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Abstract—It has been estimated that traffic congestion costs the
world economy hundreds of billions of dollars each year, increases
pollution, and has a negative impact on the overall quality of
life in metropolitan areas. A significant part of congestion in
urban areas is due to vehicles searching for on-street parking.
Detailed and accurate on-street parking maps can help drivers
easily locate areas with large numbers of legal parking spaces
and thus relieve congestion. In this paper, we address the problem
of mapping street parking spaces using vehicles’ preinstalled
parking sensors. In particular, we focus on identifying legal
parking spaces from crowdsourced data, whereas earlier work
has largely assumed that such maps of legal spaces are given. We
demonstrate that crowdsensing data from vehicle parking sensors
can be used to classify on-street areas into legal/illegal parking
spaces. Based on more than 2 million data points collected in
Highland Park, NJ and downtown Brooklyn, NY areas, we show
that on-street parking maps can be estimated with an accuracy
of ∼90% using proposed weighted occupancy rate thresholding
algorithm.

I. INTRODUCTION

It has been estimated that traffic congestion costs the world
economy hundreds of billions of dollars each year, increases
pollution, and has a negative impact on the overall quality
of life in metropolitan areas. In order to solve this emerg-
ing problem, transportation departments increasingly rely on
systems for real-time traffic control and management known
as Intelligent Transportation Systems (ITS) [1]. The main
goal of ITS systems is to inform travelers about current and
future traffic and motivate them to modify travel plans during
congested periods and, in doing so, relieve the congestion.
However, in heavily populated areas such as downtowns,
vehicle routing becomes very challenging. One of the reasons
why it is hard to reroute vehicles in downtown areas is due
to the fact that a significant part of congestion in these areas
is due to parking. Vehicles searching for available on-street
parking spaces slow down traffic and in addition pollute the
air by emitting large quantities of carbon dioxide. In a study
conducted in a central business district in downtown Los
Angeles [2], it was shown that vehicles searching for parking
in a period of one year created 38 trips around the world,
spending 47,000 gallons of gasoline and releasing 730 tons of
carbon dioxide.
Maps of garage locations are available to travelers online for
all major cities. However, constructing garages is expensive,
hence spaces are limited and prices high and walking distances

to the final destination can be long, therefore an important
parking option for most travelers is still on-street parking [3].
On the other hand, due to a lack of information about the
number of parked cars on the streets and lack of maps of
legal/illegal parking spaces, vehicles spend long periods of
time searching for empty parking spots. The problem of having
an unknown number of cars parked along the streets was
addressed by the SF park project [4], in which sensors were
buried under the pavement beneath 25% of the slotted parking
spaces in the city of San Francisco in order to detect whether
the parking spaces were occupied or not. The high price
of installing fixed sensors into the pavement motivated the
PARKNET project [5] to employ ultrasonic sensors together
with GPS units on several vehicles (taxies, police vehicles,
etc.) in order to detect the number of cars parked on the streets.
However, none of the above projects address the problem of
creating accurate and detailed maps of legal parking spaces.
Furthermore, the [5] assumes that those maps are available to
city authorities to some extent. Manually creating these maps
(ex. from Google Maps [6]) can be a very long and tiresome
process. Several projects were done on successfully inferring
road maps from GPS traces using data mining algorithms [7],
[8] but none of them address the question of inferring parking
maps. On the other hand, the existence of these maps can
be very useful in several applications. For example, travelers
will be able to explore if the area where they desire to
park possesses a large number of illegal parking areas such
are fire hydrants, private garages, or bus zones. If a high
demand on-street parking area contains a large number of
illegal parking spaces, the probability that vehicles can park
in this area is smaller and travelers can change their parking
preferences in advance. Furthermore, detailed parking maps
can be implemented into GPS devices and help drivers to
identify whether the space where they are currently parked is
legal or not. For example, if the driver parked a vehicle close
to a fire hydrant or a bus zone, the GPS receiver can beep in
order to warn the driver that this is not a legal parking space.
This way, travelers can avoid getting parking fines or having
their vehicle towed because it was irregularly parked. The
parking authority can use parking maps to identify areas with a
small number of legal parking spaces in order to recommend
the building of parking garages in that area. In addition to
previous applications, detailed maps of legal/illegal parking
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Fig. 1: Overview of the proposed system

spaces can be used in the creation of services similar to [5],
where these services will on the one hand report availability
of legal parking spots and on the other report to parking
authorities if illegal parking spots are occupied.
In this paper, we address the problem of mapping out street
parking spaces using car preinstalled parking sensors obtained
by crowdsensing. It is important to stress that this project
differs from the [5] in that the goal of [5] was to collect
space occupancy data as opposed to our project where the
main goal is to create legal/illegal parking spot maps, maps
which earlier work assumes already exist and are available. A
large number of new generation vehicles possess range finder
parking sensors which help drivers to park their vehicles [9].
While the vehicle is in motion, these sensors can be used to
detect the presence or absence of parked vehicles on the street.
The sensor measurements can then be reported together with
the vehicles GPS coordinates (which can be obtained from the
cars preinstalled GPS device) to the centralized server which
can estimate if the reported parking spaces are legal or illegal.
In order to accurately estimate parking maps, the centralized
server would need several measurements of the same location,
possibly from several different vehicles. This can be achieved
using crowdsensing, an approach that collects large amounts
of sensing data from crowds. By providing parking sensor
measurements, users can help in mapping the streets into legal
and illegal parking spaces similarly to other crowdsensing
projects where crowdsensing data is used to estimate traffic,
monitor pollution levels in a city, estimate bus arrival times
and so forth. The diagram of the proposed system is shown
in Figure 1.
The rest of the paper is organized as follows. In section 2,
we will explain data sets used to demonstrate how parking
maps can be created based on ultrasonic parking sensors and
give a brief overview of the [5] system which is used to
collect parking data. In section 3 we will present algorithms for
estimating parking maps from several passes through the same
streets and present results of the evaluation of the algorithms
in section 4. Finally in section 5 we discuss in more detail
some of the issues we encounter followed by related work in
section 6 and conclusions in section 7.

II. ON-STREET PARKING DATA

To demonstrate how on-street parking spaces can be mapped
using parking sensors, we used road side parking data obtained
from Highland Park, NJ and downtown Brooklyn, NY areas.
The data from these two data sets is collected using the
[5], a system which collects on-street parking availability
information. The system in [5] consists of a low cost ultrasonic
sensor (Figure 2a), which measures distance from the car to
the nearest obstacle, and the GPS receiver which reports the
location of the sensor measurement. The ultrasonic sensor
emits ultrasonic waves every 50 ms at the frequency of 43
KHz, providing single range readings from 12 to 255 inches.
If an obstacle is detected, the sensor will report the distance
from the obstacle to the vehicle and in the case that no obstacle
is detected, the sensor will report a distance of 255 inches.
The role of the GPS receiver is to provide time stamps and
location stamps for each sensor measurement. The collected
sensor measurements and corresponding location stamps form
time series data which represents passes through the streets.
The ultrasonic sensor and GPS receiver were deployed on
several vehicles which were cruising around streets and re-
porting parking measurements to the centralized server where
they were preprocessed and used by several algorithms in
order to estimate street parking availability. In addition to
the ultrasonic sensor and GPS receiver, a small Sony PS3
camera was integrated in order to provide ground truth for
parking estimation. The camera was situated just above the
sensor and was aligned together with the sensor (Figure 2a).
It is important to note that the camera was not part of the
[5] system; it was only used for evaluation and data analysis
purposes.

A. Highland Park data set

The first parking data set was collected in 2009 in Highland
Park, NJ in three road side parking areas as illustrated in
Figure 3a. Three sensing vehicles collected data during a two
month period during their daily commutes. They collected
more than 500 miles of roadside parking data. The data was
collected only from certain streets in Highland Park (Table
I) and this was done by using the concept of trip boxes,



(a) Position of ultrasonic sensor and web camera(b) Vehicle parked on the bus stop on Bergen
Street

(c) Vehicle parked to close to fire hydrant on
Schermerhorn Street

Fig. 2: Ultrasonic sensor properties and parking violations

which represent a rectangular area defined by two latitude and
longitude points. As soon as a vehicle enters the area defined
by these points, the sensing vehicle starts collecting data and
continues to collect while the vehicle is inside of the box. The
trip boxes ensure that data is collected only from streets where
it is important to estimate parking availability as opposed to
areas where parking is available during the whole day. This
data set was used in the [5] paper experiments.

B. Brooklyn data set

The second data set was collected in downtown Brooklyn,
NY, and it is used for the first time in this paper. Six sensing
vehicles equipped with the ultrasonic sensor and Sony PS3
webcam were deployed to collect parking data during the
fall of 2010, over four different work days. The starting
location for each vehicle was NYU - Poly University, and
each vehicle was assigned a different route to cover an area in
downtown Brooklyn but some of the routes had overlapping
areas. Figure 3b depicts the location of more than 1.5 million
points collected during the experiment. Unlike the Highland
Park data set, in Brooklyn the number of days in which
vehicles were deployed was small but the size of the parking
area was much larger. As a large, dense city, Brooklyn also
represents a more complex parking landscape than Highland
Park. In this data set, the concept of trip boxes was not
used. From this large data set, we extracted eight streets in
downtown Brooklyn for which we had at least three passes
through the same street (Table I). In total, the number of
data points collected by the [5] in both Highland Park and
downtown Brooklyn areas and used in experiments was greater
than 2 million.

III. MAPPING ON-STREET PARKING SPACES
USING AGGREGATION

Every time a sensing vehicle passes through a street, it can
collect and report the rangefinder sensor measurement at each
location. When several passes through the same street have
been obtained, this will provide us with multiple snapshots of
the parking occupancy in this street. To infer from this data
whether a particular road-side spot is a legal parking space, our
algorithm exploits the following key idea: spaces that almost
never have parked cars are probably not legal parking spots

TABLE I: Selected streets for both data sets

Street Street # of From To Bicyc
name length(m) passes lane

Brooklyn
Bergen 608 8 Nevins Smith no
Smith 311 8 Dean Scherm yes
Nevins 382 8 Scherm Bergen no
Dean 608 3 Smith Nevins no

Scherm. 608 6 Smith Nevins yes
Wychoff 608 3 Smith Nevins no

Court 222 6 Atlantic Congress no
Clinton 394 3 Amity Living. no

High. P.
Kilmer 884 10 Plainf. Truman no
Raritan 357 20 Third Fifth no

Woodbr. 409 20 Seventh Eleventh no

such as fire hydrants, private garages, side streets, or bus zones.
On the other hand, spaces which are frequently occupied
almost every time are likely to be valid parking spaces. Such
information can be inferred by aggregating available time
series. In the following sections we will describe our proposed
weighted occupancy rate thresholding algorithm as well as two
baseline algorithms. Before presenting these algorithms, we
will discuss the pre- and postprocessing stages common to all
these algorithms.

A. Baselines, pre- and postprocessing

Since the sensor measurements from different passes are
not necessarily taken at the exact same position, the first step
in the preprocessing stage was to spatially discretize streets in
one meter cells. Then, all obtained GPS readings and their cor-
responding sensor measurements are linked with the matching
space cells. In the case that we have several sensor readings
associated with one cell (for example a vehicle was standing on
the certain spot for several minutes) we take the median value
of the sensor readings from these locations. However, GPS
readings are typically accurate up to three meters which can
cause certain sensor readings to be associated with the wrong
cells. In the next step we discretize sensor measurements. As
described, the parking sensor provides measurements from 12
to 255 inches. Within this range it is possible to detect not
only parked vehicles, but also other objects on the streets
such as traffic lights, trees, trash cans, staircases, etc (Figure
4a). A common feature for all the objects is that they are
usually positioned behind parked cars. As a first step, we weed
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Fig. 3: Locations of the GPS traces for both data sets

out all unnecessary objects by applying a threshold method
to time series; everything below the threshold is considered
as a detected vehicle and it is assigned a value of 0 and
everything above the threshold has a value of 1 and represents
that nothing was detected on this space in the street. The
threshold values vary for different streets; for streets without a
bicycle lane this threshold is set as 100 inches and otherwise
is set to 150 inches. Figure 4b demonstrates histograms of the
detected vehicles for streets with and without bicycle lanes
(easily obtained from Google Maps) which we used to select
appropriate thresholds. Finally after the preprocessing step is
finished we obtain several discretized time series on which we
can apply aggregation algorithms.
As one of the baseline approaches we use the trivial approach
which estimates that all parking spaces are valid similarly to
[10]. The trivial approach can be useful to inform us about
the percentage of illegal parking spaces in the street after it is
compared with the ground truth parking maps.
Another baseline approach which we use to aggregate dis-
cretized time series is occupancy rate thresholding. It decides
if a certain location is a legal/illegal parking space by taking
the average of all time series for that specific location. If
this calculated average is greater than 0.5, then this location
is considered as a illegal parking spot and vice versa. The
reasoning behind this approach is that if on average there were
no parked cars on this location, there is a greater chance that
this is not a legal parking spot. The reason why the threshold
above is set to 0.5 is because even if a lot of places are no
parking zones, people tend to temporarily park on fire hydrant
or bus zones spots as is noticed in the data set.
At the end of the aggregation phase, the post processing step is
applied to smooth out the resulting time series. The smoothing
method finds all legal parking spaces in the resulting time
series that are less than three meters and then converts them
to illegal parking spaces. In the same fashion, it converts all
illegal spaces to legal if they are less than three meters. The
smoothing step is important because it eliminates all parking
zones that are too small to be parking spots and vice versa.
For example, the smallest non-parking zones are several garage
entrances and side streets that are not smaller than 3 meters.
With the post processing step small spikes that show up in
the resulting time series are eliminated and the time series is
smoothed. After smoothing we connect each space to its GPS

location and plot the map of legal/illegal parking spaces.

B. Weighted occupancy rate thresholding approach
This algorithm is motivated by the observation that not

all time series from the same street provide equally good
information. The time series that have a larger occupancy of
vehicles give us more valuable information as opposed to the
time series which were collected while the streets were almost
empty. The reasoning behind this is the following: when the
majority of street parking spaces are occupied, only illegal
parking spaces tend to remain empty. When many parking
spots are available it is hard for our algorithm to distinguish
spots that are empty because they are illegal from spots that
are empty because of a lack of parking demand. The weighted
occupancy rate thresholding approach utilizes this information
to assign more weight to the time series that have high vehicle
occupancy than to time series with low vehicle occupancy. An
outline of the proposed algorithm is given in the Algorithm 1.
The algorithm proceeds as follows: for a given input GPS
and corresponding sensor traces the algorithm first performs
preprocessing steps as described before. Then for every time
series p we calculate the weight W as the ratio of the
occupied slots to the total slots. In the next step we normalize
the weights in order to distinguish between low and high
informative time series. Then for every space cell i, the
weighted average of sensor readings S for each time series
p was calculated. In order to determine if the parking space
is legal or not we apply the threshold method. Similarly to
the baseline approach, the resulting aggregated time series is
smoothed to eliminate small spikes. Finally all spaces are again
linked to their GPS coordinates and can be plotted in order to
obtain a map of legal/illegal parking spots.
It is important to mention that, although this simple algorithm
was developed specifically for the purpose of aggregating
time series for parking map estimation, this algorithm can
be generalized to other sensing systems which have multiple
sensor readings (time series) from the same locations. For
example, this approach can be used in aerosol retrieval [11], to
estimate the level of aerosol in the air by combining satellite-
and ground-based sensor measurements.

IV. EXPERIMENTS
The baseline and proposed algorithm are evaluated on both

the Brooklyn and Highland Park data sets. We compared
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input : The GPS and sensor traces s
output: Array of legal/illegal parking cells

1. Discretize GPS traces into N equidistant cells
2. Assign each sensor value s to the corresponding
cell i
3. Apply threshold approach to obtain 0/1 sensor time
series
4. Calculate weights for each time series p
for p← 1 to P do

Wp = 1−

N∑
i=1

sp,i

N
;

end
5. Normalize the calculated weights
for p← 1 to P do

W̃p =
Wp

P∑
i=1

Wp

;

end
6. Apply normalized weights to a each cell
for p← 1 to N do

ŝi =
P∑
i=1

W̃p · sp,i;

end
7. Apply threshold to estimate if cell is legal/illegal
parking space

ŝi =

{
1 if (ŝi ≥ threshold

0 otherwise
8. Smooth out obtained time series.

Algorithm 1: The weighted occupancy rate threshold-
ing algorithm

the output of both algorithms to ground truth parking maps.
The ground truth maps are obtained by manually creating
parking maps from satellite images and manually labeling
areas as legal and illegal parking based on satellite and Google
Street view imagery. In addition, ground truth maps are also
discretized on the resolution of 1 m similarly to algorithm
output maps. The dimensions of bus stops and entrances
of parking garages are apparent from these images, making
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Fig. 5: Aggregation results for both data sets
labeling straightforward. For fire hydrants, we labeled 5 meters
(15 feet) on each side of the hydrant as illegal parking spots
(according to NYC parking rules). Classification error was
used as a measure of accuracy where the value of each
predicted space cell is compared to the corresponding ground
truth space cell. After evaluation we noticed that classification
error is in the range of 5 to 15% depending on the street. The
error is larger when we have a large number of illegal parking
spaces such as fire hydrants, garage entrances, or bus zones
that were hard to estimate. Another important factor which
influenced the classification error is the number of diverse time
series for specific streets; the more time series from different
periods of the day we have, the easier it was to estimate if
parking spaces are legal or illegal.

Figure 5 shows the results from eight streets in downtown
Brooklyn. The weighted occupancy rate thresholding approach
out-performs the baseline approaches for the majority of the
streets. Furthermore, for some of the streets (ex. Wyckoff and
Schermerhorn), baseline approach that averages all time series
had very low accuracy (between 30 and 40%) which indicates
that simple averaging of the time series is not a good approach.
We observed that on several streets both algorithms have the
same performance such as Dean, Court, and Clinton Streets.
After inspection, we discovered that the time series for all
passes for those streets were very similar (all taken on the same
day over a close time period) which caused the weights for the
weighted ORT approach to be very similar. In the case where
all weights are similar, the proposed algorithm behaves the
same as the baseline algorithm. When we compare street by
street performance, we notice that the error varies significantly
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(b) Ground truth map for Smith Street
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(c) Ground truth map for Kilmer Street
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(d) Estimated map for Bergen Street
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(e) Estimated Smith Street
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Fig. 6: Ground truth (top) and estimated (bottom) parking maps for three test streets

from street to street for both approaches due to significant
distinction between the streets. For example, Dean Street is
very narrow and the side where the sensor was measuring had
no fire hydrants or bus stops, but only one garage entrance and
three intersections. On the other hand, Schermerhorn Street has
several fire hydrants, bus stops, and garage entrances. One of
the reasons why the error was slightly larger on Smith Street
is because parking rules were changed in the last couple of
years and city authorities installed several new fire hydrants
but left old parking markings visible. This caused many of
drivers to park on illegal spots, making those spots hard to
detect. Even during inspection of streets on Google maps we
noticed quite a few parking violations(Figure 2b and Figure
2c).
Figure 5 also shows results for the Highland Park data set.
Similarly to the Brooklyn data set, the proposed algorithm per-
forms better than the baseline approach and trivial approach.
Although we have a larger number of passes in Highland
Park than in Brooklyn, estimation of the parking maps for
Highland Park was more challenging since Highland Park
streets are much less occupied and located in a low populated
residential area where a lot of residents park on side streets or
behind their houses. Thus, most of the time series contained
very little information about parked vehicles, which made it
difficult to distinguish between legal and illegal parking spaces
after aggregation. Furthermore, Raritan Avenue has a large
number of slotted parking spots which were rarely occupied,
leading to a high percentage of non-parking spaces in that
street which was hard to estimate. Finally, Figure 6 displays
true and estimated parking maps for baseline and proposed

approach. From the figure we can observe that the weighted
occupancy rate thresholding approach generates more accurate
maps than the baseline approach and it is able to accurately
detect most of the illegal parking spaces.
It will be interesting to see how the proposed algorithm
compares with other approaches for parking map estimation,
for example, using GPS traces in cars to see where they stop
for long periods or perhaps participatory sensing where users
mark spots as legal/illegal as they drive to find an open ”spot”
indicated by the system. However, we were not able to obtain
data from these approaches in order to perform comparison.

A. Properties of weighted occupancy rate thresholding algo-
rithm

In the previous section we demonstrate that the proposed
approach outperformed the trivial and baseline approaches.
Now we investigate the behavior of the weighted occupancy
rate thresholding algorithm when we change the number of
time series used for aggregation. In the following experiment
we used the time series for Bergen Street and we evaluated the
performance of the proposed algorithm for each combination
of time series. In Figure 7a, we can observe how both the
classification error and confidence interval decrease when we
add more and more time series. This indicates that the per-
formance of weighted occupancy rate thresholding algorithm
improves when we receive additional time series.
Next, we investigated how weights of the proposed algorithm
change when we add more data. The weights for each time
series in each iteration are presented in Figure 7b for one
combination of Bergen Street time series. In the first iteration
we have only one time series which has a weight of one. In
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Fig. 7: Proposed algorithm properties

the second iteration, we added additional time series which
were similar to the first one and the algorithm estimated
approximately similar weights of 0.49 and 0.51. As we add
more time series the weights are decreasing, giving more
weight to the more informative time series. Finally, after
all time series were observed the algorithm assigns the final
weight. It is interesting that time series number three received
the smallest weight in all cases. After inspection, time series
number three indicates that on that time of the day there were
only a few parked vehicles on Bergen Street for that specific
time. If only this time series is available it will be extremely
hard to distinguish between illegal parking spaces and legal
parking spaces that were not occupied for that time of the
day.
Finally we examine the fraction of false positive and false
negative for all test streets. The false negative rate in our
case represents the number of illegal parking spaces that are
classified as legal, and vice versa for the false positive ratio.
Table II demonstrates these ratios for all test streets.

TABLE II: False negative and false positive rates

Street name false negative (%) false positive (%)
Bergen 3.29 5.76
Smith 8.36 6.11
Nevins 3.14 4.19
Dean 0.66 5.91

Scherm. 9.31 9.31
Wychoff 1.32 3.62

Court 4.50 2.25
Clinton 9.14 6.60
Kilmer 0.34 9.39
Raritan 11.7 3.92
Woodbr. 5.62 7.82
Average 5.21 5.89

Based on the Table II analysis of false negative rate, we
notice that only ∼5% of parking spaces will be classified as
legal even though they are illegal. This is very important for
applications that suggest to users where they are allowed to
park in the streets.

V. DISCUSSION

In this section we will discuss in more detail some of the
issues we encounter.

Data sets limitations. Due to the expensive data collection
process we were able to evaluate the proposed approach only
on dense urban areas where parking spots are typically full.
In the case of small towns or more suburban areas where
parking occupancy is very low, the proposed algorithm still
needs to be evaluated. In the case of the Brooklyn data
set, the main problem was that the data collection process
lasted only a few days with small time intervals between
passes through the same street. This resulted in all time series
for a particular street holding very similar information. For
example, for Clinton Street we had three passes of the same
sensing vehicle in the time period of only a couple of hours.
The parking situations did not significantly change and the
algorithm concluded that all empty spaces at that time were
illegal. This problem can be solved if more diverse data were
available, especially in cases where most of the parking spaces
were occupied (e.g. during night). On the other hand, in the
Highland Park data set we had several time series during the
day collected over a larger time period. The main difficulty
in estimating illegal parking spots was the fact that the area
is not as densely populated and parking spaces remain empty
for most of the day, making estimation more challenging.
Parking maps accuracy. Based on results obtained from
the evaluation we can pose the question of whether ∼ 90%
accuracy is sufficient to use this technique in practice. For
applications such as detection of zones with large numbers of
illegal spaces for travelers or DOT departments, an accuracy
of ∼90% is more than sufficient. On the other hand, for
GPS receiver or PARKNET applications which require fine
resolution of parking maps, accuracy of the proposed approach
is adequate, especially if we take into account that on average
only ∼5% of the error is due to false negative rate. This
implies that situations where illegal parking space is estimated
as legal and which may cause user frustration will be very rare.
Multilane roads. An important issue we encounter is how to
detect legal/illegal parking spaces when sensing vehicles are
passing through multilane streets. Unfortunately, current GPS
receivers are not precise enough to distinguish in which lane
the vehicle is driving. In the data set used in the experiments,
most of the streets are single lane streets and in cases where we



have multiple lane streets we eliminate the time series in which
the sensing vehicle is changing the lane. In the process of data
analysis, we noticed that if the vehicle is not in the right lane,
sensor measurements are unusually low (the sensing vehicle is
detecting another vehicle that is very close) or unusually high
for longer time periods (the sensing vehicle did not detect
anything because it was far away). Developing an approach
which will automatically detect these situations remains for
future work.
Privacy. When we deal with GPS trace data sets, one of
the main issues is the question of privacy. Sensing vehicles
must reveal their position to the parking estimation system.
This can lead to the users home and work locations being re-
vealed simultaneously with their daily patterns. The proposed
approach [12] addresses the problem of preserving privacy for
crowdsensing and it can be applied to our problem. In this
paper we do not further address this issue.

VI. RELATED WORK

In recent years several systems have been developed and
tested for parking space monitoring. Parking garages use
systems which count the number of vehicles entering/exiting
the garages and display an estimated number of empty parking
spaces on the garage entrance message signs [13]. A couple
of interesting approaches were recently proposed, where users
can buy and sell privately owned parking spaces [14]. Recently
two systems which monitor on-street parking spaces were
proposed. The first one is SF-park [4], a project in the city of
San Francisco which employs a large number of fixed sensors
for parking space detection and second, the PARKNET project
[5], where low cost ultrasonic sensors coupled with a GPS
receiver were installed in sensing vehicles in order to detect
on-street parked vehicles. It is assumed that parking maps are
already available to the system as noted in the introduction.
The construction road maps from GPS traces are recognized
as an important problem and in the past couple of years
several studies have been done on this topic. Several data
mining algorithms such as K-means, kernel density estimation
or trace merging algorithms [7], [15] were proposed in order
to estimate road maps from low resolution and low sampling
traces. As opposed to these approaches, the community in
Open-StreetMaps (OSM) [16] is manually extracting roads
from arterial images and GPS traces. However, all proposed
approaches focus only on estimating road maps, leaving the
problem of creating parking maps open.
There is a wide variety of applications for traffic state esti-
mation that use crowdsensing data such as the detection and
prediction of traffic light schedules using smart phone images
[17], providing real time bus arrival times by distinguishing
buses using microphone and GPS sensors [18] or developing
fuel efficient maps using fuel consumption sensor data [19].

VII. CONCLUSIONS

In this paper we have presented how crowdsensing can be
used in the mapping of on-street parking spaces to construct
legal/illegal parking maps. Based on the more than 2 million

points of parking sensor readings in our experiments we
reached the following conclusions: First, we show how the
parking maps can be estimated with an accuracy of ∼90%
from the parking sensor data using proposed weighted oc-
cupancy rate thresholding algorithm. Then, we demonstrated
that the proposed approach outperforms trivial and baseline
approaches on both data sets. Finally, we illustrate how
accuracy of the proposed algorithms improves by adding more
passes (time series) trough the same street.
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