitions, and precision sensing. There is
considerable interest in using mobile devices to deliver softer
safety services, however, since they promise low-cost designs
that reach a much larger population (e.g., [5, 6, 16]).

Existing solutions either depend on interaction with the
vehicle or have struggled to achieve the high event detection
accuracies necessary to provide safety services. In order to
apply mobile sensing to driver behavior analysis, the devices
need to recognize when their user is driving and distinguish
that from being a passenger. Prior approach depend on
access to audio infrastructure in the car for acoustic rang-
ing [15], access to vehicle dynamics data [13], or NFC ra-
dios near the door [11]. Such access may not be widely
available and this reduces the chance for quickly reaching
a large number of users. Chu et.al. [3] attempt to detect
specific movements like entry swing, seat-belt fastening, or
pedal press using inertial phone sensors. The accuracy of
this approach is very dependent on phone position, however.
Several projects have analyzed driver behavior with mobile
sensing techniques [1, 2, 4, 8]. These projects evaluate or
classify driver behavior by using the embedded sensors and
other auxiliary devices like OBD-II. Apps such as [16] fuses
information from sensors, GPS and cameras to detect dan-
gerous driving events. Still, they require access to the vehicle
bus, remain limited in accuracy, or dependent on favorable
phone placement.

We therefore ask whether the emerging quantity and di-
versity of wearable devices can be exploited to achieve highly
accurate sensing and operation that is truly independent of
the vehicle. Towards this goal, this paper examines the ben-
efits of wrist-worn inertial data, such as those from smart
watches or fitness bands, when combined with phone mea-
surements. Such data is particularly useful for tracking hand
movements and can therefore provide information about the
driver’s vehicle operation—most notably steering wheel us-
age. To allow more accurate identification of driving, we first
develop an inertial detection technique that can distinguish
motions when handling a steering wheel from other passen-
ger hand movements. We then extend this technique to also
track the turning angle of the steering wheel. This informa-
tion can allow for more precise vehicle motion tracking than
gyroscope data and was previously only available through
proprietary interfaces to the vehicle CAN bus. Tracking the
usage of the steering wheel can help monitor driving behav-
iors and identify unsafe driving. For example, steering wheel
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Figure 1: System overview

turning angles could be used in lane departure warning sys-
tem to warn a driver when the vehicle is about to drift across
the lane if the turn signal isn’t on. Unsafe driving behaviors
such as swerving, understeer or oversteer could be also de-
tected based on the steering wheel turning angles and other
inertial or speed measurements.

2. SYSTEM DESIGN
Towards detecting unsafe driving, we design and imple-

ment a system to detect driving, and further perform pre-
liminary driving behavior monitoring through steering wheel
angle measurement.

For driving detection, an obvious distinction between a
driver and a passenger is that the driver’s hand will steer
the wheel when the car is making a turn. This leads to
the intuition of our system being to distinguish driver and
passenger through capturing the pattern of steering wheel
movements. Our system overview is shown in Figure 1. It
first collects data from sensors (including the accelerometer,
gyroscope and magnetometer) of both a user’s wrist-worn
sensing device (e.g. smartwatch) and smartphone. We as-
sume that riding in a vehicle can be detected using existing
inertial or location-based techniques [3] and concentrate on
differentiating between the driver and passenger. To this
end, it performs turn detection using the collected data. Be-
cause the most discriminative driver hand’s motion tends to
happen during turns, our system conducts turn detection
by recognizing three different phases of each turn. Based
on the output of turn detection, we extract six features to
characterize the hand movements. With this feature set, our
system can detect whether the user wearing sensing device
is a driver or a passenger using a Support Vector Machine
(SVM) based classifier. If the user is a driver, the system
further estimates the steering wheel angle through a map-
ping profile.

2.1 Quaternions Background
Processing the inertial sensors data requires transforma-

tions between the different watch, phone, car and world
(earth) coordinate spaces through rotations. In this work,
we use quaternion to represent rotations in three dimensions,
a representation that is also directly available through some
sensors APIs [9].

There are two important applications of quaternions in
our system. The first is to represent rotation of a coordinate
frame with respect to another coordinate frame.

Figure 2: Phone and smart watch can be utilized to
detect user and car movements.

Quaternions provide a way to encode the axis-angle rep-
resentation, and to apply the corresponding rotation to four
element vectors. A sensor quaternion vector determines sen-
sor rotation relative to the world coordinate frame, which we
define as the x-axis pointing east, y-axis pointing north, and
the z-axis pointing up. In Figure 2 the different coordinate
systems are illustrated. In our work, the smartwatch’s rota-
tion relative to the smartphone’s can be found by:

qwp = qpeqwe
−1. (1)

Here qwp represents smartwatch quaternion relative to phone
coordinate frame, qpe and qwe represents pone and watch
quaternions relative to the earth coordinate frame.

The second application of quaternions is representing a
vector defined in world coordinate frame in another coordi-
nate frame by using the Hamilton product as shown below:

pw = qwepeq
−1
we . (2)

Here pe represents the input vector in the world coordinate
frame, qwe represents the quaternion in the world coordinate
frame, and pw is the output vector in the watch coordinate
frame.

2.2 Turn detection
We develop a three-phase turn detection algorithm, which

segments different turning periods based on the gyroscope
data collected from both smartwatch and smartphone.

The first phase is to find the vehicle turn period, wherein
the vehicle is actually turning, by applying threshold de-
tection to a sliding time window over the vector magnitude

28



Figure 3: Illustration of the turn detection proce-
dure.

of the smartphone gyroscope. Once all data in the window
exceeds the threshold the algorithm detects a turn and ex-
pands the left and right sides of the time window to the first
local minima, to capture the whole vehicle turn period, as
shown in Figure 3.

However, based on our observation, the beginning part of
the turning steering wheel movement might be missed in the
vehicle turn period, especially at low driving speeds. The
pictures at the bottom of figure 3 shows the whole turning
steering wheel movement of a right turn, and the begin-
ning part, between t1 and t2, always occurs slightly before
the vehicle begins to turn. Thus, the second phase of our
turn detection is to detect the first hand movement period
through gyroscope x-axis data from the smart watch, which
could precisely characterize this movement. The algorithm
uses two pointers to search for the first zero crossing point
on both the left and right sides of the starting time of the
vehicle turn. The segment between left side and right side
zero crossing point is identified as the first hand movement
period.

Finally, the third phase identifies the entire turn period
as the union of the vehicle turn period and the first hand
movement period. The entire turn period now includes the
entire steering hand motion. Note that this three-phase turn
detection algorithm is also applied to passenger watch and
smartphone data. In this case, the hand movement may not
exist and the detected period is simply the vehicle turn.

2.3 Feature Extraction
After a turn is detected, our system extracts features from

sensor data so that real steering movements can be distin-
guished from arbitrary arm movements performed by pas-
sengers. Our system consists of 6 features in total, which
are described as follows and denoted by ffeaturename.

Rotational Change. Since the arm and wrist typically
rotate during steering movements, we select watch rotation
as the first feature. Directly detecting the rotation of arm
using smartwatch data is hard as the watch’s rotation (rela-
tive to world coordinate frame) is affected by both the arm
movement and car’s change in heading. We therefore elim-
inate the effect car rotation during the entire turn period
by calculation the rotation of the smartwatch relative to
the smartphone (qwp(t)). This is performed by applying
Eq. (1).

We next need to detect the direction of the rotational
movement to distinguish turning steering wheel from other
rotational movements, such as eating snacks. Since, the
phone can be in an arbitrary rotation in the car, the calcu-
lated qwp does not provide information about the direction
of arm movement. We can find the rotation of the watch’s
movement during entire turn relative to watch’s rotation at
the beginning of the car’s turn, initial coordinate frame, by
using Eq. (1) with qwp and initial quaternion (qw0), the
quaternion at the beginning of the turn, as summarized be-
low:

qw(t) = qw0(qpe(t)qwe
−1(t))−1

frotChange = max(abs(T {qw(t)}))
(3)

Finally, we use the maximum of the absolute values of the
time series of Euler angles in the individual axes as the ro-
tational change feature vector frotChange. Here, T {} refers
to the transformation from quaternion time series to Euler
angles time series. We use the absolute values, since we are
not interested in the direction of rotation (steering left or
right) and select the maximum rotation in each axis over
the time window of the entire turn period.

Arm Acceleration. Although rotational change feature
provides information about the direction and angle of the
turn, it does not provide any information about the radius
of rotational movement. As a consequence two hand move-
ments can produce same rotational change feature as long
as hand is rotated along the same axis and same degrees.
To the best of our knowledge, there is no direct way of find-
ing the radius of rotational movement from inertial sensors.
Fortunately, acceleration vectors relative to a fixed coordi-
nate frame will be larger when the radius of the rotational
movement is large and will be smaller when the radius is
small. Thus, we can use acceleration as a feature. However,
acceleration vectors are expressed relative to arm’s rotation
and it will be changing when the arm is rotating. Therefore,
these measurements need to be represented in the same co-
ordinate frame before doing any vector operation on them
or using them as a feature. We chose arm’s initial rota-
tion as the fixed coordinate frame for the sake of simplicity
of calculations. Our method calculates watch’s acceleration
relative to this coordinate frame during entire turn period
by first calculating quaternion vectors relative to initial co-
ordinate frame (qwinit(t)) and then taking Hamilton prod-
uct (Eq. (2)) of these quaternion vectors with accelerometer
vectors (awe(t)). Finally, the maximum of calculated accel-
eration is chosen as the feature (farmaccel).

qwinit(t) = qw0qwe
−1(t)

farmaccel = max(qwinit(t)awe(t)q−1
winit(t))

(4)

Car Acceleration. Since the watch’s acceleration mea-
surements are largely affected by the car’s acceleration, we
also need to provide the car’s maximum acceleration rel-
ative to the watch’s initial coordinate frame as a feature
(fcaraccel). The car’s acceleration will be equal to the phone’s
acceleration when the phone is fixed. Therefore, a similar
method as in the farmaccel calculation is carried out for coor-
dinate frame transformations with the phone’s acceleration
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measurements during entire turn period.

qpinit(t) = qw0qpe
−1(t)

fcaraccel = max(qpinit(t)ape(t)q−1
pinit(t))

(5)

First Hand Movement. As introduced in section 2.2,
we also need to extract some features from the first hand
movement. The maximum of watch’s gyroscope x-axis value
is selected to express the maximum rotation velocity during
this movement. Besides, the time duration of the movement
is also selected, since passenger’s hand movements are usu-
ally shorter than drivers.

Other Features. To further improve our feature set, we
experimented with several additional features like mean or
maximum of devices’ gyroscope data. By utilizing feature
selection, we abandon some of them and choose the watch’s
gyroscope magnitude mean value of the entire turn period,
which can improve the accuracy of our classification model.

2.4 Classification
With the identified feature set, the next step of our system

is to distinguish whether a user of the smart watch is a
driver. There are multiple methods that could be used for
such a binary classification task and here we choose SVM as
our classifier—not only because it is one of the most robust
ones but also because we empirical found that it achieves the
better performance in our task than several alternatives.

During the classification process, we first normalize the
feature set by converting it into unit domain. With this
normalized feature input, the classifier determines whether
the data fits driver or passenger.

2.5 Steering Wheel Angle Monitoring
Once driving is detected, our system uses the gyroscope

readings of the smart watch to monitor the steering wheel
turning angles. When making a turn, the smart watch on
the driver’s wrist rotates together with the steering wheel.
The steering wheel turning angles thus can be inferred from
the rotations of the smart watch.

We first perform coordinate system alignment to convert
the gyroscope readings of the smart watch to the steering
wheel’s coordinate system. Specifically, we first find the co-
ordinate system of the smart watch with respect to the car’s
by using both the gravity of the smart watch and the acceler-
ation/deceleration of the car when driving straight. Detailed
steps can be found in [13]. Since the steering wheel’s coordi-
nate system is fixed with respect to the car’s, we can easily
measure it by using either an angle finder or a smartphone
that is aligned with the steering wheel. We next calculate
the difference between these two coordinate systems (i.e.,
quaternions). The gyroscope readings of the smart watch
then can be converted to the steering wheel’s plane by ap-
plying the quaternion.

We experimentally found that the rotation of the smart
watch is not the same as that of the steering wheel. This
is because the driver bends his wrist in different ways when
holding the steering wheel under different turning angles.
As shown in Figure 4, before making a turn, the wrist has
a large angle to the steering wheel plane. The projected
location of smart watch on the steering wheel is thus close
to the holding position. After a 90° turn, the wrist angle to
the steering wheel plane becomes smaller, which leads to the
projected location farther away from the holding position.
The rotation of the smart watch is thus smaller than that

Figure 4: Holding position and the projected posi-
tion of smart watch on steering wheel.

of steering wheel. To address this issue, we collect training
data to create a mapping (i.e., angle mapping) between the
rotations of the smart watch and the steering wheel under
different steering turning angles. This is based on the ob-
servation that people usually consistently bend their wrists
when turning. The steering wheel turning angles thus can
be inferred based on the rotation of the smart watch and
the created angle mapping.

3. PERFORMANCE EVALUATION
We evaluate the system in terms of how accurately it de-

tects turns and recognizes the user as a driver for each turn,
how long it takes to detect that a user is a driver, and how
accurately it estimates the steering angles.

3.1 Driver Detection Accuracy
We conduct our experiments with an Invensense MPU-

9150 9-axis motion sensor, which is a prototyping alternative
to a wearable device. Each sensor contains accelerometer,
gyroscope and magnetometer. We collect data with three
such sensors, one is worn on the driver’s wrist, one is at-
tached to the passenger’s wrist, and the last one is put in
the middle cup holder of the car. The sample rate is set as
100Hz in the experiments.

The experiments are conducted under two scenarios. For
the first scenario, the driver drives in a controlled area and
the passenger always keeps both wrists stationary (now arm
movement). For the second scenario, the driver drives on a
real road, and the passenger moves (playing with the phone
and eating snacks). We collect data for 239 turns in the
first scenario and 41 turns in the second scenario, both with
passenger and driver inside the car. Our three-phase turn
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detection algorithm correctly detects all of these 280 turns
resulting in 100% accuracy.

Figure 5 presents the driver detection accuracy by using
10-fold cross-validation when different sets of data are used.
Overall, our system achieves 98.9% accuracy by mixing the
data collected in both scenarios (i.e., all data). If we only
include the passenger and driver data in the first scenar-
ios for training and testing, the accuracy goes to 100% as
no wrist movement of passenger interferes with the driver
detection. In the second scenario, playing with the phone
still yields 100% accuracy; it can apparently easily be dis-
tinguished by the classifier. The more challenge scenario is
when the passenger is eating. When using data when pas-
senger is eating, our system results in 96.7% accuracy due
to some movements of eating produce similar features as
steering movements.
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Figure 5: Detection accuracy in different cases

3.2 Detection Delay
Detection delay indicates how much time our system needs

to make a decision after starting to drive. Often the first
turn occurs when leaving the parking space and our system
can detect the driver within the first seconds of the drive.
To understand the performance under less ideal conditions,
we consider here the case where no steering is necessary to
leave the parking space. Since we perform driver detection
based on a single turn, the detection delay thus can be de-
fined as the time from starting a vehicle to complete the
first turn. The whole detection delay (dall) could be further
divided into two parts: the time that starting a vehicle from
stationary to the beginning of the first turn (ds) and the
time to complete the first turn (dt).

Table 1: Detection delay of each drive
Turn No. 1 2 3 4 5 6 7 8
ds(s) 18.55 12.45 18.45 13.90 9.50 8.75 23.20 11.35
dt(s) 6.10 5.40 5.45 7.65 7.60 9.40 5.85 5.40
dall(s) 24.65 17.85 23.90 21.55 17.10 18.15 29.05 16.75

For the previous experiments, we have made 8 trips. The
detection delay for these 8 cases are shown in table 1. The
results show that the detection delay (dall) is very small:
ranging from 16.75 seconds to 29.05 seconds, with an average
of 21.13 seconds. Moreover, a vehicle usually makes multiple
turns to pull out of a parking lot at the beginning of each
trip. Our system can thus be expected to have even smaller
detection delay in such cases.

3.3 Steering Wheel Turning Angle Estimation
We use two experimental setups to evaluate how accurate

the smart watch can be used to estimate the steering wheel
turning angles. We use a Samsung Gear Live smart watch,
which is equipped with MPU 6515 gyroscope sensor. The
sampling rate is set to 200Hz. The car is a Honda Civic
Coupe LX. In both experimental setups, we use the Bosch
DAF220K Miter angle finder to log the ground truth of the
steering wheel turning angles.

In both setups, when the driver is steering the wheel, the
car is stationary. Note that when the car is driving on the
road, the rotation of the smart watch is a combination of the
rotation corresponding to the steering wheel rotation and
the actual turn made by the car. Since the turn made by the
car can be inferred from the smartphone gyroscope readings,
we can subtract the turn made by the car from the overall
rotation of the smart watch to get the rotation corresponding
to the steering wheel. We leave this evaluation for future
work.

In the first experimental setup, we fix the smart watch on
the steering wheel to evaluate how accurately the derived
quaternion can convert the gyroscope readings of the smart
watch to the steering wheel turning angle.

In particular, we turn the steering wheel right for 30° 60°
and 90°, respectively. Each turning angle is repeated 10
times. The quaternion is calculated based on the method
introduced in the previous section.

Figure 6(a) shows the mean and standard deviation of the
angle estimation error. We observe that the average angle
error is relatively small. It is less than 1° for the 30° turn, less
than 1.5° for the 60° turn, and less than 2° for the 90° turn.
Moreover, we find that the average error increases when in-
creasing the steering wheel turning angle. The relationship
between the error and the true angle is approximately lin-
ear due to the larger turn involving more time which leads
to a larger accumulated error. These results show that the
quaternion derived in real scenarios can be used to convert
smart watch rotation to the steering turning angle with a
small error.

In the second experimental setup, the smart watch is worn
on the driver’s wrist when making turns. We turn the steer-
ing wheel both right and left from 5° to 90° with a step size
of 5°. For each turning angle, we repeat the experiment 10
times and use half of them as training data and the other
half as testing data.

Figure 6(b) shows the histogram of the angle estimation
error. We find that in about 70% of cases the angle error
is within 2.5°, in about 25% of cases the error is in between
2.5° and 5°, and that the largest error range is from 5° to 7.5°
and occurs in only 5% of the cases. Comparing these errors
to the case where the watch is fixed on the steering wheel,
the error with the wrist-worn watch is larger—presumably
due to variations in the drivers wrist postion across turns.

4. DISCUSSION AND CONCLUSION
In this work, we took a step towards enabling activity

recognition of unsafe driving using wearable devices. Our
work illustrates that strategies which combine motion sens-
ing, machine learning models and classifiers can lead to ac-
curate classification of driving activities. We showed that
using a smart watch, we can distinguish steering movements
from other movement, such as eating and using a cell phone.
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Figure 6: Error of angle estimation when fix the
watch on the steering wheel and wear the watch.

In the preliminary evaluation, our prototype achieves 98.9%
driver detection accuracy for individual turns, which cor-
responds to an average driver detection latency of 21.13
seconds after starting to drive. The latency would reduce
significantly if one also considers the steering movements
necessary to leave most parking spaces. In spite of these
promising results, however, many challenges remain towards
realizing the vision of automatic unsafe activity detection.

A limitation of our approach is its statistical nature for
safety applications. Detection accuracy decreases if the driver
steers only with the watch-less hand. A misclassification
rate of 1 in 10000, for example, is not acceptable if the con-
sequence was the loss of human life. However, there may
be a range of human behavior modification and attention
direction uses for which statistical approaches are appro-
priate. A second major challenge is grounded on our use
of machine learning classifiers. The large number of clas-
sification strategies and little experience with priors in the
field make model construction, training data collection, and
model validation a difficult art. Reducing the space of pos-
sible techniques will require experience and experimentation
with more drivers and vehicles.

Acknowledgment
This material is based in part upon work supported by the
National Science Foundation under Grant Nos. CNS-1329939,
CNS-1409811, CNS-1409767 and CNS-1505175.

5. REFERENCES
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