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ABSTRACT
Platypus is the first system to localize and identify people by
remotely and passively sensing changes in their body elec-
tric potential which occur naturally during walking. While it
uses three or more electric potential sensors with a maximum
range of 2 m, as a tag-free system it does not require the
user to carry any special hardware. We describe the physi-
cal principles behind body electric potential changes, and a
predictive mathematical model of how this affects a passive
electric field sensor. By inverting this model and combining
data from sensors, we infer a method for localizing people
and experimentally demonstrate a median localization er-
ror of 0.16 m. We also use the model to remotely infer the
change in body electric potential with a mean error of 8.8 %
compared to direct contact-based measurements. We show
how the reconstructed body electric potential differs from
person to person and thereby how to perform identification.
Based on short walking sequences of 5 s, we identify four
users with an accuracy of 94 %, and 30 users with an accu-
racy of 75 %. We demonstrate that identification features
are valid over multiple days, though change with footwear.
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1. INTRODUCTION
Localizing and identifying humans in indoor spaces has

been a challenging problem in mobile and pervasive com-
puting for many years [56, 39, 32]. Applications in valuable
domains like home automation [30], institutional care [60],
and personalized energy metering [64] rely on localization
and identification information.

Ideally, such a system should be “tag free”, so that the
users at home or in an office environment are not required to
carry any particular hardware. Existing tag-free approaches
have relied on sensing various properties of humans such as
sounds they make [22], heat emissions [42] or the effect of the
body on RF signals [1, 36]. In our system we remotely sense
a different underlying quantity: the electric potential car-
ried by the human body. Unlike existing capacitive sensing
systems that actively generate an electric field to sense peo-
ple [57, 9], we passively observe naturally occurring electric
field changes, similarly to platypuses when hunting under-
water preys [16].

As people move, their bodies’ electric potential changes
when interacting with the environment. The most signifi-
cant changes occur through two means: static charging ex-
plained by the triboelectric effect [10], and changes in ca-
pacitive coupling to the environment as one’s feet move to-
wards and away from the floor during walking [17]. With
Platypus, we remotely infer body electric potential changes
at distances up to 2 m using a distributed grid of passive
electric field sensors. Requiring at least three sensors, we
have developed a method of inferring both the location of
the body and the characteristic signature pattern of electric
potential changes that occurs when walking, which permits
identification of users.

The contribution of this paper is the introduction of Platy-
pus, a novel use of electric field sensing that supports both
localization and user differentiation:
• We localize a person observing the ambient electric

field, further reconstruct body electric potential change,
and extract a signature for identification.

http://dx.doi.org/10.1145/2906388.2906402


• We detail the physical principles behind Platypus, the
mathematical models and working prototype hardware.
• Based on detailed experiments, we show that Platy-

pus achieves a median localization error of 16 cm for a
walking user.
• We experimentally validate Platypus’s ability to recog-

nize users based on their signature of electric potential
changes during walking; we observe an average accu-
racy of 94 % for 4 users and 75 % for 30 users.

2. BACKGROUND & RELATED WORK

2.1 Localization & Identification Systems
Indoor localization and identification systems can be di-

vided into tag-dependent and tag-free [32, 35, 39, 56]. Tag-
free systems, including Platypus, do not limit who is moni-
tored to those with tags, or require specific behaviour (car-
rying the tag). We therefore focus on other tag-free systems
as comparisons for Platypus.

Camera-based systems [60], including depth [62] cameras,
can localize people accurately (error < 1 cm) as well as iden-
tify them with face and/or body shape recognition. How-
ever, privacy and security concerns make them unsuitable
for some environments [31]. Similar concerns may be raised
when using an array of microphones to recognize human
activities (e.g. talking or opening a door). These can be re-
alized with techniques such as time difference of arrival [7]
and may also require classification of sounds [22].

Infrared sensors have been used as binary [52] as well as
analog [26, 41, 42] sources for localization. The modality
is a low-power, low-cost solution [42] that can even track
multiple targets [63], and potentially perform identification
by gait analysis [65]. Pressure-sensitive or capacitive local-
ization systems use sensors deployed underneath the floor
or integrated in furniture [8, 9, 51, 57]. The effort of in-
stalling such systems is large, as changes to existing flooring
are required [9].

Various RF-based tag-free localization methods have been
presented, using ultra-wideband radar [48], radio tomogra-
phy [61], RSSI fingerprinting [2], WiFi Doppler [47] and
FMCW-modulated radar [1]. Recent systems have lever-
aged Wi-Fi for vital sign detection [36] or to recognize spo-
ken words [58].

Identification and room-level localization has been demon-
strated by ultrasonic distance sensors used to measure the
height of occupants, e.g. as they walk through doors [28, 54].
Compared to these weak biometric factors related to body
height and movements, we investigate an even more tempo-
rary factor that changes with footwear and clothing. This
can be regarded as a privacy advantage, allowing to identify
a person for as long as the same shoes are worn.

Our system Platypus uses changes in body electric poten-
tial due to walking, which is a different underlying physical
mechanism to any above. This modality has a particular
set of trade-offs. It is passive, requiring no injection of e.g.
RF or audio into the environment. Like PIR, camera and
audio systems, it cannot operate through walls, in contrast
to RF systems [47]. While active capacitive techniques are
susceptible to high-frequency noise, Platypus as a passive
system has a cut-off frequency of less than 10 Hz. Higher
frequency components, e.g. injected by power-lines [15] or
switch-mode power supplies [34], have a limited effect on
the operation of Platypus. Other appliances like fluorescent
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Figure 1: Platypus uses a passive electric field sensor to sense
changes in a body electric potential due to (1) triboelectric
charging, and (2) capacitance changes.

lamps, gas ovens, and electro-magnetic motors emit lower
frequency electric fields that can inject noise [34].

Passive electric field sensing has been used to measure
body electric potential in body-attached [14, 49] as well as
stationary applications [13, 45]. Cohn et al. investigated
the technique as a low-power replacement for accelerome-
ters by measuring the body electric potential with a wrist-
worn node. The approach allows for motion recognition,
and similar to Rekimoto et al. [49], enables the sensing of
footsteps which induce a large change in body electric po-
tential. Stationary approaches include sensing of electric
potential changes through step variations [33]. Different to
sensing the body electric potential, the capacitive coupling
to the environment can be measured with active techniques,
as shown by Haescher et al. [23].

2.2 Electric Potential of the Human Body
Every object in our environment carries electric charge,

which gives rise to differences in electric potential between
objects. Considering humans, changes in electric potential
occur internally, caused by heartbeats or muscle movements,
or body-wide changes, for example when walking. With
Platypus, we focus on sensing the body-wide change in hu-
man body electric potential. While walking with shoes, two
physical phenomena cause the most variation in the body
electric potential: changes in charge explained by the tribo-
electric effect and capacitance variations (see Figure 1).

As a shoe comes into contact with the ground, the soles
and the flooring material become charged through contact.
This effect, known as triboelectric effect, is a matter of
common experience, such as rubbing one’s hair with a bal-
loon [29, 38, 50]. Recombination and leaking phenomena,
such as current circulating through the soles, oppose the ac-
cumulation of charge Q, leading to a saturation effect [17].
When walking, the capacitive coupling C between body and
grounded objects in the environment changes, mostly due
to the variations in distance between the sole of the foot
and the floor. When the person lifts a foot, this distance
is raised, the capacitive coupling to ground decreases, and
the body electric potential V increases since V = Q/C. The
inverse happens when the foot is put back down. A regular
walking motion therefore results in a periodic variation of
body electric potential [17] (Figure 3).

2.3 Measuring Ambient Electric Potentials
Low-frequency electric fields can be measured with various

devices, for instance field mills [4], electro-optic sensors [27]



Figure 2: Custom sensor board, integrating an electric po-
tential sensor from Plessey Semiconductors [44].

or induction probes [37]. The latter are the simplest to build
and use outside of a laboratory [5]. A basic induction probe
consists of an amplifier connected to an electrode on which
the ambient electric field induces a weak charge. The elec-
trode eventually discharges through the amplifier’s finite in-
put impedance, which makes this apparatus unable to mea-
sure static electric fields. Rekimoto [49] and Kurita [33] built
their own induction probes to sense the influence of human
activity on the ambient electric field. Due to the passive
approach and the low operating frequencies, EPS were re-
alized with a power consumption of 6.6µW [14]. A simi-
lar sensor with very large input impedance (about 1015 Ω),
large bandwidth (mHz to MHz) and low noise [5] was de-
signed at the University of Sussex [13, 19, 25]. This device
is known as an electric potential sensor (EPS) and commer-
cially available under the name electric potential integrated
circuit (EPIC) [44].

3. SYSTEM OVERVIEW
Platypus exploits natural changes in human body electric

potential to provide localization and identification. It relies
on electric potential sensors attached high on walls or on
ceilings that are sensitive enough to be used up to 2 m to a
person. A minimum of three sensors allows us to estimate
the position of a person and, based on this information, the
change in body electric potential occurring when stepping.
In typical installations however, we use two rectangular cells
composed of six sensors to increase performance. The body
electric potential exhibits a characteristic pattern enabling
us to distinguish people from each other, using a movement
sequence of approximately 5 s.

We integrated a Plessey EPIC sensor [44] on a custom pe-
ripheral board (Figure 2) to measure the ambient electric po-
tential. The board provides a bipolar power supply as well as
an operational amplifier (OPA2322) for voltage level trans-
lation (33 mW total power consumption per sensor). We
connect an array of up to six sensors to an OpenCapSense
board [20], which conducts 50 analog-to-digital conversions
each second, and performs digital filtering to remove mains
hum.

Figure 3 (bottom) depicts a walking activity underneath
four sensors attached to the ceiling in a rectangular configu-
ration. The amplitude of a sensor signal increases when the
person moves closer to the sensor (e.g. sensor 4) and vice
versa. Two other important effects play into this measure-
ment, however: (1) the charge carried on the body and (2)
the change in coupling to the environment. Using an EPS,
we are not able to distinguish between these two effects and
we base our observations on the combination of both: the
body electric potential. This can be observed in Figure 3
(top), which shows a direct body voltage measurement from
a voltmeter attached to a walking person. It can be seen
that the charge carried on the body increases slowly to a
saturation point (effect 1). The steps taken by a person
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Figure 3: The top plot represents a contact-based measure-
ment of absolute body electric potential. When walking, the
potential gradually increases up to a saturation point, while
exhibiting peaks when a foot is lifted. An array of four sen-
sors (bottom) detects these changes, with highest amplitude
as the walker passes under them.

influence the environmental coupling and lead to recurring
peaks (effect 2). When the person stops walking, the charge
decreases within a couple of seconds.

In order to make meaningful assumptions about a person’s
position and change in body electric potential, it is neces-
sary to describe them based on the physical principles of
the sensing modality. We do so by introducing a model that
predicts how sensor values change when a human affects the
ambient electric field. By inverting the model, we can derive
a person’s position from a set of real sensor readings. Once
this position is known, the change in body electric potential
can be reconstructed. We show that this change is specific
for a person, and that it can leverage identification using
an SVM classifier with a feature set extracted from a short
walking sequence (typ. 5 s).

4. MODELING THE SENSOR RESPONSE
We now derive a forward (or predictive) model that esti-

mates sensor values based on a person’s location and body
electric potential. This forward model enables us to un-
derstand how human movements are reflected in our sensor
signals. The model also acts as a means to validate our
assumptions on reconstructing body electric potential and
localization by matching model predictions with experimen-
tal data. Let us first consider the dynamic sensor response
to a changing input.

An EPS can be modelled using a resistor and a capacitor,
in combination with an ideal voltage follower, as shown in
the right part of Figure 4 [13]. Recall that a voltage follower
is an amplifier with a gain of 1, it simply follows the voltage
at its input, which is connected to the sensing electrode. By
using the amplifier, the electrode is decoupled from the sens-
ing circuit, enabling it to adapt to changes in the ambient
electric field.

The voltage follower’s output is vS. Its input capacitance
and resistance are explicitly represented by Cin and Rin,
respectively. As for the electric field generated by a hu-
man body, it is equivalent to a voltage source vB coupled
to the sensor through a very small capacitance CC, usu-
ally less than 100 fF. In human movement sensing applica-
tions, the distance between the person and the sensor is typ-
ically in the meter range, which results in a weak coupling
(CC � Cin) [45].
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Figure 4: Electric potential sensor represented by an equiv-
alent circuit (adapted from [13]). vb represents the changing
body electric potential, whereas CC is the coupling capaci-
tance which changes with the body-to-sensor distance.

When the person moves relatively to the EPS, CC is not a
constant but depends on the body-to-sensor distance d. In
order to simplify the notation, d is considered a function of
time d(t) in the following, and the coupling capacitance is
written CC(t). Analyzing the circuit yields

vS
′(t)[CC(t) + Cin] + vS(t)[CC

′(t) + 1/Rin]

=
d

dt
[CC(t)vB(t)] . (1)

We can solve (1) for the sensor output vS by assuming that
CC(t) � Cin and CC

′(t) � 1/Rin for all t. These assump-
tions are justified in weak coupling situations with a high
input impedance sensor such as the EPIC. Additionally, we
introduce a first-order low-pass filter with impulse response
h1(t) (time constant τ1 = RinCin), and a first-order high-
pass filter with impulse response h2(t) (cutoff frequency typ-
ically in the mHz range). The first filter simplifies the ex-
pression, and the second models the effect of the passive
components integrated in the EPS [46]. The output of an
EPS is finally

vS(t) = Rinh1(t) ∗ h2(t) ∗
(

d

dt
[CC(t)vB(t)]

)
. (2)

With this equation, we are able to predict a sensor output
based on the two variables of coupling capacitance and body
voltage.

4.1 Coupling Capacitances
We now take a closer look on how coupling capacitances

are related to a person’s distance to a sensor. To derive the
coupling capacitance CC, we start with a point charge ap-
proximation [11], in which CC(d) ∝ 1/d2. We generalize this
slightly to CC(d) ∝ 1/dα where a constant α is the distance
exponent, to account for deviations from the point charge
approximation [53, 21]. In the far field/weak coupling case,
there must be a lower limit dmin to the distance correspond-
ing to an upper limit CC,max to the coupling capacitance, so
that

CC(d) = CC,max

(
dmin

d

)α
. (3)

Placing the sensors on a room’s ceiling (or at the top of
walls) ensures that there is a minimum distance of about
0.5 m to 1 m between the ceiling and the top of the person’s
head. This point approximates the participant’s position,
assuming the human body is perfectly conducting at low
frequencies [18]. With an electrode of about 1 cm2, the point
charge approximation is justified, at least on the sensor side.

Knowing that the sensors are on the ceiling, the constant
minimum height between the top of the person’s head and
the sensors is defined as

H = ceiling height− person’s height. (4)

We introduce the simplification that the coordinates of a
person may only vary in two dimensions. Let (x(t), y(t), z(t))
be the person’s coordinates at time t, and (xS, yS, zS) the co-
ordinates of a sensor. The z = 0 plane is the space where
the top of the person’s head moves. This allows to write the
Euclidean distance between the head and the sensor, and
define the minimum distance dmin = H. The final coupling
capacitance is

CC(t) =
CC,maxH

α(
[x(t)− xS]2 + [y(t)− yS]2 +H2

)α/2 . (5)

4.2 Complete Forward Model
We described models for the EPIC sensor (2) and the body

to sensor coupling (5). Each element of the measurement sit-
uation (Figure 1) is known. Let us synthesize this knowledge
in a complete forward model.

For further derivations, it will be useful to separate the
filters’ responses in (2) from the rest of the expression. The
filtered signal is the derivative of a product, that may be
expressed as a sum thanks to the product rule. The two
elements of this sum are

Ψa(t) = RinCC(t)vB
′(t), and (6)

Ψb(t) = RinCC
′(t)vB(t) . (7)

With the coupling capacitance (5), the expressions of Ψa(t) (6)
and Ψb(t) (7) can be inferred. Let us focus on Ψa, which is
related to the change in body electric potential, for example
caused by stepping:

Ψa(t) =
RinCC,maxH

αvB
′(t)(

[x(t)− xS]2 + [y(t)− yS]2 +H2
)α/2 . (8)

The signals that compose the response of an EPIC are fil-
tered versions of Ψa and Ψb, which is noted ψa(t) = h1(t) ∗
h2(t) ∗Ψa(t) and ψb(t) = h1(t) ∗ h2(t) ∗Ψb(t).

To complete the forward model, an experimental phe-
nomenon is considered: the sensor placement within the
room influences the amplitude of the output. For instance,
an EPS has a strong coupling to the environment when
placed close to a wall. If this coupling increases the cir-
cuit’s input impedance, the amplitude of the sensor output
is decreased. Let this effect be approximated by a simple
dimensionless factor, the calibration constant K. Including
the partial components ψa, ψb and the calibration constant,
the expression

vS(t) = K [ψa(t) + ψb(t)] . (9)

describes the output of an EPIC, depending on the body’s
position and electric potential.

The measurement result is a filtered combination of the
body electric potential, its derivative, the position and the
speed. This is a new formulation of an old observation. As
Aronoff et al. [3] already noted in 1965, the variable electric
field generated by a walking human being is a combination of
two effects: the variable electric potential (due to stepping)
of a static body, and the static electric potential of a mov-
ing body. This corresponds exactly to the two components



Ψa and Ψb, which will be called respectively the stepping
component and the movement component. By extension, ψa

and ψb bear the same designation.

5. APPLYING THE MODEL
After having derived a forward model, which enables us

to predict sensor values based on a person’s location and
body electric potential, we now invert the model. The in-
verse model allows us to analyze sensor data and estimate a
person’s location. Based on the localization, we reconstruct
the person’s change in body electric potential used for iden-
tification. Being aware of the simplifications introduced in
our model, we also gain a better understanding of possible
effects on localization and identification performance.

5.1 Localization
As described in the forward model, each raw sensor signal

vS(t) consists of two components. Contrary to the movement
component ψb(t), the stepping component ψa(t) is very dis-
tinct and enables us to estimate the location of a person.
However, the two components of (9) are superposed in the
raw sensor signal and can hardly be separated in the time
domain. By band-pass filtering vS(t) around a realistic step-
ping frequency of 1 to 2.5 Hz [43], we obtain the estimated

stepping component ψ̂a. Another simplification we intro-
duce is that the filtering simply attenuates the fundamental
of the real signal Ψa without distorting it. Thus, the esti-
mated stepping component is

ψ̂a(t) ≈ GKΨa(t) = GKRinCC(t)vB
′(t) , (10)

with G a constant that represents the combined gain of the
measurement and the processing filter at the stepping fre-
quency.

We combine the output of several sensors to localize the
person. A sensor pair with sensors Si and Sj performs two
independent electric field measurements. The parameters
and signals specific to a sensor Si will be noted in the fol-
lowing with the index i, e.g. CCi is the coupling capacitance
between the body and sensor Si. The filtered output of a
sensor Si is

ψ̂ai(t) ≈
GKiRinCC,maxH

αvB
′(t)

([x(t)− xSi]2 + [y(t)− ySi]2 +H2)α/2
, (11)

When detecting a peak in two sensor signals, we can com-
pare the ratio between them, corrected with the calibration
factors (assumed to be known) and take the α-th root. The
ratio has the advantage of eliminating CC,max, which is dif-
ficult to estimate in general. Assuming that the EPS have
the same characteristics, and that the signals are processed
by the same filter, Rin and G are also eliminated. Lastly,
vB

′(t) disappears in the ratio, and the obtained function is
purely dependent on the position. The α-th root cancels the
1/dα proportionality of the electric field. We call the result-

ing function estimated distance ratio, and note it ∆̂ij for the
sensor pair (Si, Sj):

∆̂ij(t) = α

√
Kjψ̂ai(t)

Kiψ̂aj(t)
≈ ∆ij(t) . (12)

The actual distance ratio ∆ij is given by

∆ij(t) =

√
[x(t)− xSj ]2 + [y(t)− ySj ]2 +H2

[x(t)− xSi]2 + [y(t)− ySi]2 +H2
. (13)

The parameters of ∆ij are the sensors’ coordinates, which
are known, the ceiling to head distance H and the distance
exponent α, that can be estimated. There are two unknowns
x and y with only one equation, and a single sensor pair is
still not sufficient to find the person’s coordinates.

Similarly to RF-based systems that use propagation mod-
els for trilateration [12], at least three estimated distance ra-
tios such as (12) are needed to find the person’s coordinates
with no sign ambiguity. In a non-ideal case, the system of
three or more equations must be optimized to find the coor-
dinates that minimize the error, i.e. the person’s estimated
position.

Our basic installation consists of four sensors organized
in a rectangular sensor cell, which provides four distance
ratios. A larger area can be covered by installing more sensor
cells. In that case, the first step of localization is to find in
which cell the sum of signal amplitudes is the strongest.
Optimizing the coordinates based on the distance ratios is
then accomplished within this cell only.

5.2 Body Electric Potential Change
The information about a person’s location enables us to

inverse another step presented in the forward model (Sec-
tion 4.2) in order to derive the change in the body electric
potential. The change in body electric potential is a pow-
erful modality, which will later help us to identify a person.
Once the person’s position has been estimated, the equation
of the stepping component for an individual sensor (11) can
be solved for the derivative of the body electric potential:

vB
′(t) ≈ v̂′B(t) =

ψ̂ai(t)di(t)
α

KiA
, (14)

where di(t) is the Euclidean distance between the person
and sensor Si, and

A = GRinCC,maxH
α . (15)

The individual estimates v̂′B(t) (14) are combined by tak-
ing the weighted average over all sensors. In the following
evaluation, we compare combining the predictions based on
distance and equal weights.

If a reference measurement of the body electric potential
is available, the error between the estimated and the real
vB

′ can be used as a cost to find an optimized value for
A. Without a measurement, A is set arbitrarily and scales
linearly to the real body electric potential.

5.3 Identification
During our experiments, it became obvious that body

electric potential changes are very distinct for different peo-
ple when taking a step. Reasons can be seen in a num-
ber of properties related to a human being, in particular
gait cadence, but also footwear, synthetic materials worn,
or body height. These properties contribute to a character-
istic charging and coupling behaviour.

In the following we use the term step signature for a win-
dow of reconstructed body electric potential change around
a step. We experimentally determined a window size of
0.72 ms as suitable to not interfere with the following step.
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Figure 5: The feature extraction process for identification results in four feature sets: (1) dVb body electric potential, (2)
gait-related, (3) a sequence of normalized steps, and (4) the combined and normalized step signatures.

Figure 5 shows an overview of the feature extraction pro-
cess. Here, the negative peaks correspond to a user lifting
the foot off the ground.

Although the step signatures may be of different ampli-
tudes due to accumulation or decumulation of body charge,
their shape remains quite constant. Therefore, the step sig-
natures are normalized to a common scaling. In order to
retrieve the frequency characteristics of all step signatures,
we multiply each step signature by a Hamming window and
concatenate them into one time-series, shown in the middle
diagram of Figure 5. Based on this concatenated series of
steps, we compute the Fast Fourier Transform (FFT), the
Power Spectral Density (PSD), and a histogram.

The third diagram in Figure 5 depicts an overlay of all
step signatures. We compute the mean step signature, as
well as the standard deviation. All samples from both means
and standard deviations are used as features. Based on the
estimated electric potential and the localization, we also ex-
tract a few features that are typical in gait analysis [6]. We
compute the mean step length and mean step duration to
determine the gait cadence. Due to the fixed model param-
eter H (head to ceiling height), we currently do not take
features like up- and down displacement into account.

6. EVALUATION
To evaluate Platypus, we collected a dataset in a con-

trolled setting. The dataset comprises sensor measurements
and a ground truth for localization and identification. We
also recorded the human body electric potential to complete
our dataset.

6.1 Test Setup and Participants
The data was collected in a room at Fraunhofer IGD

(Darmstadt, Germany). The test room was approximately
16 m2, with a metallic false ceiling 2.62 m high and a bare
concrete floor. A sensor array of 2.5 m long by 2 m wide
was installed on the ceiling. The array consisted of two
rectangular sensor cells (i.e. six sensors), with each sensor
at least 50 cm away from any wall. Markings on the floor
materialized the limits of the covered area, the cell centers
(for calibration) and start/stop points for the participants
(Figure 6).

Thirty participants, all researchers and students at Fraun-
hofer IGD and TU Darmstadt, were involved in the experi-
ment. The sample was predominantly male (three females),
young (min. 16, max. 36, mean 28 years old) and tall (min.
1.60 m, max. 1.92 m, mean 1.79 m). All participants were

2 m

2.5 m

Figure 6: Setup of the model evaluation experiment. Left:
six ceiling-mounted sensors arranged at the corners of two
rectangular cells, and acquisition board. Right: marks on
the floor defining the two sensor cells and the start/end loca-
tions of the walking paths. The sensors are located vertically
above the sensor cells’ corners, marked by black dots.

asked to wear closed casual shoes for the experiment to min-
imize the effect of different types of footwear.

The participants were asked to walk on specific paths in
the area covered the sensor array. For the position ground
truth, we used a Kinect V2 [40]. Prior evaluation [62] has
shown that this device has an accuracy in the range 1 mm to
10 mm, which is sufficient for evaluating our system. Ground
truth for body electric potential was acquired using a high-
impedance volt meter (model 820, Trek Inc.), connected to
one wrist with a conductive strap.

6.2 Experimental Factors
Possible experimental factors were derived from the phys-

ical room situation, the participants’ properties, the data
processing scheme, and pre-tests of the system. The factors
that depend on the physical situation are (1) room proper-
ties (flooring and ceiling material, ceiling height), (2) prox-
imity of the sensors to room walls, and (3) presence of large
grounded objects in the room. The participants’ properties
include (4) height, weight, footwear, and (5) walking speed.
Data processing factors include (6) calibration constants K,
(7) electric field distance exponent α and the (8) head to
sensor distance H. This distance H is assumed as data pro-
cessing factor, since it is not feasible to measure or estimate
the body height of a person in the intended applications.

Room properties (1) and (2) are fixed for each room and
installation, they are also assumed fixed in this first exper-
iment. The presence of grounded objects is systematically
varied with a grounded metal cart (1 m high, 1.2 m long and
0.5 m wide) placed in a corner of the localization area in
half of all experimental runs. The properties of the partic-



ipants (4) are generally random and are not systematically
varied in the experiment. Walking speed (5) is included as
a nominal factor, asking participants to walk normally or
slowly.

Two data processing factors were varied in the experi-
ment, namely K and α. The calibration constants K used
for estimating the distance ratio in (12) were either from an
individual calibration for each test person or taken from a
standard calibration performed by the second author. Pre-
tests showed that α ≈ 2.5 could be a better choice than
the theoretical α = 2 as a value for the electric field dis-
tance exponent. This factor was evaluated on three levels.
Head-to-ceiling-distance H showed no effect in the pre-tests.
Therefore, H was calculated with the ceiling height using an
average statue of 1.72 m [55].

This led to a 2 × 2 × 2 × 3 full factorial design with the
factors walking speed, presence of grounded object, type of
calibration (individual or standard) and the value of α. Only
(speed × object) treatments needed an actual experiment,
since all data processing factors could be varied in the cal-
culations afterwards. Four repetitions per test person (i.e.
16 trajectories) were conducted.

For each participant, a series of eight trajectories with ran-
dom start and stop points (see Fig. 6) and random speeds
was drawn. The speeds were picked without replacement
from a set of four “normal” and four “slow”, to get a ran-
dom order of speeds but always four normal walks and four
slow ones. A similar series of eight start/stop/speed sets was
picked for the tests with the grounded object present (elim-
inating the stop point 21, which was blocked by the object).
Additionally, a calibration routine (100 steps in each cell)
was performed by participants, to look at the effect of using
individual calibration constants K rather than a system-
wide calibration. The experiment lasted about 20 min per
person and the results were analysed with SPSS version 22.

6.3 Localization Results
The localization error is calculated for detection i in the

recording according to

εi =
√

(xK[ki]− xP[ki])2 + (yK[ki]− yP[ki])2 , (16)

where ki are the discrete samples when signal peaks were
detected, and the subscripts K and P indicate the true coor-
dinates measured by the Kinect and the estimates given by
the Platypus, respectively. The errors from all trajectories
of a test person with the same treatment are pooled and the
median is used as localization error measure for this treat-
ment. This leads to 24 localization errors for each person,
corresponding to the 24 treatments and 720 results in total.

We used linear regression to test the assumptions of negli-
gible effects of test person height and weight as well as shoe
size. Analysis shows a lack of significance for all partici-
pants’ properties (height: R2 = 0.007, p = 0.657; weight:
R2 = 0.015, p = 0.525; shoe size: R2 = 0.001, p = 0.902).
We therefore conclude that Platypus’s localization errors are
not sensitive to these factors.

Further analysis is based on a repeated-measures analy-
sis of variance (ANOVA). From the total variation of this
data set, 19.81 % can be attributed to the variations be-
tween participants. These variations cannot be described
any further, but can be explained by individual properties
of the participants not accounted for (e.g. clothing). The
model above can explain 32.42 % of the variation, whereas

2 2.5 3

0.15

0.2

α

lo
c
a
li
z
a
ti
o
n

e
rr
o
r
(m

) Presence of Object

2 2.5 3

0.15

0.2

α

Walking Speed

Figure 7: Interactions of α values on median localization er-
ror plots with object (left, square data points indicate object
present, circles no object present) and walking speed (right,
triangles indicate normal speed, diamonds slow speed). Cal-
ibration level is marked with dotted lines (standard) and
dashed lines (individual).
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Figure 8: Median localization error over the covered area,
without any object present (left) and with a grounded metal-
lic cart in the top right corner (right). Because the cart was
in the way, no trajectories entered the white zone. In both
maps, the median error is largest at the border between the
two cells (x = 1.25 m).

47.77 % are non-systematic variations. Given our ANOVA
results, we derive the systematic variance and the reliability
of this information.

A significant effect (p < 0.001) with medium size (i.e.
accounting for about 10 % of the total variance) is found
for the value of the electric field exponent α. As Figure 7
shows, the value α = 2.5 gives much better results than
the theoretical α = 2. Further analysis showed that α =
2.5 performs the best regardless of calibration level, walking
speed, or the presence/absence of the grounded object. In
the remaining we thus assume α = 2.5.

On the other hand, although there is a significant effect
(p < 0.001) of the calibration factor (with the standard cal-
ibration performing better than individual), the effect size
is too small to have a relevant impact for the design of the
system. We observed that calibration constants differ only
in a very small range between participants, but in a much
larger way depending on the positioning of the sensors, i.e.
the room characteristics. Therefore, a standard calibration
for each installation is sufficient for the use of Platypus, and
future results refer to the standard calibration only.

The second largest effect (p < 0.001), albeit with small
size (i.e. explaining about 1 % of the total variance), is ob-
served for the walking speed factor. Slower walking speeds
lead to smaller errors. We attribute this effect to a better
performance of the separation of movement and stepping
components by filtering, since the movement component has
a lower frequency for slow movements. Due to the small ef-
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Figure 10: Localization median errors per user: the error
shows no correlation with shoe size and body weight.

fect size, the error difference is in an acceptable range and we
consider Platypus usable for both slow and normal walking
speeds.

Overall, Platypus’s localization error in this experimental
configuration was found to have a median of 0.16 m for nor-
mal walking speed and 0.13 m for slow walking speeds (Fig-
ure 9). The ANOVA shows no significant effect of the metal-
lic object on the localization error (p = 0.640, η2 = 0.0003).
We therefore conclude that Platypus is not adversely af-
fected by static conductive objects. This is illustrated in
Figure 8 which shows that locations close to the conducting
object were not subject to high localization error. Figure 8
also illustrates that a 2 m by 1.25 m cell size of Platypus sen-
sors leads to acceptable localization performance across the
whole space. The user-dependent median localization errors
are depicted in Figure 10. No correlation between shoe size
and body weight with regard to the localization error could
be observed.

6.4 Body Electric Potential Change
When a user’s position, and thus the distance to a sen-

sor, is known, it is possible to reconstruct the change in
body electric potential using our model. To evaluate this,
we compare the true change in body electric potential to the
estimated change in body electric potential.

For a number of N discrete sampling points, we calculate
the normalized root-mean-square error (NRMSE). The ab-
solute RMSE can only provide limited insights, as the max-
imum and minimum body electric potential differ greatly
from user to user:

NRMSE =
1

max v′B −min v′B

√∑N
t=1(v̂′B,t − v′B,t)

2

N
. (17)
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Figure 11: Top: Good estimate of body electric potential
change with a NRMSE of 0.07. Bottom: Bad estimate with
an NRMSE of 0.16.
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Figure 12: The body electric potential change estimation
is most accurate for slow walking speeds. The NRMSE in-
creases for normal walking speeds.

Figure 11 shows two examples of body electric potential
change estimates and their ground truths. It can be seen
that the estimates provide a good impression of the real
change in body electric potential. However, as the stepping
component ψ̂ai(t) is determined by band-pass filtering the
sensor signals, some high-frequency features cannot be es-
timated. This results in smoother peaks for the estimated
body electric potential change.

Fusing the estimates for body electric potential change
can be achieved by summing up each sensor’s prediction
with equal weights. Using this technique, we achieve a mean
NRMSE for slow walking of 0.085 (σ = 0.012), which shifts
to 0.091 (σ = 0.013) for normal walking. Figure 12 shows the
distribution of NRMSE for equal weighting. Assuming that
the sensors closer to the person better estimate the change in
body electric potential, we can also use the distances di(t)

α

as weights. However, this results in a lower quality estima-
tion, with a mean NRMSE of 0.098 (σ = 0.018) for slow
walking, and 0.116 (σ = 0.029) for normal walking. The
main reason can be seen in imprecise separation of stepping
and movement component Ψa and Ψb. By applying equal
weights, the influences of movement-related errors tend to
cancel each other out as a person’s distance to the sensors
both increases and decreases.

6.5 Identification
To evaluate the identification performance based on lo-

cation and body electric potential change we employ the
feature sets introduced in 5.3. We use a standard SVM clas-
sifier (libSVM, RBF kernel, normalization) integrated in the
WEKA framework [24]. The feature extraction is performed
on a window comprising the whole trajectory of a partici-
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Figure 13: The estimated body electric potential changes when taking a step (step signatures) differ from user to user and
represent a discriminative measure for classification. The amplitudes depend on the actually carried charge and require
normalization.

Normal Walking dVb Gait Steps Signatures

dVb 49.3% 56.2% 65.6% 77.0%

Gait - 29.0% 48.8% 65.6%

Steps - - 47.2% 70.1%

Signatures - - - 65.8%

All sets 74.7%

Slow Walking dVb Gait Steps Signatures

dVb 55.1% 64.2% 73.6% 69.6%

Gait - 35.1% 59.2% 63.6%

Steps - - 51.1% 63.6%

Signatures - - - 62.9%

All sets 73.0%

Table 1: F-measures for identification of 30 participants
walking with normal speeds (4-fold cross validation, 8 sam-
ples per participant).

pant (usually less than 5 s). Our identification is based on
30 participants, eight random trajectories with two move-
ment speeds (240 windows for each speed). As a measure of
classification performance, we apply the F-measure (or F1
score) which combines the measures of precision and recall.

First, we take a closer look on the four feature sets, con-
taining information on body electric potential change (dVb),
gait features (gait), steps (steps), and step signatures (sig-
natures). We evaluate each single feature set and combina-
tions between two feature sets. Each participant’s dataset
contains 2 x 8 randomized trajectories for slow and normal
walking. The two walking speeds were first evaluated sepa-
rately in a 4-fold cross validation, as listed in Table 1.

Combining all feature sets yields in an F-measure of 73.5%
for slow walking and 74.7% for normal walking (average ac-
curacy 75.0 %). It is conceivable that the feature set con-
taining step signatures provides most discriminative data.
Figure 13 depicts all extracted step signatures for the 30
participants. The most significant differences in the step
signatures can certainly be seen in the rise and fall times
of the signal (user 10, user 26). Also, the standard vari-
ance between consecutive steps differs greatly (user 21, user
7). Confusions in classification could be observed for very
similar step signatures (user 15, user 1) or very irregular
signatures (user 21).

The gait features provided least discriminative data. We
believe that this can be attributed to the rather short tra-
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Figure 14: Identification accuracy compared to the number
of people in the dataset.

jectory, which did not allow the participants to move with a
regular cadence. Also, the dataset contains people with very
similar body height and physical condition, which leads to a
very similar step pattern. The feature set comprising abso-
lute change in body electric potential provided discrimina-
tive features and performed second best. A cross-validation
between the data for each movement speed showed that the
extracted features, especially the step signature, are inher-
ently different. This leads to the conclusion that a user iden-
tification must be based on the natural movement pattern
and does not generalize over multiple speeds.

In the following, we evaluate the influence of a different
number of participants on the classification result. We con-
ducted 10 repetitions on a 4-fold cross validation for a set of
N randomly drawn participants. The results shown in Fig-
ure 14 indicate that two participants can be distinguished
almost perfectly. The performance degrades with the num-
ber of people. Only slight differences in classification perfor-
mance could be observed for walking slowly and normally.

7. CORRIDOR EXPERIMENT
We deployed Platypus in a corridor to evaluate a more

realistic environment with less movement constraints. We
recorded a dataset that contains sensor data and ground
truth concerning walking four discrete paths along the corri-
dor, as well as the participants’ identities, covering multiple
days. The questions we would like to answer with this ex-
periment are whether participants can be reliably recognized
even on different days and how different types of footwear
influence the identification. We also evaluate whether Platy-
pus is able to classify which path down the corridor was
taken.
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Figure 15: Left: Corridor experiment setup with six sensors
(black circles) and four possible paths. Right: The deploy-
ment with sensors mounted to the ceiling.

7.1 Setup & Participants
We conducted this evaluation in a semi-controlled manner.

Six sensors were installed on the ceiling of an office corridor
with three doors (Figure 15). In contrast to the first exper-
iment, a synthetic carpet covered the floor. We asked the
participants to start walking about 2 m away from the sens-
ing area, then to enter one of the three rooms or keep going
through the corridor. To avoid hampering the participants’
movements with a wrist strap and a cable, the body electric
potential was not measured. Since the people went out of
line of sight through doors, positioning by Kinect was not
reliable for this test. Thus, the ground truth for localization
was limited to discrete paths (end of the corridor or one of
the three rooms).

For each participant, the experiment comprised four ses-
sions. In the first session, the person walked eight times
through the corridor and four times through each door, for
a total of 20 measurements. The paths were taken in a
random order, different for each session. The second ses-
sion was similar to the first, with a second pair of shoes (all
shoes were the participants’ own). In the third and fourth
sessions, we repeated the procedure of the two first sessions
using the same shoes, but different clothes, on another day.
The participants were not asked to choose any particular
type of shoes, or to walk in any particular way.

We had 8 participants (6 male, 2 female), between 20 and
52 years old (average 32 years old). Similar to the first ex-
periment, the participants were relatively tall (min. 1.67 m,
max. 2 m, mean 1.79 m). All participants were researchers
and students at Fraunhofer IGD and TU Darmstadt.

7.2 Persistence of Identification Features
One central aim of the experiment was to find out whether

there are similarities in the features that could identify peo-
ple independently of their footwear. The results are based
on an SVM classifier as in the first evaluation (libSVM, RBF
kernel, normalization).

To evaluate the feasibility of recognizing a user after a
certain time, we asked the participants to perform the ex-
periment on two days, with a gap of one to five days. We
validated the data based on eight straight trajectories, us-
ing data from one day for training, and the other day for
validation (and vice-versa). To evaluate the performance
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Figure 16: The classification performance of the corridor
deployment evaluated on two different days compared to the
controlled room experiment. Participants wore the same
footwear on the two days.
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Figure 17: Most step signatures of participants changed
when wearing different footwear. Few of them generated
similar signatures, as shown in the middle plot.

depending on the number of people, we conducted 10 repe-
titions for a set of N random participants. The results are
shown in Figure 16 and compared to data from the pre-
vious room experiment with the corridor experiment. For
eight participants, we yield an average F-measure of 83.59 %
(accuracy 83.6 %) in the corridor, which is less than the
first room experiment for the same amount of participants
(90.21 %). This can be attributed to the less controlled man-
ner in which the experiment was carried out (no control over
shoes, changed clothing, more freedom of movement).

Another question we investigated is whether it is possible
to recognize a returning user with a different pair of shoes.
Therefore, we combined data recorded on two days and used
one pair of shoes for training, and the other for evaluation
(and vice-versa). For eight users, the results indicate a poor
average F-measure of just 26.15 %. We attribute this to dif-
ferences in step signatures due to materials which influence
contact charging, and different sole thicknesses which result
in a different capacitive coupling to the floor (Figure 17).

For application developers, it is especially vital to know
how many training samples are required to achieve a cer-
tain identification performance. For each number of train-
ing samples and number of people, we trained the classifier
with 100 randomly drawn permutations containing straight
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Figure 18: The identification performance stabilizes after
3-6 training samples of a 2.4 m walk.
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Figure 19: Left: confusion matrix for the trajectory classi-
fication. The four trajectories are noted as S (straight), 1L
(first door, left of the corridor), 1R (first door, right) and
2R (second door, right). Right: average F-measure of path
classification per participant.

trajectories from day 1. We evaluated the trained classifier
instances with all 8 straight trajectories recorded on day 2
(Figure 18). The results show that the classification perfor-
mance stabilizes quickly for a small amount of users. Con-
sidering eight users, a stable performance is achieved after
5 - 6 training samples of a 2.4 m walk.

7.3 Trajectory Classification
Besides identification, we investigate how well Platypus

recognizes one of the four possible paths taken within the
corridor. We applied dynamic time warping (DTW) for clas-
sification [59], with the localization events as time series. As
reference templates, we defined four mean paths based on all
recorded trajectories.

Over all recordings, the classification accuracy reaches
95.6 %. The confusion matrix can be seen in Figure 19 (left).
The F-measure by participant is shown in Figure 19 (right),
and the average over all trajectories and all participants is
95.7 %. While the classification performance is almost per-
fect for many users, we observed a poor recognition accuracy
for participant 6 (50 %) on one day and with one pair of
shoes. This inaccuracy was not observed during the second
day of measurement with the same shoes.

8. LIMITATIONS
Our experiments have shown that Platypus operates with-

out the need for person-specific sensor calibration, and that
it is independent of the user’s height/weight/clothing as well
as the presence or absence of grounded electrical objects in
the environment. However, person-specific model training is
still required, and identification of users depends on wearing
the same footwear.

The experimental deployments are relatively dense (grid
size from 1.2 m to 2 m) which is challenging when scaling to
larger spaces. Figure 20 depicts the sensing range achieved
using our current hardware and signal processing, and shows
that the underlying electric field sensing does work at longer
distances. In order to create more sparse deployments and
lower the cost of Playtpus, future work can explore ways
of increasing this range, for example by employing multiple
analog frontends with different gain levels. This would also
enable different topologies than grids - e.g. by arranging
multiple sensors in a ceiling lamp.

Although smaller grounded objects do not affect the lo-
calization accuracy, we found that walls have a very strong
coupling to users. This leads to an attenuated signal when
person-to-wall distances are less than 30 cm, which could cre-
ate blind spots in a deployed Platypus system near walls. A
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Figure 20: The rate of successful Platypus detections com-
pared to distance, when a footstep occurs. The histogram
starts at 1 m distance to account for head-to-ceiling height.

modified capacitive coupling model that not only includes
the person-to-sensor coupling, but also the person-to-wall
coupling, can potentially overcome this issue.

9. SUMMARY & FUTURE WORK
We introduced Platypus, a tag-free system to localize a

person and to extract a signature pattern for identification.
It is based on a novel use of electric field sensing to remotely
infer a person’s body electric potential changes. Our ex-
periments have shown that using a 6-sensor array covering
an area of 2 m by 2.5 m, Platypus can perform localization
with a median error of 0.16 m while walking, and identifi-
cation of 30 persons with an average accuracy of 75 % in a
controlled setting. While the sensor density is high, the pas-
sive operation enables sensor designs with very low power
consumption. Platypus incorporates a mathematical model
which uses data from remote passive electric potential sen-
sors to infer a human body electric potential, with a nor-
malized root-mean-square error of 9.1 %. In a further, less
constrained experiment, Platypus could identify 8 walking
people with an average accuracy of 83.6 % using different
days for training and testing. Depending on the number of
users, Platypus’s classification performance stabilizes after
3 - 6 training trajectories.

Some future work has already been described in the previ-
ous seciton. Other future work includes model refinements,
most importantly the elimination of simplifications like step-
ping and movement component separation. We aim to anal-
yse correlations between sensor signals that occur due to
stepping, and are caused to a lesser extent by the move-
ment component. This may lead to better localization and
identification performance. Moreover, future model exten-
sions include the localization and identification of multiple
people, which would require distinguishing between multi-
ple superposed signals. To avoid the installation of more
sensors, we believe that our work towards identification can
help separate the person-dependent signals.

We believe that remote passive sensing of electrical poten-
tial changes in the body is a promising technique that can
be applied to other scenarios than we have so far addressed.
Applications could include recognition of touch interactions
with objects or other people in the environment, emergency
situation recognition such as epileptic fits, as well as gait
and gesture recognition.
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