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Abstract

This paper presents a framework for preserving
location privacy without affecting location accuracy.
In this framework, services migrate a piece of code
to a trusted server, which is assumed to have lo-
cation information of all the interesting subjects.
The code executes on the trusted server, reads loca-
tion information and sends back results. We intro-
duce Non-inference, a novel information-flow con-
trol model that guarantees that the code does not
leak exact location information. We discuss the de-
sign, implementation and evaluation of a static pro-
gram analysis technique that enforces non-inference
for location based services.

1 Introduction

Many Location Based Services (LBS) work with
aggregate information derived from the position
measurement, rather than recording the position
measurements itself. For example, the traffic moni-
toring application would compute mean vehicle ve-
locity on any give road segment and feed this data
into navigation systems or control traffic manage-
ment system such as ramp meters. Theoretically,
such applications can be structured to preserve pri-
vacy by only revealing the aggregate data instead
of personal location records. However, not knowing
the detailed implementation of a service and assum-
ing that they cannot blindly trust a given service

∗This material is based upon work supported in part by
NSF under grants ANI-0121416, CNS-0520123 and CNS-
0524475

provider, users have no way to decide whether a
service preserves privacy.

One solution for location-privacy is a general
trusted anonymization service that reduces spatio-
temporal resolution until the data meets the k-
anonymity [12] constraint before it is passed to the
applications.1 However, this reduction in resolution
can lead to inferior quality of service. Different ser-
vices require different levels of accuracy, hence for
some services a generalized cloaking service may un-
necessarily reduce the accuracy of the service.

In this paper, we propose a service-specific lo-
cation privacy approach, centered on an informa-
tion flow control analysis, which verifies the pri-
vacy properties of custom data aggregation func-
tions. Consider a scenario where a trusted location
server maintains mobile subjects’ position informa-
tion. Location information consists of identity of the
subject, its location and the timestamp when the
subject was present at that location. When an LBS
provider needs location information, it can request
to install an aggregation module on the trusted
server. The module can access location records on
the server and communicate aggregate results (e.g.,
distance between two cars, density of vehicles in re-
gion, or mean velocity of vehicles on road segment)
to the LBS provider. This approach eliminates the
need to reveal raw location information to the LBS,

1A subject is considered k-anonymous if it cannot be dis-
tinguished from at least k - 1 other subjects. For example,
if the location information sent by a mobile subject is per-
turbed to replace the exact coordinates by a spatial interval,
such that the locations of at least k - 1 other subjects belong
to that interval, then the adversary cannot match the loca-
tion of the subject to its identity without a certain amount
of uncertainty. The uncertainty would increase with k, pro-
viding better privacy.
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as the desired result is computed on the trusted
server itself using exact location information.

In order to preserve privacy, the trusted server
needs to ensure that data sent to the LBS is in-
deed aggregated and location-safe. That is, the LBS
provider must be unable to deduce the location of
any mobile subject from the received information.
Since an aggregation module may covertly leak in-
formation due to malice or incompetence, a detailed
analysis of the aggregation module is necesary. This
analysis can be performed either by the operator of
the trusted location server or another trusted third
party that guarantees correct behavior of the mod-
ule (like VeriSign). To enable the analysis and cer-
tification of a large number of different aggregation
functions, there is a need for tools to assist in verify-
ing code for location-safety. In this context, we de-
scribe a system based on an information flow anal-
ysis tailored to aggregation modules for time-series
information, such as location traces.

The problem of verifying location-safety of
an aggregation module can be regarded as an
information-flow control problem. Information-flow
control policies tend to impose restrictions on the
manner in which sensitive data flows through a pro-
gram/system. The existing information-flow con-
trol model called Non-interference [11, 5] requires
that any possible variation in private data must not
cause a variation in public data. In other words, if
the value of a public variable q depends on that of a
private variable p then non-interference is violated.
In effect, non-interference isolates private data from
public data. In doing so, it guarantees that the
publicly observable behavior of a system/program
does not reveal anything about its private behavior.
However, data isolation is an extreme measure and
in many real applications it is not possible to iso-
late private data from public data. For example, in
our case the migratory code computes results based
on private location information. These results are
transmitted back to the LBS and are public. Since
private variables affect the value of public variables,
it is not possible to enforce non-interference in this
case. The questions then are: (i) Is it possible to en-
visage an information-flow control model that does
not require data isolation and yet preserves privacy?
(ii) Under what assumptions can such a model be
realized?

In this paper, we propose a weaker model of
information-flow control called non-inference. Non-
inference requires that the adversary should not be

able to infer the value of a private variable based
on the values of public variable. In the most gen-
eral case, it can be shown that non-inference is un-
decidable (we provide a proof in [16]). However, if
we can assume that multiple executions of the un-
trusted code are independent, then non-inference is
decidable (see proof in [16]). Execution indepen-
dence requires that the results obtained from one
execution should not aid the results obtained from
another execution of the same or different applica-
tion. This is usually the case for location-based ap-
plications as explained in Section 4.

The key contributions of this paper are: (1) the
concept of non-inference (2) a framework for the ap-
plication of non-inference to service-specific location
privacy, and (3) enforcement of non-inference for lo-
cation based services using static program analysis.
The remainder of the paper is organized as follows.
In Section 2 we describe our model and give exam-
ples of a few applications that can benefit from our
framework. In Section 3 we survey related work.
Section 4 presents non-inference and its application
to location-based services. Implementation details
and evaluation results are presented in Section 5.
We conclude in Section 6 with directions for future
work.

2 Model and Example Applications

In our model, the location information of mobile
nodes is maintained on a trusted server. An LBS
that needs to compute a result based on location in-
formation sends a piece of code to the trusted server
along with some data, which is optional. The code
executes on the trusted server, reads location infor-
mation resident on the server and the data sent by
the LBS. It then computes some results and sends
them back to the LBS. Without loss of generality,
we assume that the mobile code is a single function
encapsulated in a Java class. Note that a program
with multiple functions can be reduced to a single
function by inlining function bodies. We assume
that all input and output variables are scalars and
of the same type length. The type length is deter-
mined by the minimum number of bits required to
store location information. This assumption is nec-
essary in order to ensure that the exact values of
two variables cannot be stored in one variable. In
our current implementation, we assume all variables
to be of type byte (8-bit integers). The function is
invoked from the Dispatcher class, which feeds the
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Figure 1. Our framework for location-
privacy

data sent by the LBS and the location information
to the function. Before invoking the function, the
Dispatcher class invokes the StaticAnalyzer, which
first checks to see if the function is pre-certified,
if not it analyzes the function and determines if it
satisfies non-inference. The Dispatcher also ensures
that there is a minimal time gap between two code
executions in order to guarantee execution indepen-
dence as discussed before. Figure 1 shows the bird-
eye view of our model.

Several traffic monitoring services can be enabled
by aggregate functions that calculate density of ve-
hicles, or average speed of vehicles in a region. Re-
cently, Delcan technology has begun deployment of
a system in Maryland that mines cell-phone data
to determine traffic conditions such as jams and
slowdowns [1]. By measuring the time of handoffs
from cell to cell, the location and speed of a vehicle
is calculated (assuming that the driver’s phone is
turned on). In our framework, Delcan would fit in
as the untrusted LBS provider and the cellular ser-
vice provider would fit in as the trusted server which
tracks the location of every cell-phone. Whenever
Delcan needs location information, it would migrate
a piece of code to the trusted server which would
return aggregate information. Based on the aggre-
gate information, Delcan would supply information
about traffic conditions to the subscribers.

The framework proposed in this paper can be
used to implement privacy-preserving geographic
route discovery function for environments with long-
lasting flows and relaxed scalability constraints. Let
us assume that there is a Routing Service that pro-
vides next-hop information to nodes. Any node
that wants to forward data to a destination loca-

tion invokes the Routing Service with the location
of the destination and requests for the address of
the best next hop. The Routing Service migrates a
piece of code that calculates distance between two
nodes to the trusted server which maintains loca-
tion information of all nodes. Through the distance
function, the Routing Service learns the distance of
every node from the destination location. It can
then supply next hop information to the requesting
node without learning the location information of
any node. In addition to geographical routing, dis-
tance function can be used by applications such as
media applications, streaming applications, or con-
tent sharing applications.

3 Related Work

3.1 Location Privacy

Early work on context privacy (which includes
location) focussed mostly on a policy-based ap-
proach [9]. The main problem with this method was
that the enforcement of these policies was loosely
defined. The users essentially had to trust the ser-
vice providers for abiding by these policies.

This was followed by the application of k-
anonymity to location information using data per-
turbation techniques [12]. Location information
was depersonalized and perturbed before being for-
warded to the LBS. This method is the state of the
art in location privacy. The main drawback of this
method is that it may lead to inferior quality of ser-
vice when accurate location information is desired.
Also, it uses a global value of k (which is decided
statically), where a smaller value of k could provide
desired privacy levels without affecting quality of
service significantly.

3.2 Information-flow control

Information-flow policies are end-to-end security
policies that provide more precise control of in-
formation propagation than access control models.
The lattice model for multilevel security systems
was first proposed by Denning et al [7]. In this
model, objects are assigned different security lev-
els, where objects can be files, segments or program
variables depending on the level of the detail. The
security levels are organized as a lattice. A special
case is when there are only two security levels: pub-
lic and private.
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State of the art in information-flow control is
Non-interference [5, 11], which was introduced
by Goguen and Meseguer in their seminal pa-
per [11]. Intuitively, non-interference requires that
high-security information does not affect the low-
security observable behavior of the system. In
other words, private data does not influence pub-
lic data. Non-interference is fairly easy to enforce
using language-based techniques [8, 19].

Non-interference, however, is a very strict re-
quirement for most systems where private data of-
ten interferes with public data. Its applicability
is therefore extremely limited. This was explic-
itly stated in [17]. Giacobazzi et al proposed Ab-
stract Noninterference [10], where they used ab-
stract interpretations to generalize the notion of
non-interference by making it parametric to what
the attacker can analyze about the information
flow. However, this framework is mainly theoret-
ical. To practically apply this theory in building
program analysis tools, we need to design ways to
express security policies and mechanisms to enforce
them. Approximate Non-interference [15] is a model
in which the notion of non-interference is approxi-
mated in the sense that it allows for some exactly
quantified leakage of information. This is charac-
terized via a notion of process similarity. However,
comparing the quantity of information leakage does
not have direct sensible meanings in most situations.

In a recent work [13] Li and Zdancewic proposed
a generalized framework of downgrading policies.
Using this framework, the user can specify down-
grading policies which are enforced using a type sys-
tem. The main contribution of this work is the for-
malization of a framework that enables downgrad-
ing. The real challenge is to define downgrading
policies that are applicable to real systems.

Unlike non-interference and its derivatives, non-
inference allows information to flow from private
variables to public variables, but requires that the
adversary does not infer value of any private vari-
able from public variables. This makes it much more
generally applicable. Non-inference certifies a pro-
gram execution as opposed to a program and there-
fore requires that multiple executions be indepen-
dent.

4 Non-Inference

In this section, we define the problem of certi-
fying program execution, discuss the assumptions

and present the solution. We denote a program as
a function f which takes inputs i1, i2, ..in and pro-
duces outputs o1, o2....ok. Let P denote the set of
private input variables and Q the set of public in-
put variables. All output variables are assumed to
be public. Function f satisfies non-inference if and
only if ¬(∃ik ∈ P |{f, o1, o2....ok} → ik). Inference
is denoted by the symbol →. Informally speaking, a
program satisfies non-inference if an adversary can-
not infer the exact value of a private input variable
from the output variables and the program code.

The first question is: Is it possible to decide if
a program satisfies non-inference? It can be shown
that in the most general case (when no assumptions
are made about the program or the capabilities of
the adversary), non-inference is undecidable. (We
provide a proof in [16]). However, non-inference is
decidable if we can assume that multiple executions
of untrusted code are independent of each other.
(We prove this in [16]). To understand this better,
consider the following code snippet:

int h(int x1, int x2, int i){

int out=0;

if(i == 1){

out = (x1+x2)/2;

output(out);

}else{

out = x1*x2;

output(out);

}

Here, x1 and x2 are private variables and i is a
public variable. Function h returns the average of x1
and x2 if i = 1, otherwise it returns the product of
the two variables. Body of function h and the value
of the input variable i are sent by the untrusted ser-
vice. From one execution of h, the untrusted service
learns either the product or the average. It cannot
infer the value of x1 or it x2 from out. Now consider
two different executions of h with i=1 and i=2 re-
spectively. The first execution returns average of x1
and x2, while the second execution returns product
of x1 and x2. By knowing both average and prod-
uct, the adversary can infer the values of both x1
and x2.

The scope of non-inference is limited to one single
execution of the program. It is not possible to en-
force non-inference across different executions, un-
less they are independent of each other. This re-
stricts the applicability of non-inference to certain
kind of applications, specifically to those that sat-
isfy independent executions. In this example, if x1
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and x2 are x-coordinates of two moving vehicles and
there is a time gap between the two executions of
h, then the values taken by x1 and x2 would be dif-
ferent for the two executions. This makes the two
executions of h independent of each other. Non-
inference is, therefore, applicable to location based
applications.

4.1 Deciding Non-Inference for Loca-
tion Based Applications

In this section, we show how static program anal-
ysis can be used to decide non-inference. The anal-
ysis consists of two phases. In the first phase, global
data-flow analysis is used to construct information-
flow relations between the variables(V) and expres-
sions(E) of the code T under examination. From
these information-flow relations, dependency infor-
mation between private input variables (P ∈ V )
and output variables (O ∈ V ) is derived and stored
in a matrix M. In the second phase, we decide if
the information-flow relations stored in the matrix
satisfy non-inference. For this, the information-flow
relations are treated as linear equations and the the-
ory of solvability of linear equations is applied. This
is the main idea used in deciding non-inference.

4.1.1 Information-flow relations

We define three information-flow relations [6]:
R1 from V to E
R2 from E to V
R3 from, V to V.

R1(v, e) can be interpreted as ”the value of vari-
able v on entry to T may be used in the evaluation
of expression e in T”. For example, the code S:
if (a > 10) then (m = a + b; n = m ∗ a) else k = b
contains three expressions: {a > 10, a + b, m ∗ a}.
The value of variable a on entry to this code may
be used in evaluating all the three expressions, while
the entry value of b may be used in evaluating only
(a + b). The entry value of m will not be used
for evaluating any of the three expressions. For
this code, we have: R1(a, a > 10), R1(a, a + b),
R1(a, m ∗ a) and R1(b, a + b).

R2(e, v) can be interpreted as ”the value of ex-
pression e in T may be used in obtaining the exit
value of variable v”. In the previous example, both
expressions (a > 10) and (a + b) may be used in
obtaining the exit value of m. Similarly, all the
three expressions {a > 10, a + b, m ∗ a} may be

used in obtaining the exit value of n. For S, we
have R2(a > 10, m), R2(a + b, m), R2(a > 10, n),
R2(a + b, n), R2(m ∗ a, n).

R3(v1, v2) can be in interpreted as ”the entry
value of variable v1 may be used in obtaining the
exit value of variable v2 in T”. R3(v1, v2) implies
that either: (i) the entry value of v1 may be used in
obtaining value of some expression e which in turn
may be used in obtaining the exit value of v2 in T, or
(ii) there is an assignment statement v2 = v1 which
is preserved in T. An assignment statement x = y
is said to be preserved in T, if there exists a path in
T that does not reassign x.

R3 can be expressed in terms of R1 and
R2 as follows: R3 = R1R2 ∪ A, where A
= {(v1, v2), s.t there is an assignment state-
ment: (v2 = v1) that is preserved in T }.
In example S, R1R2={(a, m), (a, n), (b, m), (b, n)},
A = {(b, k)} and R3 = R1R2 ∪ A =
{(a, m), (a, n), (b, m), (b, n), (b, k)}.

4.1.2 Construction of information-flow rela-

tions

The information-flow relations R1 and R2 are con-
structed using use-def [4] and def-use [4] analyses.
Use-def analysis is used to create ”use-definition
chains” or ”ud-chains”. ”Use-definition chains” are
lists, for each use of a variable, of all the defini-
tions that reach that use. We say a variable is used
at statement s if its r-value may be required. For
example, the statement: (m = a + b), contains a
use of a, a use of b and a definition of m. Def-use
analysis is used to create ”definition-use chains” or
”du-chains”. The du-chaining problem is to com-
pute for a definition d of variable x, the set of uses s
of x such that there is a path from d to s that does
not redefine x.

By taking transitive closures of du-chains and ud-
chains, we construct relations R1 and R2. From
R1, R2 and A we construct relation R3. Matrix M
is constructed from R3 for input and output vari-
ables. For simplicity sake, readers can assume that
M = R3(P, O). While constructing M, we also
take into account the path information (i.e which
expression or assignment statement was responsible
in establishing the dependency between a particu-
lar output and input variable) which is provided by
relations R1 and R2.

Figure 2 is the example of a function that cal-
culates the exact distance between two cars. Vari-
ables x1, y1, x2, y2 are private input variables, k is
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int f(byte x1, byte y1, byte x2, byte y2, int k){
byte x, y, dist, avg_x, avg_y;
x = (x2 - x1)^2;

y = (y2 - y1)^2;
dist = sqrt(x + y);

output(dist);
if(k > 100){

avg_x = (x1 + x2)/2;
avg_y = (y1 + y2)/2;
output(avg_x);

output(avg_y);
}

}

Figure 2. Function that calculates distance
between two cars and average values of
coordinates

a public input variable, dist, avg x, avg y are out-
put variables. (x1, y1) is the location of the first
car and (x2, y2) is the location of the second car.
The function also computes the average value of
coordinates if the value of k is greater than 100.
The information-flow relations for this function and
the matrix M are given in Figure 3. Note that
R3 = R1R2 ∪ A and M = R3(P, O).

4.1.3 Solving information-flow relations

Given information-flow relations, how do we decide
if the program satisfies non-inference? Our analy-
sis [16] shows that although non-inference is decid-
able in the case of independent program executions,
it is not clear if a generic polynomial-time solution
is possible. We solve this problem in context of
location privacy, where it is reasonable to assume
that all input and output variables are 8-bit inte-
gers. We treat information-flow relations as linear
equations. It can be shown that a program satisfies
non-inference if the system of linear equations given
by: MT P = O and all its subsystems are unsolv-
able. P is the set of private input variables, O is the
set of output variables and MT is the transpose of
matrix M.

We briefly recapitulate the theory of solvability
of linear equations. A system of linear equations
given by AX = B, has a solution only if : rank(A)
= rank([AB]) = N, where A is M-by-N, X is N-by-1
and B is M-by-1. The notation [AB] means that
B is appended to A as an additional column. X is
the matrix of unknowns, A is the coefficient matrix
and B is the right-hand-side matrix. The rank of

P = {x1, y1, x2, y2}, O = {dist, avg x, avg y}
V = {x1, y1, x2, y2, k, x, y, dist, avg x, avg y}
E = {(x2− x1)2, (y2− y1)2, sqrt(x + y), (dist > k), (x1 + x2)/2, (y1 +
y2)/2}
A = {I}, I represents Identity: (v = v)

R1 = V × E =



















1 0 1 0 1 0
0 1 1 0 0 1
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



















R2 = E × V =









0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1









R3 = V × V =



















1 0 0 0 0 1 0 1 1 0
0 1 0 0 0 0 1 1 0 1
0 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 1 0 1
0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



















M = P × O =

[

1 1 0
1 0 1
1 1 0
1 0 1

]

Figure 3. Information-flow relations for the
distance example

a matrix denotes the number of independent rows
in the matrix and hence the number of independent
equations in the set. To get a solution, the rank
of the coefficient matrix A should be equal to the
number of unknowns. If all the equations in the set
are assumed to be independent, it suffices to check
if N = M.

We represent dependency between private input
variables P and output variables O as a set of linear
equations: MT P = O (as shown in Figure 4). The
intuition behind this representation is explained in
Section 5. By adopting linear equation as the rep-
resentation of dependency, we guarantee a conser-
vative analysis. If the system of linear equations
cannot be solved, values of private input variables
(which are the unknowns in these equations) can-
not be inferred from the values of output variables.
However, since our analysis is conservative, we may
have false negatives. That is, if a system of equa-
tions can be solved, it does not necessarily mean
that the program violates non-inference. Our anal-
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[

1 1 1 1
1 0 1 0
0 1 0 1

]

[

x1
y1
x2
y2

]

=

[

dist
avg x
avg y

]

Rank(MT ) = 3 < (|P | = 4)

[

1 1 1 1
1 0 1 0

]

[

x1
y1
x2
y2

]

=

[

dist
avg x

]

Rank(MT

1
) = 2 < (|P | = 4)

[

1 0 1 0
0 1 0 1

]

[

x1
y1
x2
y2

]

=

[

avg x
avg y

]

Rank(MT

2
) = 2 < (|P | = 4)

[

1 1 1 1
0 1 0 1

]

[

x1
y1
x2
y2

]

=

[

dist
avg y

]

Rank(MT

3
) = 2 < (|P | = 4)

[

1 1 1 1
]

[

x1
y1
x2
y2

]

=
[

dist
]

Rank(MT

4
) = 1 < (|P | = 4)

[

1 1
]

[

x1
x2

]

=
[

avg x
]

Rank(MT

5
) = 1 < (|P1| = 2)

[

1 1
]

[

y1
y2

]

=
[

avg y
]

Rank(MT

6
) = 1 < (|P2| = 2)

Figure 4. Linear Equations for the distance
example

ysis will reject such a program.

We assume that all the equations are indepen-
dent. Let R be the number of rows of MT and C
be the number of columns. We check if R < C. We
carry out this check for all the matrices that can be
derived from MT by deleting one or more rows of
MT . This is because we want to know if the value of
any input variable can be inferred from output vari-
ables. In other words, we want to know if any subset
of the linear equations can be solved. If the check
is satisfied for MT and all its sub-matrices, the pro-
gram satisfies non-inference. It is worth mention-
ing, that there is a faster algorithm for checking the
solvability of linear equations. For ease of imple-
mentation, we use the algorithm described above.

Figure 4 shows the system of equations MT P =
O for the example program of Figure 2 and all the
subsystems that can be derived from MT . The
check R < C is satisfied by all the subsystems. The
example program therefore satisfies non-inference.

5 Implementation and Evaluation

We have implemented a static analyzer that de-
cides non-inference for Java programs. The imple-
mentation was done using Soot 2.2.1 [3] and Indus
0.7 [2]. Soot provides an API for analyzing and in-
strumenting Java bytecode. Indus provides an API
for data-flow analysis. Our current implementation
does not support inter-procedural analysis and as-
sumes that input and output variables are 8-bit in-
tegers.

In absence of real applications that make use
of location, we evaluated our analyzer on a self-
written benchmark of Java programs. Our bench-
mark consists of simple location based applications
such as Distance (which returns distance between
two cars), Density (which returns number of vehi-
cles in a given region), Speed (which returns aver-
age speed of cars in a given region), Average (which
returns average value x and y coordinates of the
vehicles in the database). Our benchmark also in-
cludes some standard applications and attacks, such
as PasswordChecker [18, 14], Wallet [18], WalletAt-
tack [18], AverageAttack [18]. These are in addition
to the several microscopic Java programs that were
used in the testing of the implementation.

We try to answer the following questions while
evaluating our analyzer:

• What kind of applications would benefit from
non-inference?

• How bad are false-negatives?

• Can there be false-positives?

• What is the average running time of our anal-
ysis?

Case Study 1: AverageAttack [18]
Suppose x1,..xn stores the x-coordinates of n vehi-
cles (which is private). The average x-coordinate
computation is intended to release the average but
no other information about x1,..xn:
Average = (x1 + .. + xn)/n; output(Average)
It is possible to formulate a laundering attack on
the average program that leaks the x-coordinate of
vehicle i:

x1 = xi;..xn = xi;
Average = (x1 + .. + xn)/n; output(Average)

The system of linear equations for AverageAttack
given by MT P = O is:
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[

0 .. 0 1 0 .. 0
]













x1

..
xi

..
xn













=
[

Average
]

which is reduced to:

[

1
] [

xi

]

=
[

Average
]

P1 = {xi}, Rank(MT ) = 1 = (|P1| = 1)

This system of equations is solvable. Therefore,
AverageAttack does not satisfy non-inference and is
rejected by our analyzer.

Case Study 2: Wallet and WalletAttack [18]
Consider an electronic shopping scenario. Suppose
p stores the amount of money in a customer’s elec-
tronic wallet (which is private), q stores the amount
of money already spent (which is public), and c
stores the cost of item to be purchased (which is
public). The following code snippet(Wallet) checks
if the amount of money in the wallet is sufficient
and, if so, transfers the amount c from the wallet
to the spent-so-far variable q, and outputs q:

if (p > c) then (p = p − c; q = q + c); output(q)

The system of linear equations for Wallet given
by MT P = O is:

[

1
] [

p
]

=
[

q
]

Rank(MT ) = 1 = (|P | = 1)

This system of linear equations is solvable.
Therefore, Wallet is rejected by our analyzer. How-
ever, it is easy to see that Wallet satisfies non-
inference as the adversary cannot learn the value
of p from q. This is an example of an application
where our analyzer reports a false-negative. The
reason for this is that the expression (p > c) may
affect the value of q in statement q = q + c. Hence,
R2(p > c, q) = 1. We have R1(p, p ≥ c) = 1. From
here, R3(p, q) = 1. Therefore, our analysis assumes
dependency between variables q and p. There is in-
deed an implicit flow of information from p to q.
It is safer to assume that the adversary may be
able to infer the value of q from p, although in this
particular example it cannot. In general: implicit
information-flows may result in false-negatives.

Now, we give an example of why it is important
to have an analysis that is conservative and may oc-
casionally report false-negatives. Consider the fol-
lowing code snippet (WalletAttack):

n = length(p)

while(n >= 0){

c = 2^{n - 1}

if(p > c){

p = p - c;

q = q + c;

n = n - 1;

}

}

output(q)

This code snippet leaks the value of p bit-by-
bit to q. Our analyzer is able to detect it. The
system of linear equations for WalletAttack given
by MT P = O is:

[

1
] [

p
]

=
[

q
]

Rank(MT ) = 1 = (|P | = 1)

This system of linear equations is solvable.
WalletAttack is, therefore, rejected by our analyzer.

Case Study 3: PasswordChecker [14, 18]
Consider UNIX-style password checking where the
system database stores hashes of password-salt
pairs. Salt is a publicly readable string stored in
the database for each user id, as a protection against
dictionary attacks. For a successful login, a user is
required to provide a password such that the hash
of the password and salt matches the hash from the
database. The following code snippet captures this
functionality:

byte check(byte username, byte password){

byte match =0;

for(i = 0; i < database.length; i++){

if(hash(username, password)

== hash(salts[i], passwords[i])){

match = 1;

break;

}

}

output(match);

}

This commonly used program is rejected by non-
interference, as the value of public boolean variable
match depends on private variables. It is easy to
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see that this program satisfies non-inference(as the
username/password cannot be inferred from the
binary output). Our analyzer accepts this program.

5.1 Qualitative Analysis

What kind of applications would benefit

from non-inference? PasswordChecker is a sim-
ple example of a commonly-used application that
does not satisfy non-interference but satisfies non-
inference. Distance (which calculates distances be-
tween two cars) is a function that satisfies non-
inference, and whose quality would suffer if spa-
tial/temporal cloaking is used. As described before,
Geographical Routing Service can make use of Dis-
tance. Similarly, functions such as Density (which
calculates density of vehicles in a region) or Speed
(which calculates average speed of vehicles in a re-
gion) satisfy non-inference and can benefit from our
framework. Traffic survey applications can make
use of these functions. We have tested all these
functions with our analyzer. Note that these are
all examples of code-snippets that compute a result
based on location information. These will be part of
bigger applications that would run on the LBS side
(such as Geographical Routing Service, or Traffic
Information Service). Non-inference is applicable
to sensor data privacy in general.
How bad are false-negatives? Through the
Wallet example we showed that false-negatives are
possible, as our analysis is conservative. In gen-
eral, implicit information-flows can lead to false-
negatives being reported. Through the WalletAt-
tack example we showed why it is better to have a
conservative analysis that occasionally reports false-
negatives, as opposed to one that does not and can
be attacked. Most of the applications that satisfy
non-inference but are rejected by our analyzer, can
be rewritten with minor syntactic modification to
satisfy our analyzer.
Can there be false positives? We gave exam-
ples of a few well-known attacks (e.g AverageAttack,
WalletAttack) that can break non-interference with
declassification. These attacks are detected by our
analyzer and rejected. Theoretically, we can show
that it is not possible to launch attacks against
our analyzer. Here we sketch the proof idea: let
p1, p2, .., pk ∈ P be the set of private input vari-
ables for which, M(pi, o) = 1, then it can be said
that o = f(p1, p2, ..pk). In other words, an out-
put variable can be represented as a function of all
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Figure 5. Running time of the static ana-
lyzer

the private input variables that may affect its value.
Public input variables are treated as constants, as
they are known to the adversary. The simplest rep-
resentation of a function is a linear equation. In
reality, the function may be a higher-order equation
involving complex operations. By adopting linear
equation as the representation of all the functions,
we guarantee a conservative analysis. Therefore, it
can be said that if a system of linear equations can-
not be solved, then values of private input variables
(which are the unknowns in these equations) can-
not be inferred from the values of output variables.
However, the converse does not hold.

What is the average running time of our anal-

ysis? The experiments were carried out on an
IBM ThinkPad R51 with 1.5GHz Intel processor
and 256MB RAM, running the Linux operating sys-
tem. For the benchmark consisting of 11 Java pro-
grams, the running time of our analyzer ranges be-
tween 3.6 and 4.2 seconds (as shown in Figure 5).
Typically, the untrusted code would be some kind
of an aggregation function which would be at most
a few hundred lines of code. Our method of con-
structing information-flow relations has a worst case
time complexity of O(|E|2 × |V |3) (where E is the
set of expressions and V is the set of variables).
The worst case time complexity of deciding solv-
ability of information-flow relations is O(|O|× |P |3)
(where O ∈ V is the set of output variables and
P ∈ V is the set of private input variables). The
total worst case time complexity of our analysis is
O((|E|2+|O|)×|V |3). |V | and |E| would be directly
proportional to the code size. Figure 5 shows that
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the time of analysis increases with the size of code.
There is a constant load time for the analyzer which
is around 3500msec.

5.2 Discussion

Our analysis guarantees that the adversary does
not learn exact location information. Currently, we
do not provide guarantees on how many bits of a
private input variable can be inferred from output
variables. By crafting sophisticated attacks, the ad-
versary can get partial information about the loca-
tion. Obtaining useful information through partial
information leakage appears more difficult, though,
from frequently changing time-series information. It
can be argued that in higher density areas hiding a
few or even one bit of location information can often
maintain sufficient uncertainty, so that an adversary
cannot pinpoint and identify specific vehicles (sim-
ilar to spatial cloaking in k-anonymity). Our in-
formation flow analysis successfully defends against
the common class of attacks which involve complete
information leakage, thereby raising the bar for the
adversary. The verification tool developed by us
can be combined with manual analysis to prevent
even partial information leakage, and would then
assist the manual analyzer in identifying informa-
tion leakage attacks, in the same way as a debugger
assists the application developer in writing robust
code. The theory of abstract interpretation [10] can
be combined with non-inference to develop a tool for
automatically detecting partial information leakage.

6 Conclusions and Future Work

We presented a new model for information-flow
control called non-inference. Non-inference allows
public data to be derived from private data but not
vice versa. Non-inference is undecidable in general,
but decidable for applications where multiple exe-
cutions are independent. We showed how it can be
enforced conservatively using static analysis.

An interesting extension of this work would be
to implement a static analyzer that is construc-
tive. That is, if a program violates non-inference,
it points out opportunities for modification in the
program without affecting semantics.
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