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ABSTRACT
This paper studies the use of positioning techniques for sensing
when pedestrians are at an increased risk of a traffic accident. Such
sensing techniques could support augmented reality applications
that increase pedestrian safety. We discuss requirements for pedes-
trian risk detection from rural to urban environments and consider
algorithms relying on inertial and positioning sensors for distin-
guishing safe and unsafe walking locations. We study the limits of
this approach through walking trials in different environments.
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Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Systems-
Distributed Applications; H.5.m. [Information Interfaces and
Presentation (e.g. HCI)]: Miscellaneous; C.3 [Special-Purpose
and Application-based Systems]: Real-time and embedded sys-
tems

1. INTRODUCTION
As mobile and wearable computing technologies pose increas-

ing distractions, an important role of augmented reality technology
can be to steer our attention back to the real world. This role can
be particularly valuable in a pedestrian safety context. Traffic ac-
cidents with pedestrians still account for a significant number of
injuries or fatalities and there is mounting evidence that mobile
device distractions of pedestrians are exacerbating this problem.
From 2000 to 2009, the United States saw more than 47,700 pedes-
trians deaths in traffic accidents and 688,000 pedestrians were in-
jured [11]. Pedestrian deaths account for nearly 14% of all traffic
fatalities [18]. According to a study, 26% of pedestrians text or
email, 51% talk on the phone and 36% listen to music while cross-
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ing the street [15]. Distracted walking has also attracted signifi-
cant media attention [13, 6]. Mobile augmented reality technology
could warn pedestrians when they are about to step into the street,
using a variety of techniques. For example, they could underlay the
composed text message of the user with a camera view of the street
and a "Look Up!" notification. With a phone-to-vehicle communi-
cation system, it would also be possible to warn oncoming drivers.

Related Work. To support such applications and trigger noti-
fications at the right time, mobile devices must sense and evalu-
ate accident risks. Prior work in this area has focused on detec-
tion of oncoming cars using cell phone cameras as special sens-
ing hardware. Gandhi et. al. [12] provide an overview of video,
radar and laser distance measurement approaches for active pedes-
trian safety. RFID-based approach is discussed by Fackelmeier et.
al. [8]. This approach doesn’t need line of sight, but has a limited
communication range and needs additional device to be carried by
the pedestrian and the car. Another approach that needs no line of
sight and is based on 3G and WLAN is presented by Sugimoto et.
al. [20]. David et. al. [7, 9, 21] present a radio approach that as-
sumes that the GPS location is precise up to 10 to 80 cm. Their
solution also relies on an external server, with a considerable con-
nection establishment time, to coordinate communication between
pedestrian and driver. They also add movement recognition to the
radio-based solution [10]. Another pedestrian safety app by Wang
et. al. [22] uses the smartphone’s rear camera to detect vehicles
approaching the pedestrian when he is talking and walking. This
approach works only when the pedestrian is on a call and can eas-
ily drain the smartphone’s computational resources and battery.

Approach. In this paper, we ask whether mobile devices can
use their in-built sensing capabilities for pedestrian risk assessment.
With the plethora of user interaction designs that augmented reality
technology provides, we believe that the problem can be relaxed
from detecting imminent collision to sensing increased pedestrian
risk. Augmented reality interfaces offer many choices for subtler
awareness cues rather than only raising startling alarms. Leaving
aside the specific user interaction design, we focus on defining rel-
evant pedestrian risk scenarios and studying whether mobile po-
sitioning and inertial sensing techniques can sense scenarios that
pose increased risk. In summary, the contributions of this paper
are:

• identifying pedestrian risk scenarios that are amenable to de-
tection with in-built sensors

• defining requirements for a positioning and inertial sensing
approach

• evaluate the limits of positioning techniques across these sce-
narios for pedestrian in-street detection



2. SCENARIOS AND CHALLENGES
With a vehicle safety communication system such as the DSRC [5,

4] system supported by the US Department of Transportation, it
is feasible for a pedestrian’s device to notify oncoming vehicles
when the pedestrian is in-street. The vehicle could alert the driver,
perhaps using augmented reality displays on the windshield. The
requirements and challenges for smartphone-based in-street detec-
tion techniques differ significantly across scenarios. In particular,
in-street detection can assume different meanings depending on the
environment. We discuss some of these scenarios here, and the cor-
responding application assumptions.

• Rural Out-of-Town Environments. In out-of-town envi-
ronments such as rural roads or highways, pedestrians are
rare and not expected by most drivers. Thus walking along
such roads, which typically do not have sidewalks, can be
particularly hazardous. Since pedestrians are sparse and tend
to walk along roads for extended periods, the accuracy re-
quirements on a positioning system are relatively low, in the
order of tens of meters. It thus suffices to let an approaching
driver know if a pedestrian is walking along a street.

• Suburban Environments. In suburban or residential areas,
there may or may not be sidewalks, and one may expect occa-
sional pedestrians, walking in the street (when no sidewalks
present) or on the sidewalk. In the absence of sidewalk, any
approaching car can be warned. For a pedestrian walking
on the sidewalk, solely detecting that there is a pedestrian
walking along the street would result in uselessly warning an
approaching driver. It is thus beneficial to identify the events
when this person may be stepping into the street, putting him-
self at a higher risk of being hit by car.

• Urban Environments. Most urban downtowns and cities
are well developed and have sidewalks, with a large num-
ber of pedestrians walking along the street. Just knowing
that a pedestrian is walking along a street would create far
too many warnings for drivers and cause warning fatigue. In
such a scenario, more fine-grained differentiation of pedes-
trians at risk is not only beneficial but necessary. Since a
pedestrian is usually safe when walking on the sidewalk, our
approach is to identify pedestrians that are in the roadway.
Accurate detection of street crossing is therefore a key con-
cern.

Considering the application scenarios listed here, it is evident
that outdoor walking activity detection, determining that they oc-
cur near streets (street matching) and crossing detection are key
building blocks. Those rely on localization, which is the biggest
challenge for such a detection venture. A careful analysis of these
scenarios also reveals that accurate positioning is not a stringent re-
quirement in rural areas, but is increasingly valuable in suburban,
and an absolute necessity in urban environments. While GPS lo-
calization might work well in some rural environments with no or
very few buildings around, using GPS for street level localization in
suburban and urban environments might face more significant dif-
ficulties. To better understand these challenges, we therefore study
the limits of such a positioning-based approach in the latter two
environments based on sample algorithms we describe next.

3. DESIGN AND METHODOLOGY
Our primary focus is to test the limits of position-based detec-

tion for the scenarios discussed in Section 2. Here we outline how
position-based sensing could be part of a pedestrian risk assessment
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Figure 1: System overview.

system. Given that a large number of people use smartphones, we
explore smartphone-based techniques to localize pedestrians and
determine their position with respect to the street-sidewalk frame
of reference.

Fig 1 provides a system overview. The bottom layer depicts the
raw inputs available from the smartphone. This includes the GPS,
accelerometer and maps data. The components in the box char-
acterize the system. The accelerometer and GPS data help deter-
mine when a person is walking outdoor. Using the maps data and
the GPS location, we can identify the street the pedestrian is walk-
ing along. Using more detailed information available from a maps
database, we can classify the environment as rural, suburban or ur-
ban. We also identify whether or not the street has sidewalks. In
case of a pedestrian walking along a street in a no sidewalks ru-
ral/suburban environment, the system can notify all the vehicles
approaching the pedestrian. In the presence of sidewalks, the sys-
tem runs an additional crossing detection algorithm, that identifies
when a pedestrian is in-street (not on the sidewalk) and notifies
only when such crossing events occur. The system components are
discussed here in more detail.

Outdoor Activity Detection. Prior to running a detection on the
pedestrian’s location, we want to verify that this is done only when
the pedestrian is outdoors. There exist multiple works on distin-
guishing whether the user is indoor or outdoor, based on GPS in-
formation, or accelerometer data tracking [24, 19, 16]. We can use
these techniques to determine when a person is walking outdoor.

Street Matching. Once we have established that a person is
walking outdoors, we use the location coordinates to determine
whether the pedestrian is near a street by matching the location
against a map. An approach similar to existing map matching tech-
niques for vehicles [23, 14], can be used to identify the street a
pedestrian is walking along. This technique identifies the street
closest in distance from the pedestrian’s current location. This
would allow determining the vehicles driving on the same street
as the pedestrian and enable targeted warnings of both drivers or
pedestrians. In the context of a vehicle safety communication sys-
tem, this information could be shared with vehicles over radio links
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Figure 2: Regions for sidewalk presence heuristics validation.

such as 802.11p (which have been demonstrated in smartphones)
with vehicles. When approaching intersection, two different streets
appear to be at the same distance from the pedestrian. This is
indeed useful, because at an intersection, cars traveling on both
streets must be alerted if the pedestrian is in-street.

Environment Classification. The GPS location and a relevant
maps database allows us to classify the area the pedestrian is walk-
ing in, as discussed in Section 2. It provides us an estimate of
the detection requirement for the area. For a pedestrian in a ru-
ral environment where there are no sidewalks, we deduce that the
pedestrian is walking in-street and that it is adequate to identify the
street, and notify the cars driving on that street. In an urban loca-
tion, it becomes imperative that the algorithm identifies potentially
unsafe transitions into the street and alerts the cars only in relevant
occurrences of such events. We can obtain the underlying street
network information and check for the presence of sidewalks using
OpenStreetMap [2].

OpenStreetmap is an open-source maps database that uses a topo-
logical data structure composed of nodes, ways, relations and tags.
Tags are used to store metadata about the map objects [3]. Of the
various road tags in the dataset, the sidewalk tag, location tag and
highway tag, are used in our heuristics to determine if a street has
sidewalk. These tags are able to show roads’ information on side-
walk, location and road type, respectively. Using the sidewalk tag
it is possible to indicate if a sidewalk is present on either both sides,
the left side, or the right side of a street.

For validating our heuristics, we randomly select 30 streets from
5 regions in New Jersey. These regions are shown in Fig 2. For 6
streets in each region, we wanted to determine if it has a sidewalk or
not. We acquire the information from OpenStreetMap and find the
corresponding street on Google maps to compare our identification
with the ground truth. If it is consistent, we say that the sidewalk
is accurately detected. We calculate the sidewalk detection rate,
which is the percentage of sidewalks that are accurately identified.
We observe that we can achieve 94% sidewalk detection rate. This
observation indicates that our heuristics can identify streets with
sidewalks accurately. The coverage for the sidewalk tag is variable
around the U.S., being best in Washington DC [1], Toronto and a
number of other places.

Crossing Detection. As a final step, we need to detect when a
pedestrian is in-street. It is fairly straightforward when there is no
sidewalk present. We identify this as walking in street, potentially
risky and warn any oncoming cars. In dense urban environments,
with sidewalks and pedestrians abound, we do not want to send too

frequent unnecessary alerts to pedestrians and approaching cars.
Hence, more fine-grained information about pedestrians that are
actually in the street is useful. This occurs usually when the per-
son is crossing a street. Our algorithm achieves crossing detection
by predicting a pedestrian’s path of motion and checking if it in-
tersects with any of the streets nearby. Such an intersection of the
pedestrian’s predicted path and the street centerline indicates when
the user might be purposed to cross the street. To predict the path
of motion, we extrapolate a user’s heading by a distance d. In our
scenario, the streets are two-way streets, single lane in each direc-
tion. The typical lane width in New Jersey is about 3.5 meters [17].
We chose d accordingly.

4. EXPERIMENT DESCRIPTION
To test the proposition developed in the earlier section, we use

the GPS information from the pedestrian’s smartphone and analyze
the extent to which positioning technologies can support in-street
detection. The GPS on the smartphone provides us with useful in-
formation, such as the latitude and longitude for a pedestrians’ lo-
cation, their heading, speed and accuracy of the location provided.

We chalked out two separate test paths. 15 volunteers from our
lab walked along these two test paths for the purposes of data col-
lection. An Android application continuously collected sensor data.
The test paths are shown in Fig 3. The path in Fig 3(a) is a suburban
test path that includes a residential area, where most buildings have
two floors. This area had a sidewalk only along one street, while
for the rest of the path the pedestrian had to walk in the street, along
the edge. The street was crossed for a total of 14 times on this path.
The exact same path was traversed 20 times. This path incorporated
various turning and street crossing scenarios.

Our second test path, as shown in Fig 3(b) was the downtown
area of a small city, New Brunswick. Fig 3(b) shows only one of
the many paths we covered. The street was crossed about 10-12
times in each trial. 12 different people walked a total of 28 similar
loops for data collection. This test bed is a well developed urban
area and had sidewalks throughout.

For both the test paths, the pedestrian carried the phone in hand
or in pocket. The Android application in context recorded raw
timestamped data from GPS, Accelerometer, Gyroscope, Magne-
tometer, Rotation Vector, Linear Acceleration and Gravity Acceler-
ation. The information logged from the GPS was the latitude, lon-
gitude, bearing, speed, time of fix, accuracy and number of satel-
lites used for that fix. We set the GPS to log data at the maximum
available rate, which allows us to obtain one GPS location per sec-
ond, on an average. The application also allows us to record the
ground truth, i.e. the exact moment when the pedestrian enters a
street, by touching a button on the screen. We use these times-
tamps to compare and evaluate the detection performance of our
algorithm.

5. EVALUATION
Keeping in mind the gravity of pedestrian risk detection appli-

cations, we evaluate the performance of GPS based algorithms for
such risk awareness. We also want to explore how this limit varies
with environments. We selected suburban and urban scenarios be-
cause they are more challenging environments with a complex in-
frastructure. Rural out-of-town environments can be handled by
existing localization techniques as discussed in Section 3. We also
analyze detection delay, rather than just detection accuracy, since
timeliness is important for the effectiveness of pedestrian safety
warnings.



(a) Suburban test path. (b) New Brunswick test path.

Figure 3: Experiment test paths.
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(a) GPS trace in suburban test bed with phone in hand
(blue trace) and phone in pocket (green trace).
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(b) GPS trace in urban test bed.

Figure 4: GPS traces plotted on underlying street network.

We first show here how the collected GPS traces look as com-
pared to the actual path walked. The GPS trace from one of the
trials for the suburban test bed is plotted on an underlying street
map in Fig 4(a). The magenta lines are the center of the streets ob-
tained from OpenStreetMap, the blue path is the GPS trace when
the phone is in the user’s hand, and the green path is the GPS trace
when the phone is in user’s pocket. It is evident from these traces
that the GPS positioning accuracy deteriorates when the phone is in
the pedestrian’s pocket, compared to when in hand. Fig 4(b) shows
the GPS trace of the urban downtown, plotted on the underlying
street network. This trace substantiates that the GPS positioning
quality declines rapidly in urban areas.

In-street detection for rural and suburban scenarios can be per-
formed using the location provided by GPS and the sidewalk tag
from OpenStreetMap. The heuristic used for this approach was
discussed in the earlier section. For urban settings with sidewalks,
we want to identify the events when a pedestrian enters the street.
Therefore, we implement and evaluate a crossing detection algo-
rithm based on GPS-alone.

Crossing Detection Performance Evaluation. Fig 5 shows GPS
traces from segments of one of the trial walks. The magenta lines
mark the center of the streets obtained from OpenStreetMap. The
black dashed arrows indicate the actual path walked by the pedes-
trian and the blue path is the GPS trace obtained from the smart-
phone. The green lines are the predicted path of motion obtained by
extending the pedestrian’s GPS bearing by a distance d (4 meters

in this case), at each location update. Each time an intersection of
the predicted path with the street is detected, a crossing prediction
is said to be made. A red marker marks this crossing prediction.
Based on whether or not the pedestrian crossed the street, this pre-
diction can be a true detection or a false alarm.

Fig 5(a) shows two accurately detected crossings, identified by
the intersection of the predicted path and the street. The red mark-
ers are the points where a predicted path intersects with the line
marking the center of the street. An example false positive is shown
in Fig 5(b). In this example, the pedestrian turned around the cor-
ner at an intersection (shown by the blue GPS trace) to walk along
the perpendicular street, rather than crossing that street. This false
alarm was caused by the change in the pedestrian’s path of motion.
GPS positioning suffers from delays in location updates and hence
fails to capture the unanticipated changes in the pedestrian’s path
and bearing. A false negative is a missed detection, mostly caused
due to GPS inaccuracy. Fig 5(c) is an example of a missed detec-
tion. In this case, the GPS is unsuccessful in accurately identifying
which side of the street the pedestrian is on, resulting in missing
the crossing.

From the discussion of the extrapolated path length d in the pre-
vious section, we can see that the longer this extended distance, the
earlier the crossing detection would be. On the other hand, a longer
extended path would also lead to more false positives. To analyze
how this path length affects our detection, we varied d over a range
of 0.1 m to 10 m, in steps of 0.1 m.



(a) Examples for correct crossing detec-
tions.

(b) An example false detection caused by
change in bearing.

(c) An example missed detection caused
by GPS inaccuracy.

Figure 5: Examples of various crossing detection scenarios. The magenta lines mark the center of the street. The black arrows
indicate the actual path walked. The blue trace is the person’s GPS trajectory. The green lines are the predicted path of motion. The
red markers are the points where a predicted path intersects with the line marking the center of the street.
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(a) In-street detection performance for ur-
ban and suburban testbeds at ground truth
window = 5 seconds.
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(b) In-street detection performance for the
suburban test bed at varying ground truth
windows.
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(c) In-street detection performance for the
urban test bed at varying ground truth win-
dows.

Figure 6: Crossing street detection performance analysis.

Fig 6(a) shows the Receiver Operating Characteristic (ROC) curves
for the suburban and urban test beds. This curve plots the true pos-
itive rate against the false positive rate. We define a true positive as
a detection made at most 8 seconds before and k seconds after the
exact instant the pedestrian entered the street. As discussed earlier,
the entrance time was recorded by means of an Android applica-
tion. In Fig 6(a), the value of k used is 5 seconds, varied over d.
This implies that for any detection to be counted as a true detec-
tion, the warning can occur as late as 5 seconds from the time of
the exact entrance into the street.

We refer to this window as the ground truth window. For prac-
tically useful applications, the allowed time k, after the exact en-
trance must be small. This implies that the event must be detected
as soon as the person enters the street, or within the allowable time
window k. We vary k to assess the algorithm for delay performance.
Fig 6(b) shows the ROC curves for the suburban area for varying
ground truth windows. We see that the algorithm provides a very
good detection rate of 85% with as few as 1.8% false positives.
This performance degrades as the allowed delay (k) after the actual
entrance is decreased.

Fig 6(c) shows the performance for the crossing detection algo-
rithm in an urban environment, such as the downtown of a small
city. We can observe a visible drop in the performance compared
to that in a suburban environment, with a detection rate of 78% for
4.5% false positives. The maximum rate at which we can sample
GPS is approximately once per second. It is evident from the per-

formance curves that GPS does not work well for applications with
a stringent timing and fine grained localization requirement, such
as the pedestrian safety applications.

6. DISCUSSION AND CONCLUSION
We analyzed the performance of positioning and inertial sensing

techniques for pedestrian in-street detection. We identified in-street
detection in rural, out-of-town areas as a scenario that is likely to
be feasible and our experiments show promising results even for
sidewalk-street differentiation in suburban environments, but it still
presents a challenge in urban environments. It is evident that GPS
does not serve well the fine-grained positioning needs of pedestrian
safety applications in dense urban environments. It is impaired with
large errors in positioning and delays in detection, rendering it unfit
for such critical applications.

One approach for further work that might overcome the many
false positives in the GPS-only prediction algorithm, that occur due
to GPS location and bearing inaccuracy, is the use of inertial sen-
sors to detect key movement features by pedestrians. For example,
we saw that GPS fails to capture the sudden changes in the pedes-
trian’s path of motion close to an intersection. Such sudden turns
can be detected with the in-built gyroscope in a smartphone. Fig 7
shows a plot of time vs gyroscope magnitude from a walking trial.
Here, the vertical green lines depict the ground truth and mark the
exact time instance when a user turned and the red markers mark
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Figure 7: Turns detected by gyroscope.

the turn detected by our algorithm, based on gyroscope magnitude.
We can see that most turns are detected.

Together such risk assessments can enable new applications that
warn distracted pedestrians as well as drivers, when a safety com-
munication system is available. As our electronic devices are in-
creasingly drawing our attention away from real world hazards, we
believe that this will be an important feature of future mobile aug-
mented reality systems.
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