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Abstract—Many vehicular safety applications rely on vehicles
periodically broadcasting their position information and loca-
tion trace. In very dense networks, such safety messaging can
lead to offered traffic loads that saturate the shared wireless
medium. One approach to address this problem is to reduce
the frequency of location update messages when the movements
of a vehicle can be predicted by nearby vehicles. In this
paper, we study how predictable vehicular locations are, given
a Global Positioning System trace of a vehicles recent path.
We empirically evaluate the performance of linear and higher
degree polynomial prediction algorithms using about 2500 vehicle
traces collected under urban and highway driving conditions.
We find that linear polynomial prediction using the two most
recent known locations performs best. Also, traces with a time
granularity of 0.2s are highly predictable in low speed urban
environments, and a location update rate of 1Hz may suffice
to represent urban vehicular movements. Lastly, the paper also
evaluates compression of different time-granularity traces using
line simplification and polynomial interpolation techniques to
reduce message sizes.

I. I NTRODUCTION

Vehicle-to-vehicle communications is expected to enable a
broad spectrum of safety, traffic management, and infotain-
ment applications [1]. Safety applications, in particular, require
that vehicles share their positions and trajectory with other
nearby vehicles. This is typically envisioned through periodic
broadcasts of Global Positioning System (GPS) coordinates
over a Dedicated Short Range Communications channel. It
has been shown, however, that the wireless medium represents
a bottleneck because it can saturate under dense automotive
traffic conditions [2].

While many communications and networking techniques to
increase capacity or use available capacity more efficiently
have been investigated [3], [4], it is still not fully understood
what communication load is necessary to convey vehicular
movements in a local region. A typical assumption is that every
vehicle needs to transmit positions updates with a frequency of
10Hz to reliably communicate changes in vehicle movement
to nearby cars. This update frequency is determined by the
rate of change of vehicular positions, the reliability of the
communication channel, and application latency requirements.

Recent work has begun to study the required position update
frequency in more detail and has demonstrated that vehicular
movements can be quite predicable and thus lower transmis-
sion rates may be sufficient. If the receiver can predict the path
of the transmitter for a certain duration, the transmitter only
needs to send the next update when the receivers’ prediction
becomes inaccurate. In [5] the authors implement such a

scheme through predictive coding techniques with non-linear
models to reduce the number of position updates transmitted
from each vehicle. The evaluation uses a few sample location
traces from highway and urban datasets. In [6] prediction
is evaluated using traces from a traffic simulator. To our
knowledge, however, there does not exist in the literature
a comprehensive study of how well automotive GPS traces
can be predicted, for a range of traffic scenarios and driving
conditions.

A related question is quantifying the effectiveness of com-
pression techniques for real-world GPS traces. The vehicu-
lar communications community is considering to include in
vehicle’s position update messages not just the most recent
position update, but a trace of then most recent positions.
Compression techniques for location traces can therefore help
reduce the payload size before transmission.

To address these questions, this paper studies the effective-
ness of linear and higher degree polynomial prediction and
compression schemes on an extensive set of about 2500 real-
world vehicle trips obtained from both a highway and a city
environment and with different GPS update frequencies. It
concentrates on prediction techniques that do not require a
model of vehicle movements. The key contributions are:

• We show that linear prediction based on the two most re-
cent GPS updates outperforms more complex polynomial
prediction techniques.

• We show that most predictions errors are caused by
incorrect speed estimation, suggesting that using road
maps to improve prediction will not yield significant
benefits for vehicle traces sampled at high rates.

• We quantify compression gains and show that polynomial
compression techniques can outperform the Douglas-
Pecker (DP) algorithm [7] for compression of location
traces.

The remainder of the paper is as follows. Section II de-
scribes the assumptions we make and the different approaches
we evaluate. In section III we describe the GPS trace data that
we use for evaluations. Section IV presents the results. Related
work is described in V. We conclude with a summary of our
contributions in section VI.

II. A SSUMPTIONS AND APPROACH

A trajectory/trace is defined as a sequence of one or more
locations at points in increasing time. Let(xt, yt) represent
the location at timet. A trajectory or traceT (t) = {xt, yt :
t = (t0, t1, . . . , tk), t0 < t1 < · · · < tk}. We definetrace



granularity ∆ as the time interval between any two adjacent
points inT (t)1. The traceT (t) stripped of all time information
is defined as the availableroad/path information(just thexy
co-ordinates, not).

Typically, at any given time, the location estimate required
by a target application needs to be within a certain tolerance of
the actual location. The maximum acceptable error is defined
as the toleranceδ. At any given timet, it is required that
√

(x̂t − xt)2 + (ŷt − yt)2 ≤ δ, where the left hand side of
the equation is the Euclidean distance between the location
(x̂t, ŷt) as estimated by the application, and the actual location
(xt, yt).

A. Prediction

Location at a future time is predicted using a certain length
of known actual locations, which precede it in time. The actual
locations at any time are only available to anObserver, for
example using a GPS device, and it disseminates (broadcasts)
the actual locations in the form of alocation updateto other
interested parties. When the prediction error at the interested
parties using the last location update exceeds the tolerance,
only thena new snapshot of actual locations is sent by the
Observer. In the absence of prediction, location updates will
need to be sent at the rate at which a new location is observed.
Thus prediction reduces the rate at which theObserverneeds
to broadcast its location.

As theObserverneeds to know the prediction error at the
interested parties, a prediction algorithm will have to runnot
only at the interested parties but also at theObserver.

Prediction using polynomials:Polynomials of various de-
greesn can be fit to the known actual trace data, exactly or in
the least-squares sense (fittingM + 1 > n points).M + 1 is
the length of known actual locations. The known locations are
used to calculate the coefficients,p0, . . . , pn, of a polynomial
p(t). The coefficients are two-dimensional vectors, (x and y
coordinates as elements).

p(t) = p0 + p1(t− t0) + p2(t− t0)
2 + · · ·+ pn(t− t0)

n (1)

The polynomial model thus obtained is used to predict (ex-
trapolate) the location at a time in the future.

We definelinear polynomial prediction(LPP) as prediction
that uses a line model (a polynomial of degreen = 1, M +
1 >= 2).

Prediction gainsare defined as the reduction in the number
of location updates required when using prediction. Specifi-
cally, for the evaluation in Section IV, the reduction is defined
as the difference between the number of packets sent in
absence of any prediction mechanism (one for each point in
the GPS trace being evaluated) and the number of packets sent
when prediction is used. The gains are shown as percentages

1The location co-ordinates could be the latitude and longitude or a point’s
co-ordinates in any other co-ordinate system, for example UTM, which
specifies locations on earth as points on a 2-dimensional grid. The times
t0, t1, . . . don’t have to correspond to a fixed sampling rate. However, most
GPS devices log time and location information at a fixed rate and hence a
fixed ∆.

of the total points in the trace. For a CSMA MAC, such as
used in vehicular systems, the reduction in packets will imply
equivalent reduction in channel access by the on-road vehicles
and hence lesser contention for the wireless medium.

The presented evaluation doesn’t consider scenarios where
a certain predictor (interested party) may not receive the
sent actual locations. For example, a vehicle that enters a
road network will not have location information that was
broadcast earlier. When prediction is being used, the packets
that update the network with the actual locations will contain
more than one actual location. The additional locations will
make a location update packet larger. However, given the
authentication and other header overheads, the increase in
packet size can be ignored for the number of actual locations
assumed in the evaluation presented. Also, as will be clear in
Section IV, a total of two actual locations from the past is
most beneficial.

In general, a predictor maybe aided by error corrections
or may use prior noisy predictions to come up with a new
one. It may also assume models for the process that is being
predicted, as in typical Kalman filter based designs. In this
work we assume that predictions are made only based on a
certain length of actual locations that is known a priori to the
predictor. For our study we assume the locations obtained from
a GPS device to be the actual locations. We do not account
for possible error in location logged by a GPS device.

B. Compression

Compression involves representing a given traceT (t) by
fewer points in(x, y, t) space, as long as the error in location
estimated from the compressed trace, at any given time, is
within the toleranceδ of the actual. Under prediction only the
current actual location and the past is known. Compression on
the other hand has the entire trace information a priori.

Compression achieved is defined as the difference in the
points in the actual trace and its compressed version. Gains
are shown as percentages of the total number of points in the
trace evaluated.

1) DP: The Douglas-Peuker (DP) Algorithm approximates
a trajectory by fewer lines. Given any two points in the
trajectory, the algorithm tries to minimize the number of lines
that connect the points, while ensuring that the error tolerance
requirements are satisfied [7].

2) Polynomial Interpolation (PI):We use polynomial ap-
proximation of a car’s trajectories. Let the functionsx(t) and
y(t) represent respectively thex and y co-ordinates, of a
trajectory, changing with time.

In Equation 1,pk, k = 1, . . . , n are the polynomial coeffi-
cients, andp0 is the value of the co-ordinate at timet0. The
number of co-ordinate points encoded by a polynomial approx-
imation isM + 1, whereM >= n. Let px(t) and py(t) be
the polynomials approximatingx(t) andy(t) respectively, for
t ≥ t0. At any time t,

√

(px(t)− x(t))2 + (py(t)− y(t))2 ≤
δ needs to be satisfied.

The above condition is satisfied by ensuring that|px(t) −
x(t)| ≤ δ√

2
and |py(t)− y(t)| ≤ δ√

2
are satisfied at allt.



3) Distance-Time:The Distance-Time (DT) algorithm first
encodes the xy-part of the traceT (t) using minimum number
of line segments. It then encodes the distance travelled along
each of the line segments, using a line simplification approach
(as in DP), as constant velocity segments.

III. T RAJECTORYDATA

We evaluate aforementioned prediction and compression
schemes using GPS traces collected by on-road vehicles.
Specifically, we answer the following questions:

• What prediction gains are achieved for polynomial mod-
els of different degreesn and lengths of known actual
locationsM + 1?

• How are the gains affected by the toleranceδ?
• How are prediction gains affected by trace granularity∆?
• Is a certain∆ smaller than needed in a given environment,

for example city or highway roads?
• By how much does knowing road information improve

prediction?
• At what speeds do we get prediction gains and what

distances can be predicted on average?
• How well do different schemes compress traces as a

function of∆?

The traces can be organized into three sets on the basis of the
frequency at which the GPS information was logged.

A set of 34 traces recorded in and around a downtown
in New Jersey were logged at5Hz2, i.e., ∆ = 0.2s. The
average speeds in the collected traces were less than40mph≈
60km/h. The total trace length is about30 hours.

Another set of 134 traces, collected in New Jersey, by four
drivers over their daily commutes, were logged at1Hz, i.e.,
∆ = 1s3.

Finally, two sets of traces, one from 20 cars driving over
a 4mile highway section in Oakland CA and the other from
100 cars going back and forth over a highway section were
collected at a time granularity of3s. The two sets together are
a total of about2300 traces and more than400 hours in time.

The GPS latitude and longitude are converted into Universal
Transverse Mercator co-ordinates, UTM-x and UTM-y, for all
evaluation that follows.

IV. RESULTS

A. Prediction

1) Prediction gains for different polynomial degrees and
number of known actual locations:Figure 1(a) shows the
prediction gains obtained forδ = 0.5m and varying degree
n of the extrapolating polynomial4. In the plot we choose
M = n, whereM + 1 is the total number of known actual
locations. For a fixedn, choosingM > n leads to lower
prediction gains thanM = n, however. Traces with∆ = 0.2s
were chosen for the plot. The gains are the greatest for

2Garmin GPS 18 device was used
3The Holux GPSlim 236 GPS device was used
4The plot shows results for extrapolation done independently along (x, t)

and (y, t). The basic trends are similar for joint(x, y, t) extrapolation.

∆ = 0.2s (median of≈ 80% for M = n = 1) and fall
considerably for granularities of1s and3s (not in plot) to a
median of≈ 30% and≤ 10% respectively. Also, for any∆,
the combination ofM = n = 1, i.e., linear extrapolation using
two actual locations from the past, provides the maximum
prediction gains. The gains, shown forn <= 4, reduce as the
degreen increases. Last but not the least, the lack of gains at
larger trace granularities, suggests a minimum rate at which
location may need to be broadcast. Since these results show
that LPP outperforms higher order polynomial prediction, the
following results focus on LPP.

2) Gains using LPP:LPP achieves median gains of80%,
see Figure 1(b), forδ = 0.5m and traces with a time granular-
ity of ∆ = 0.2s, which were taken in a city environment (refer
Section III). Gains of80% suggest that, with prediction, only
a packet per second may be sent to update location, instead
of a packet every0.2s.

The figure also shows the improvement in prediction gains,
for LPP, obtained with increasingδ. Median gains for a
tolerance ofδ = 1m are 6%, 10% and15% higher than for
δ = 0.5m, for ∆ of 0.2, 1 and3s respectively. For tolerances
greater than1m even higher prediction gains were observed.
The improvements are most notable for the larger∆. For
∆ = 1s the gains atδ = 2.0 andδ = 4.0 were67% and77%
respectively. For∆ = 3s they were31% and48% respectively.

3) Benefits of road information:LPP implicitly assumes
that the direction of motion and speed in the future are
the same as the current known direction and speed, which
are calculated from the known actual locations. Errors in
prediction will therefore occur on a change of either or both
and are more likely to occur for larger∆. Errors due to
changing direction alone, can be eliminated if the predictor
has access toroad information(RI), which is the xy part of
the actual future trace.

We will show that road information is of very limited benefit
in prediction.

We define xy-compressibility of a trace as the reduction
achieved in the number of straight lines that can approximate
a given trace, considering only the xy-plane, i.e., we ignore
the time co-ordinate of the trace. The greater the percentage
compressibility, the lesser the number of straight lines required
in proportion to the total in the uncompressed trace. Compress-
ibility of a trace in xy provides a rough estimate of how well
direction can be predicted, using LPP, along the trace. In the
absence of changing speed, LPP over a trace should achieve
prediction gains in the range of the trace’s compressibility.
This is because, at constant speed the errors in prediction will
occur only when the road changes direction, i.e., at all those
points in the trace where its compressed version adds a new
line (or direction).

Figure 1(c) shows the xy-compressibility of the traces,
grouped by their granularity∆. A tolerance ofδ = 0.5m
is assumed. The granularities of0.2, 1 and3s have median
compressibility of 94%, 64% and 52% respectively. The
achieved prediction gains forδ = 0.5m, Figure 1(b), are80%,
40% and 8% respectively. LPP unable to achieve prediction
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(a) Prediction Gains for polynomials of various
degrees.
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(b) Linear Polynomial Prediction Gains: x-axis
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(c) Compressibility of xy-traces.
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(d) Improvements in prediction gains on using
road information.
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(e) Successful prediction occurs at slower veloc-
ities (shown in mph).
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(f) Distribution of mean distance predicted with
and without road information.

Fig. 1. Prediction of location using GPS traces

gains close to the xy-compressibility can be explained by its
inability to predict changes in speed.

Consider again∆ = 1s and δ = 0.5m. The xy-
compressibility is64%, i.e.,36% of the trace has unpredictable
changes in direction. If speed was constant, the presence of
RI would lead to prediction gains of100%, as RI would lead
to a priori knowledge of all changes in direction.

Figure 1(d) shows the improvement in prediction gains us-
ing LPP, when the predictor has RI. The increase in prediction
gains is the difference between prediction gains when RI is
known and when it isn’t. It is plotted for all granularities.
Further, for each time granularity the traces are grouped by
their mean speed5. Speeds> 41mph≈ 65km/h is labelled as
fast. The speeds≤ 41mph are labelled asslow6.

The improvement in prediction gains is a median of≈ 2.5%
for ∆ = 0.2s traces, smaller than that at∆ of 1 and3s. The
0.2s trace benefits very little from RI as it is already very
close to xy-compressibility (94%) and could have benefited
a maximum of6%. The gains being less by≈ 3.5% may be
attributed to changes in speed entangled with that of direction.

For the case of∆ = 3s, prediction seems to be greatly im-
paired by lack of speed prediction. Although an improvement
of 6.8% is seen at faster speeds, xy-compressibility of52%
suggests that an improvement of around48% is possible in
the absence of speed errors. Lastly, faster speeds benefit more
from RI (as seen for∆ = 1 and 3s in Figure 1(d)). This
can be explained by the more frequent changes in direction at
faster speeds, which given the RI don’t contribute to errorsin
prediction.

To summarize, RI is of very little benefit at∆ = 0.2s. The

5Speed between two consecutive points in a trace is calculated as the
distance between the points in the xy-plane divided by theirseparation in
time.

6The selection of 41mph gives equal number of traces with fastand slow
mean speeds.

benefits at∆ of 1 and3s are greater. However, the prediction
gains obtained are still limited due to speed prediction errors.

4) Speeds and distances at which prediction gains were
obtained: Figure 1(e) shows the distribution of mean speeds
over time intervals of successful prediction. Even for the
traces withfastmean speed, the mean speed during successful
prediction is in theslow range (medians are< 30mph).
Successful prediction at∆ of 1 and 3s is limited to slow
speeds.

Lastly, in Figure 1(f) we plot the cumulative distribution
of the mean predicted distance7 for the traces of different
granularities. For∆ = 0.2s,80% of the times (80th percentile)
the mean is≤ 2m. Road information changes the mean
predicted distance by a negligible amount. The80th percentile
improves by8m for traces with∆ = 3s and by3.5m for the
traces with∆ = 1s. The median for∆ = 3s is less than
that for traces with∆ = 1s, further evidence that prediction
gains for larger time granularity traces are impaired by speed
prediction errors and the gains achieved are mostly at slow
speeds.

The increase in the payload of a location update packet is
negligible on using LPP withM = n = 1. A network of
cars that uses LPP will have to run as many predictors as the
number of cars in the network. However, LPP involves ex-
trapolating along a straight line and hence is computationally
simple.

B. Compression

We evaluate the percentage compression achieved using
polynomial interpolation (PI), DP and DT algorithms (Sec-
tion II). The compression gains for coarse grained topologies
are shown in Figure 2. The gains are evaluated over the traces
collected at∆ = 3s (Section III). The allowed error tolerance

7The calculation of the mean assumes the predicted distance to be 0 when
prediction along a trace fails.
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is fixed at δ = 0.5m. In the plot we show gains on using
DP, DT and PI using degrees of 3 and 7. PI using degree 7,
achieves maximum gains (a median of≈ 30%). The next best
gains are achieved by DT, a median of≈ 25%. DP achieves
a low of 15% gains. For coarse grained traces, evaluated over
different tolerances, polynomials of degree6-7 gave maximum
compression gains.

Figure 3 shows the compression gains achieved for the
traces with ∆ = 0.2s. DP and DT do equally well at
compressing the traces, achieving median gains of≈ 85%.
PI, especially using degreen > 3, achieves a tad lesser
compression. Given the much greater time complexity of PI,
it may not be preferred for compressing fine-grained traces.
DT on the other hand does well compressing both fine and
coarse grained traces. However, its time complexity is greater
than DP.

V. RELATED WORK

Predictive coding is shown to reduce channel load in [5].
The authors a priori assume a Newtonian model for a vehicle.
A Kalman filter update scheme with noiseless observations
is used. Predictive coding gains are evaluated using two
urban and one highway datasets. In [6] the authors use a
Kalman filter estimator approach supported by a variable rate
communication scheme to reduce the rate at which safety
messages need to be sent.

In our work we evaluate the predictability of location
based on the availability of a certain length of trace of GPS
coordinates from the past. The model used for prediction is
extracted from the GPS trace.

Studies, such as [3], [4], [8], [9], suggest mechamisms
at the medium access control (MAC) layer to support high
offered load in vehicular networks, instead of coding at each
node to reduce the offered load.

Compression of spatio-temporal trajectories is studied in[7].
The compressed trajectories should be able to support differ-
ent database query types. The Douglas-Pecker algorithm is
compared with that of Haar wavelets method.

In our work we compare the compression gains from
Douglas-Pecker algorithm with polynomial interpolation for
different trace granularities. An algorithm, that compresses
trajectories in xy-plane and then uses line simplification to
encode changes in velocity is also compared to DP and
polynomial interpolation.

VI. CONCLUSIONS

We compared polynomial based schemes for the prediction
and compression of GPS trajectories. The schemes were evalu-
ated over a large GPS trace data set of≈ 2500 traces, collected
in urban and highway environments. Different GPS trace time
granularities were evaluated. Specifically, we conclude

• Linear polynomial prediction using two most recently
known locations, gives the maximum prediction gains.

• A location update rate of1Hz may suffice for vehicles
on city roads. GPS traces collected with mean velocities
of < 40mph, and trace granularity of0.2s show a high
predictability of80%.

• Road information has very limited benefit for prediction
in city conditions when predicting a0.2s trace granularity.
At granularities of1s and3s road information is bene-
ficial, however the additional gains achieved are much
lower than expected from xy-compressibility.

• At time granularities of1s and 3s prediction is only
successful at low speeds. Traces collected in highway
conditions, with mean speeds> 40mph, showed predic-
tion gains only during stretches when mean speeds were
< 30mph.

• We compare compression obtained using polynomial
interpolation (PI), a distance-time (DT) approach, and
Douglas-Pecker (DP). DT performs well across granulari-
ties. It does better than PI for the traces at0.2s granularity.
It performs better than DP by a median of10% for traces
with granularities of1 and3s.
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