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Abstract—Many vehicular safety applications rely on vehicles scheme through predictive coding techniques with noraline
periodically broadcasting their position information and loca- models to reduce the number of position updates transmitted
tion trace. In very dense networks, such safety messaging a oy each vehicle. The evaluation uses a few sample location

lead to offered traffic loads that saturate the shared wireles ¢ f hiah d urban datasets. In 6 dicti
medium. One approach to address this problem is to reduce races from highway and urban datasets. In [6] prediction

the frequency of location update messages when the movement IS evaluated using traces from a traffic simulator. To our
of a vehicle can be predicted by nearby vehicles. In this knowledge, however, there does not exist in the literature

paper, we study how predictable vehicular locations are, gen a comprehensive study of how well automotive GPS traces

a Global Positioning System trace of a vehicles recent path. o5 pe predicted, for a range of traffic scenarios and driving
We empirically evaluate the performance of linear and highe conditions

degree polynomial prediction algorithms using about 2500 ehicle L . .
traces collected under urban and highway driving conditiors. A related question is quantifying the effectiveness of com-
We find that linear polynomial prediction using the two most pression techniques for real-world GPS traces. The vehicu-

recent known locations performs best. Also, traces with a the |ar communications community is considering to include in
granularity of 0.2s are highly predictable in low speed urba yapjcle's position update messages not just the most recent

environments, and a location update rate of 1Hz may suffice iti date. but a t f the t i i
to represent urban vehicular movements. Lastly, the paper Bo position update, but a trace o mMost recent posilions.

evaluates compression of different time-granularity traes using Compression techniques for location traces can therefele h
line simplification and polynomial interpolation techniques to reduce the payload size before transmission.

reduce message sizes. To address these questions, this paper studies the effectiv
ness of linear and higher degree polynomial prediction and
compression schemes on an extensive set of about 2500 real-

Vehicle-to-vehicle communications is expected to enablewsorld vehicle trips obtained from both a highway and a city
broad spectrum of safety, traffic management, and infotaiervironment and with different GPS update frequencies. It
ment applications [1]. Safety applications, in particutaguire concentrates on prediction techniques that do not require a
that vehicles share their positions and trajectory witheothmodel of vehicle movements. The key contributions are:

nearby vehicles. This is typically envisioned through peic ~ , We show that linear prediction based on the two most re-

broadcasts of Global Positioning System (GPS) coordinates cent GPS updates outperforms more complex polynomial
over a Dedicated Short Range Communications channel. It prediction techniques.

has been shown, however, that the wireless medium repgsesent \We show that most predictions errors are caused by
a bottleneck because it can saturate under dense automotive incorrect speed estimation, suggesting that using road
traffic conditions [2]. maps to improve prediction will not yield significant
While many communications and networking techniques to  penefits for vehicle traces sampled at high rates.
increase capacity or use available capacity more effigientl , We quantify compression gains and show that polynomial
have been investigated [3], [4], it is still not fully undesed compression techniques can outperform the Douglas-
what communication load is necessary to convey vehicular Pecker (DP) algorithm [7] for compression of location
movements in a local region. A typical assumption is thateve traces.
vehicle needs to transmit positions updates with a frequefic  The remainder of the paper is as follows. Section Il de-
10Hz to reliably communicate changes in vehicle movemegtipes the assumptions we make and the different apprsache
to nearby cars. This update frequency is determined by g evaluate. In section il we describe the GPS trace data tha
rate of change of vehicular positions, the reliability o&thyye yse for evaluations. Section IV presents the resultstet|

communication channel, and application latency requirgme ,qork is described in V. We conclude with a summary of our
Recent work has begun to study the required position upd@isntributions in section VI.

frequency in more detail and has demonstrated that vehicula

movements can be quite predicable and thus lower transmis- Il. ASSUMPTIONS AND APPROACH

sion rates may be sufficient. If the receiver can predict it p A trajectory/trace is defined as a sequence of one or more
of the transmitter for a certain duration, the transmittelyo locations at points in increasing time. Lét?, y*) represent
needs to send the next update when the receivers’ predicttba location at timet. A trajectory or tracel'(t) = {zt,y’ :
becomes inaccurate. In [5] the authors implement suchta= (to,t1,...,tk),t0 < t1 < --- < tx}. We definetrace

I. INTRODUCTION



granularity A as the time interval between any two adjacertf the total points in the trace. For a CSMA MAC, such as
points inT'(¢)*. The traceT'(t) stripped of all time information used in vehicular systems, the reduction in packets willlymp
is defined as the availabbead/path information(just thexy equivalent reduction in channel access by the on-road leshic
co-ordinates, na). and hence lesser contention for the wireless medium.
Typically, at any given time, the location estimate regdire The presented evaluation doesn’t consider scenarios where
by a target application needs to be within a certain tolezaric a certain predictor (interested party) may not receive the
the actual location. The maximum acceptable error is defineent actual locations. For example, a vehicle that enters a
as the tolerancé. At any given timet, it is required that road network will not have location information that was
V(@ —2t)2 + (9t — y*)2 < 6, where the left hand side of broadcast earlier. When prediction is being used, the paicke
the equation is the Euclidean distance between the locatitvat update the network with the actual locations will camta
(#t,9") as estimated by the application, and the actual locatiomore than one actual location. The additional locationd wil

(zt,y?). make a location update packet larger. However, given the
o authentication and other header overheads, the increase in
A. Prediction packet size can be ignored for the number of actual locations

Location at a future time is predicted using a certain leng@sumed in the evaluation presented. Also, as will be cfear i
of known actual locations, which precede it in time. The attuSection 1V, a total of two actual locations from the past is
locations at any time are only available to @bserver for Mmost beneficial.
example using a GPS device, and it disseminates (broajicast$n general, a predictor maybe aided by error corrections
the actual locations in the form oflacation updateto other ©OF may use prior noisy predictions to come up with a new
interested parties. When the prediction error at the istece ©ne. It may also assume models for the process that is being
parties using the last location update exceeds the tolerari¢redicted, as in typical Kalman filter based designs. In this
only thena new snapshot of actual locations is sent by th#ork we assume that predictions are made only based on a
Observer In the absence of prediction, location updates wifiertain length of actual locations that is known a prioritie t
need to be sent at the rate at which a new location is observigggdictor. For our study we assume the locations obtaireed fr
Thus prediction reduces the rate at which @®leserverneeds @ GPS device to be the actual locations. We do not account
to broadcast its location. for possible error in location logged by a GPS device.

As the Observerneeds to know the prediction error at theB' Compression

interested parties, a prediction algorithm will have to not o . _
Compression involves representing a given trdde) by

only at the interested parties but also at @leserver . ) : )
Prediction using polynomialsPolynomials of various de- [€Wer Points in(z, y,t) space, as long as the error in location
stimated from the compressed trace, at any given time, is

greesn can be fit to the known actual trace data, exactly or fi>u" 2
the least-squares sense (fitting + 1 > n points). M + 1 is within the tolerance of the actual. Under prediction only the

the length of known actual locations. The known locatiores apurrent actual location and _the pastis known_. Compr_es_smon °
used to calculate the coefficients, pn, Of @ polynomial the other hand has the entire trace information a priori.
VR ny

p(t). The coefficients are two-dimensional vectors,and y Compression achieved is defined as the difference in the
coordinates as elements) points in the actual trace and its compressed version. Gains

are shown as percentages of the total number of points in the
p(t) = po+pi(t —to) +p2(t —to)* + - +pul(t —to)" (1) trace evaluated.

The polynomial model thus obtained is used to predict (ex- 1) .DP: The DougIas-I_Deuker (.DP) Algorithm ap_prOX|_mates
X o a trajectory by fewer lines. Given any two points in the
trapolate) the location at a time in the future.

We definelinear polynomial predictior(LPP) as prediction trajectory, the algor!thm trlqs o minimize the number ol
. : that connect the points, while ensuring that the error &wlee
that uses a line model (a polynomial of degree- 1, M +

| >—2). requirements are satisfied [7].

- . , L 2) Polynomial Interpolation (PI):We use polynomial ap-
Pred|gt|on gainsare def!ned as the rgductlon n Fhe numb.eﬁroximation of a car’s trajectories. Let the functiang) and
of location updates required when using prediction. Specifl

S : o . t) represent respectively the and y co-ordinates, of a
cally, for the evaluation in Section IV, the reduction is defi u( .) P oSpeciively 4
. trajectory, changing with time.
as the difference between the number of packets sent i . . '
n Equation 1,px,k = 1,...,n are the polynomial coeffi-

absence of any prediction mechanism (one for each point j : [ .
the GPS trace being evaluated) and the number of packets %f%nts, andp is the value of the co-ordinate at timg. The

when prediction is used. The gains are shown as percentagﬁgi%irg;?ﬁrf |nvi\::zf§]|\r/}ts>efcsdigtbz ?tglo;%réopmz?)l abp;prox
) - . xT Yy

1The location co-ordinates could be the latitude and lougitar a point's the polynomlal§ approxmatm;g(t) an(;y(t) respecnve'};’ for
co-ordinates in any other co-ordinate system, for exampEMUwhich ¢ > to. At any timet, /(pa(t) — (t))? + (py(t) — y(¢))* <
specifies locations on earth as points on a 2-dimensiondl Jitie times § needs to be satisfied.

to,t1,... don't have to correspond to a fixed sampling rate. Howeverstmo . ; o ; .
GPS devices log time and location information at a fixed raté ence a The above condition is satisfied by ensuring tl’}l}t(t)

fixed A. z(t)| < \/% and [p, (t) — y(t)| < % are satisfied at all.




3) Distance-Time:The Distance-Time (DT) algorithm first A = 0.2s (median of~ 80% for M = n = 1) and fall
encodes the xy-part of the tra@&t) using minimum number considerably for granularities dfs and3s (not in plot) to a
of line segments. It then encodes the distance travellaasjalanedian of~ 30% and < 10% respectively. Also, for any,
each of the line segments, using a line simplification apgroathe combination of\f = n = 1, i.e., linear extrapolation using
(as in DP), as constant velocity segments. two actual locations from the past, provides the maximum
prediction gains. The gains, shown fer<= 4, reduce as the
degreen increases. Last but not the least, the lack of gains at
We evaluate aforementioned prediction and compressilamger trace granularities, suggests a minimum rate atwhic
schemes using GPS traces collected by on-road vehiclesation may need to be broadcast. Since these results show
Specifically, we answer the following questions: that LPP outperforms higher order polynomial predictidrg t

« What prediction gains are achieved for polynomial modollowing results focus on LPP.

els of different degrees and lengths of known actual 2) Gains using LPP:LPP achieves median gains 867,
locationsM + 1? see Figure 1(b), fof = 0.5m and traces with a time granular-

« How are the gains affected by the tolerance ity of A = 0.2s, which were taken in a city environment (refer
« How are prediction gains affected by trace granulatiy Section l1l). Gains o80% suggest that, with prediction, only
« Is acertaimA smaller than needed in a given environmen@ Packet per second may be sent to update location, instead

IIl. TRAJECTORYDATA

for example city or highway roads? of a packet every).2s. _ _ o .

« By how much does knowing road information improve The figure also shows the improvement in prediction gains,
prediction? for LPP, obtained with increasing. Median gains for a

« At what speeds do we get prediction gains and whiglerance ofé = 1m are6%,10% and15% higher than for
distances can be predicted on average? 0 = 0.5m, for A of 0.2, 1 and3s respectively. For tolerances

« How well do different schemes compress traces asdieater thanim even higher prediction gains were observed.
function of A? The improvements are most notable for the larder For

The traces can be organized into three sets on the basis offhE 18 the gains ab = 2.0 andd = 4.0 were67% and77%

frequency at which the GPS information was logged. respectively. FOA = 3s they were31% and48% respectively.

A set of 34 traces recorded in and around a downtowH1 3t) tl?]en(ejﬂts ,E.)f roa:l |nf(t)_rmat|or;LPP Irgp_IICIttI%/ a?stumes
in New Jersey were logged &Hz?, i.e., A = 0.2s. The at Ine direction of mation and speed in the Iullre are

average speeds in the collected traces were lessitiraph ~ the sarlnel atsdthfe cur{ﬁnt limown d|rtect||o|n a?.d speéd, Wh.'Ch
60km/h. The total trace length is abo@6 hours. are calculated Trom the known actual focalions. EITOTS In

Another set of 134 traces, collected in New Jersey, by fOBFediction will therefore occur on a change of either or both

. . . . and are more likely to occur for largeh. Errors due to
drivers over their daily commutes, were loggediétz, i.e., : o 2 . :
A= 1S changing direction alone, can be eliminated if the predicto

. - has access tmad information(RI), which is the xy part of
Finally, two sets of traces, one from 20 cars driving OVE[ e actual future trace

a 4mile highway section in Oakland CA and the other from We will show that road information is of very limited benefit

100 cars going back and forth over a highway section were L
collected at a time granularity 86. The two sets together are" predmu_on. - .
We define xy-compressibility of a trace as the reduction

a total of abou®300 traces and more that00 hours in time. : . 4 . X
: . . .~ achieved in the number of straight lines that can approx@mat
The GPS latitude and longitude are converted into Universal . S i ;
given trace, considering only the xy-plane, i.e., we ignor

Transverse Mercator co-ordinates, UTM-x and UTM-y, for all, ‘"0 1 dinate of the trace. The greater the percentag

evaluation that follows. compressibility, the lesser the number of straight linegied
IV. RESULTS in proportion to the total in the uncompressed trace. Cosgare
A Prediction ib_ility _of a trace in xy _provides_a rough estimate of how well
' direction can be predicted, using LPP, along the trace. én th
1) Prediction gains for different polynomial degrees anglbsence of changing speed, LPP over a trace should achieve
number of known actual locationstigure 1(a) shows the prediction gains in the range of the trace’s compressjbilit
prediction gains obtained fof = 0.5m and varying degree This is because, at constant speed the errors in predicilbn w
n of the extrapolating polynomial In the plot we choose occur only when the road changes direction, i.e., at allehos
M = n, where M + 1 is the total number of known actualpoints in the trace where its compressed version adds a new
locations. For a fixedq, choosingM > n leads to lower |ine (or direction).
prediction gains thad/ = n, however. Traces withh = 0.2s  Figure 1(c) shows the xy-compressibility of the traces,
were chosen for the plot. The gains are the greatest f@ouped by their granularity. A tolerance ofd = 0.5m
2Garmin GPS 18 device was used is assume_d_._The granularities 02, 1 and3s ha\_/e median
SThe Holux GPSIim 236 GPS device was Used compressibility of 94%, 64% and 52% respectively. The

4The plot shows results for extrapolation done indepengeaiting (zz, t) achieved prediCtion gains for=0.5m, Figure 1(_b)' ar&SO%, .
and (y, t). The basic trends are similar for joilit, y, t) extrapolation. 40% and 8% respectively. LPP unable to achieve prediction



Prediction using polynomials of different degrees, tol=0.5 Linear Polynomial Prediction (M=n=1) Compressibility of xy trace
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Fig. 1. Prediction of location using GPS traces

gains close to the xy-compressibility can be explained by ibenefits atA of 1 and3s are greater. However, the prediction
inability to predict changes in speed. gains obtained are still limited due to speed predictioorstr
Consider againA = 1s andé = 0.5m. The xy- 4) Speeds and distances at which prediction gains were
compressibility i$54%, i.e.,36% of the trace has unpredictableobtained: Figure 1(e) shows the distribution of mean speeds
changes in direction. If speed was constant, the presenceoeér time intervals of successful prediction. Even for the
RI would lead to prediction gains df00%, as RI would lead traces withfastmean speed, the mean speed during successful
to a priori knowledge of all changes in direction. prediction is in theslow range (medians arec 30mph).
Figure 1(d) shows the improvement in prediction gains uSuccessful prediction af\ of 1 and 3s is limited to slow
ing LPP, when the predictor has RI. The increase in predictispeeds.
gains is the difference between prediction gains when RI isLastly, in Figure 1(f) we plot the cumulative distribution
known and when it isn't. It is plotted for all granularities.of the mean predicted distarfcéor the traces of different
Further, for each time granularity the traces are grouped Byanularities. Fon = 0.2s,80% of the times 80" percentile)
their mean speéd Speeds> 41mph= 65km/h is labelled as the mean is< 2m. Road information changes the mean
fast The speeds 41mph are labelled aslowf. predicted distance by a negligible amount. Bo&" percentile
The improvement in prediction gains is a median02.5% improves by8m for traces withA = 3s and by3.5m for the
for A = 0.2s traces, smaller than that At of 1 and3s. The traces withA = 1s. The median forA = 3s is less than
0.2s trace benefits very little from RI as it is already verghat for traces withA = 1s, further evidence that prediction
close to xy-compressibility9%%) and could have benefitedgains for larger time granularity traces are impaired byespe
a maximum of6%. The gains being less by 3.5% may be prediction errors and the gains achieved are mostly at slow
attributed to changes in speed entangled with that of dinect speeds.
For the case of\ = 3s, prediction seems to be greatly im- The increase in the payload of a location update packet is
paired by lack of speed prediction. Although an improvemeRggligible on using LPP with\/ = n = 1. A network of
of 6.8% is seen at faster speeds, xy-compressibilis2§; cars that uses LPP will have to run as many predictors as the
suggests that an improvement of arout&¥ is possible in number of cars in the network. However, LPP involves ex-
the absence of speed errors. Lastly, faster speeds beneéit ni@polating along a straight line and hence is computalipna
from RI (as seen forA = 1 and 3s in Figure 1(d)). This Simple.
can be explained by the more frequent changes in directiongat
faster speeds, which given the RI don’t contribute to eriors ) , i
prediction. We ev_alugte the percentage compression aph|eved using
To summarize, Rl is of very little benefit & = 0.2s. The polynomlal mterpolathn (PI).’ DP and DT alg_orlthms (Seq—
tion 1l). The compression gains for coarse grained top@sgi
5Speed between two consecutive points in a trace is calculasethe € shown in Figure 2. The gains are evaluated over the traces

distance between the points in the xy-plane divided by teeparation in collected atA = 3s (Section Ill). The allowed error tolerance
time.

6The selection of 41mph gives equal number of traces withdast slow "The calculation of the mean assumes the predicted distanoe © when
mean speeds. prediction along a trace fails.
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In our work we compare the compression gains from

§40 i + i + Douglas-Pecker algorithm with polynomial interpolaticor f

B E E = different trace granularities. An algorithm, that compes

£ E 5 T T trajectories in xy-plane and then uses line simplification t

=° T encode changes in velocity is also compared to DP and
O Toleramsohare) 0o polynomial interpolation.

VI. CONCLUSIONS
We compared polynomial based schemes for the prediction

Fig. 2. Percentage compression for coarse grained togslogi

Fine Grained Trajectories

%1;: j ~ , : and compression of GPS trajectories. The schemes were evalu

o T . - _ ated over a large GPS trace data setdf500 traces, collected

nzz E Q E % in urban and highway environments. Different GPS trace time

- 4 | granularities were evaluated. Specifically, we conclude

* : - « Linear polynomial prediction using two most recently
PO g, Toerance, Deree) known locations, gives the maximum prediction gains.

« A location update rate ofHz may suffice for vehicles
on city roads. GPS traces collected with mean velocities
of < 40mph, and trace granularity of.2s show a high

is fixed até = 0.5m. In the plot we show gains on using predictability of80%.

DP, DT and PI using degrees of 3 and 7. PI using degree 7, Road information has very limited benefit for prediction

Fig. 3. Percentage compression for fine grained topologies.

achieves maximum gains (a median~af30%). The next best in city conditions when predicting@2s trace granularity.
gains are achieved by DT, a median-f25%. DP achieves At granularities ofls and3s road information is bene-
a low of 15% gains. For coarse grained traces, evaluated over ficial, however the additional gains achieved are much
different tolerances, polynomials of degi®& gave maximum lower than expected from xy-compressibility.
compression gains. « At time granularities ofls and 3s prediction is only
Figure 3 shows the compression gains achieved for the successful at low speeds. Traces collected in highway
traces with A = 0.2s. DP and DT do equally well at conditions, with mean speeds 40mph, showed predic-
compressing the traces, achieving median gains:o$5%. tion gains only during stretches when mean speeds were

Pl, especially using degree > 3, achieves a tad lesser < 30mph.

compression. Given the much greater time complexity of Pl,« We compare compression obtained using polynomial
it may not be preferred for compressing fine-grained traces. interpolation (PI), a distance-time (DT) approach, and
DT on the other hand does well compressing both fine and Douglas-Pecker (DP). DT performs well across granulari-
coarse grained traces. However, its time complexity istgrea ties. It does better than PI for the trace$ &s granularity.
than DP. It performs better than DP by a mediani®f% for traces

with granularities ofl and3s.
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