Towards Responsive Context-Aware
Environments

Marco Gruteser

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
and
Department of Computer Science, University of Colorado at Boulder,
Boulder, CO 80309

gruteser@cs.colorado.edu

Abstract. System responsiveness is critical in context-aware computing
systems because of their tight coupling with the physical environment.
To initiate actions quickly, applications depend on the timely delivery of
context-events. However, delivery times are difficult to predict because
of ever-changing system configurations. This paper presents a context-
aware system that optimizes the timeliness of context-events according
to application-specified requirements. To this end, it schedules periodic
activations of sensor components and controls event propagation through
aggregators and applications. First results indicate that the scheduler
improves the miss ratio on a smart space prototype by approximately
half.

1 Introduction

Context-aware applications aim at adapting their behavior to situation-depen-
dent user needs. Applications typically build on an infrastructure of interpreter
and aggregator components, which derive contextual information from sensor
clues [11]. Changes in the contextual information are signaled through events.
Although producers of contextual information and applications are conceptually
independent, the applications rely on the producers to comply with Quality
of Service (QoS) requirements, such as timeliness, frequency, granularity, and
accuracy of sensed contextual data.

Meeting QoS requirements in ubiquitous computing systems is challenging,
because systems have to adapt to available software-components and hardware
resources [1, 2]. Systems should spontaneously integrate or remove devices and
application components. Consider a smart space environment [3, 4, 5, 6] with an
extensive context-awareness infrastructure comprised of sensors and interpreter
and aggregator components. Especially, in office hotelling environments, where
the owner of an office can change on a daily basis, the smart space needs to
support a diverse set of personal applications and mobile devices.

In previous work, real-time system constraints have been incorporated in
blackboard-based intelligent control systems [7, 8, 9]. These systems focus on rea-
soning and planning with predictable delays. For distributed systems, Blair et al

describe an architecture for QoS support in a tuplespace model [10]. It empha-
sizes adaptation to a changing environment through a specialized set of agents.

In this paper, we focus on adapting a context-aware infrastructure to meet
application timeliness requirements for the delivery of sensed data. The key
contributions are:

— a system that monitors available components and their communication re-
lationships using an event-flow graph,

— a scheduler that controls the activation of context-components to improve
the timeliness of context-events based on application-specified end-to-end
timeliness constraints,

— an evaluation of the scheduling approach on a smart space implementation.

The remainder of the paper is structured as follows. Section 2 motivates the
system with scenarios from the BlueSpace smart office prototype [6]. Section 3
presents a scheduling algorithm that adapts the context-aware infrastructure
to end-to-end application timeliness requirements. Section 4 describes an imple-
mentation based on a blackboard-style publish/subscribe system. Finally, Sect. 5
presents an experimental evaluation of the scheduler on the BlueSpace prototype.

2 BlueSpace: A Motivating Example

The BlueSpace project develops a smart workspace for knowledge workers. It
aims at improving worker comfort and productivity through an adaptive en-
vironment, which regulates climate and lighting, supports spontaneous collab-
orative work sessions, and protects from unwanted interruptions. To this end,
BlueSpace combines a flexible physical workspace design with a sensor and soft-
ware infrastructure supporting context-awareness and a heterogeneous set of
computer-controlled output devices.

Applications execute on a central context server and communicate events
through a blackboard service. Instead of receiving sensor data directly, applica-
tions typically receive aggregated or interpreted information from infrastructure
components [11]. Sensors components periodically poll a sensor and update the
value on the blackboard, whenever it has changed. Applications and intermedi-
ary infrastructure components can subscribe to this information.

The event-flow graph in Fig. 1 shows a set of sample BlueSpace applications
and their dependencies on infrastructure components. Each arrow represents a
publisher/subscriber relationship. Application components and user interfaces
are represented through boxes, and infrastructure components through ovals.
The components’ functions are as follows. The InfoPanel UI user interface gives
an overview of the workspace state and allows manual control of workspace
functions. The MyTeam application presents the availability of team members
at a glance, similar to an instant messenger. The Light Control, Display Con-
trol, and Temperature Control applications adjust the workspace environment,
according to user preferences. The Presence Status, Occupant Status, and sen-
sor components (Temperature Sensor and Active Badge Sensor) comprise the

infrastructure components. Presence Status identifies workers by name based on
the badge ID it receives from the Active Badge Sensor. It also classifies them as
occupants or visitors in the workspace. Finally, Occupant Status tracks occupant
availability for the MyTeam application.

InfoPanel
ul

Light

Control MyTeam

Temperature Display Occupant
Control Control Status

Presence
Status

Active
Badge
Sensor

Temp.
Sensor

Fig. 1. BlueSpace event-flow diagram

Notice that these applications, even when receiving the same event, have
very diverse response time requirements. For example, quick response times, say
0.1 seconds, are required for switching the ceiling light on when the occupant
enters. Sending availability updates to team members is less urgent. However,
both the Light Control and Occupant Status components subscribe to the same
event from Presence Status.

Furthermore, consider how timeliness requirements on the infrastructure are
situation-dependent. Most of the applications are designed to support the office
worker; hence, there is little need to execute them when the workspace is empty.
Instead, the workspace can poll the Active Badge Sensor more frequently and
prioritize the workspace initialization components, especially light control. This
ensures a timely workspace reaction (adjust lighting, wake up displays) when
the occupant arrives. Once the worker is in the office, other workspace functions
have higher timeliness requirements. Thus, the system can shift its attention
from the Active Badge Sensor to more important components.

Statically tuning the system becomes more time consuming and difficult as
complexity increases (in terms of the number of components and the number
of dependencies). An adaptive system, however, can automatically adjust the
system to the application requirements.

3 Scheduling Algorithm

Processor scheduling can optimize the timeliness of event delivery. First, obtain-
ing sensor readings more frequently decreases detection time of an event. Fur-
thermore, the scheduler controls the sequence of component activations. Thus,
the scheduler can order the activation of components according to their timeli-
ness requirements.

3.1 System Model and Design Considerations

The system behavior is implemented through a set of agents that communicate
through a blackboard. Agents are all components that publish events or sub-
scribe to events through the blackboard. Agents are activated either through
event activations or periodic activations, or both. For example, the Temperature
Control component, is activated only when it receives an event from the user
interface or the Temperature Sensor. The Temperature Sensor is periodically
activated.

Furthermore, we distinguish between agents exhibiting an application role
and an infrastructure role and call them application agents and infrastructure
agents, respectively. Application agents initiate externally visible actions, such
as controlling lighting, controlling heating, or presenting a graphic user inter-
face. Hence, they typically specify timeliness constraints for the delivery of con-
textual events. Infrastructure agents produce information intended to support
application agents. Thus, their timeliness requirements depend on the supported
application agents. Examples are the Presence Status or Occupant Status agents
in BlueSpace. An agent may exhibit both roles.

Timeliness constraints for events are specified with event subscriptions, thus
each agent can specify different constraints for different types of events. The
constraint represent an upper bound on the desired delay for events. We measure
the delay of an agent activation as the total time between occurrence of an
external event and the event activation of the agent. Notice that delay also
includes the time until the system first detects an external event. Since most
events are still useful after the deadline, we interpret the timeliness constraints
as soft deadlines, that is late events are not discarded. Additionally, subscriptions
and timeliness constraints can change during run-time.

3.2 Goal

The goal of the scheduler is to execute event and periodically activated agents
according to a schedule that meets the application timeliness constraints on
a best effort basis. Both late activations and high tardiness among the late
notifications are undesirable. More formally, we seek to minimize miss ratio and
average tardiness, where miss ratio is the ratio of application agents activated
after their timeliness constraint to total application agent activations. Tardiness
is defined as follows:

d—cifd>c

tardiness = {0 ifd<ec

where d is the delay of an application agent activation and ¢ is the timeliness
constraint specified with the corresponding event subscription.

3.3 Assumptions

The scheduler assumes that agents are non-preemptive and the agents’ execution
times as well as the event-flow graph are known. The event-flow graph describes
the dependencies between agents. It contains a node for each agent and an edge
between agents if the destination agent subscribes to events that are published
by the source agent. More formally, the subscription relation S C (A x A),
where A is the set of all agents, is defined as follows. Given (an, an) € (A x A),
then (an,an) € S iff a, publishes events of type ¢ on the blackboard and ay,
subscribes to events of type t. The event-flow graph G is then a directed acyclic
graph defined by G = (4, S).

3.4 Approach

The solution is based on an online scheduling algorithm, since external events are
not known in advance. However, the scheduler pre-computes relative deadlines
for event and periodic activations based on the current configuration. To this
end, it applies the minimum effective deadline algorithm, which is detailed in
Sect. 3.5, to compute deadlines from the timeliness constraints on the event-flow
graph. Thus, the scheduler can adapt the system to different situations and
timeliness constraints through updating the internal deadlines.

During run-time, the priority-driven scheduler selects agents according to
the following policy. Periodically activated agents receive a lower priority than
event activated agents, because the polled sensor values rarely change. Resources
are typically better spent on processing already detected events. If two agents
are both periodically or event activated, we assign priorities according to the
earliest-deadline-first (EDF) policy [12].

3.5 Minimum Effective Deadline Algorithm for Deadline
Assignment

The algorithm transforms end-to-end application timeliness constraints into rela-
tive deadlines for activations of infrastructure agents. It is based on the following
heuristic: the deadline for activations of an agent a is the minimum deadline of
it’s parents minus the execution time of a. If the agent specified a timeliness con-
straint smaller than the derived deadline, this constraint overrides the computed
deadline.

More formally, consider an agent with maximum execution time t..., n sub-
scriptions to other agents, and m subscriptions from others to itself. The agent

can specify any of the timeliness constraints sy, . . ., s, for its subscriptions. Addi-
tionally, every subscriber to this agent can specify a timeliness constraint, which
we label as the parent constraints pi, . .., py,. For each subscription i € {1,...,n}
we compute a new deadline d; as follows:

d; = min{min{pla S 7pm} — texe, 5@}

If the agent is periodically activated, the period is defined as follows:

period = min{py,...,Dm} — teze

The deadlines are computed for each agent during a breadth-first traversal
of the event flow graph. Traversal begins with all components, which are not
target of any subscriptions. A node in the graph is visited only after all parents
have been visited. Upon termination, this algorithm returns a mapping of edges
in the event flow graph to deadlines.

4 Scheduler Implementation

Architecturally, the scheduling functionality is implemented in a layer between
the agents and a backboard. This configuration enables the scheduler to inter-
act with an existing blackboard implementation, assuming that agents use the
new scheduler interface. Alternatively, the scheduler can be integrated into the
blackboard itself. Figure 2 depicts the layered approach as well as the dataflow
between more detailed components in these layers. Components in the left half
of the diagram manage configuration changes such as adding or removing sub-
scriptions. Components in the right half process individual events.

The blackboard maintains a Subscription Table and provides the Subscrip-
tion Evaluation functionality. This component uses the Subscription Table to
determine which agents subscribe to a particular event. The scheduler adds the
following components onto the basic blackboard. First, Deadline Assignment
calculates deadlines for individual agents from the end-to-end timeliness con-
straints. To this end, it uses publisher and subscriber information. It stores the
result in the Agent Deadline Table. Second, Deadline Lookup intercepts noti-
fications from the blackboard and assigns absolute deadlines from the relative
deadlines in the Agent Deadline Table. All notification records are placed into
the Released Queue. Finally, the EDF-Ordering component selects and invokes
agents according to the EDF-based policy.

4.1 Specifying Timeliness Constraints
The scheduler extends the basic blackboard interface in the following ways:

— Publishers have to register event types before they can publish. This infor-
mation is used to construct an event-flow graph.

— Subscribers specify a timeliness constraint for each subscription. Timeliness
constraints are given in milliseconds according to the definition in Sect. 3.1.

Agents ’_H

T T ry

l T

Publisher Agent
Registration Invocation
Deadline EDF-
Assignment Ordering
A
Notifications
Subscription Deadlines Event
Records with Released
Deadlines Queue
Agent)
Deadline Deadiines™—p»| Deadline
Table Lookup
Scheduler
Notification
Records
4 v
Subscription Subscription
—_——p .
Table Evaluation
Blackboard

Fig. 2. Scheduler dataflow diagram

— Agents can also request periodic invocations. If no period is specified, the
scheduler automatically determines a period based on timeliness constraints
from subscribers.

The basic blackboard implementation is XML-based. Events are represented
as Document Object Model (DOM) Objects and subscriptions are expressed
through XPath expressions. If the XPath expression matches a node in a pub-
lished event document, the event is sent to the corresponding subscriber.

4.2 Constructing the Event-flow Graph

The scheduling algorithm requires knowledge of the event-flow graph. The im-
plementation generates this graph from the subscriptions and publisher registra-
tions in two steps. First, it creates a node for every component in the system.
Second, it evaluates all the subscriptions against event types published by other
components. If a subscription matches an event type, an edge is inserted between
the corresponding nodes in the graph.

The matching process is straightforward if subscriptions are only based on
well-known event types. However, some blackboard systems offer subscriptions
with sophisticated filter expressions. In this case, it depends on the event in-
formation at run-time whether a notification occurs. We propose a conservative
approach to omitting edges, for this case. We only omit an edge if we can stati-
cally determine that the subscriber will never receive events from this publisher.

5 Experimentation

The scheduler is tested with the actual BlueSpace software. It is comprised of
seven infrastructure agents and six application agents. Among them, five in-
frastructure agents are periodically activated to obtain sensor readings and two
agents interpret sensor information. Timeliness constraints ranging from 50 to
400 ms are specified for 13 out of the 19 edges in the event-flow graph. The soft-
ware, however, is disconnected from the sensor and actuator hardware to enable
many repetitions of trials. The sensor modules were replaced with stubs that
generate events according to the selected workload.

One trial consists of 12 bursts of 5 events (one for each sensor input) that are
randomly distributed over a 60 second period. A bursty workload more accurately
reflects the event patterns in a smart space than a constant workload. Each trial
is repeated 15 times.

A simple FIFO scheduling policy serves as a baseline. In this case, all periodic
agents are kept in a queue. The scheduler always selects the first element of the
queue for execution. After execution is complete, a periodic agent is moved from
the front of the queue to the end, whereas an event activated agent is removed
from the queue until it receives the next event notification.

The scheduler logs the invocation time of each agent that specifies a timeliness
constraint. The difference between invocation time and time of event origin yields
the delay, from which we can determine misses and tardiness.

5.1 Results

Figure 3 presents a scatter plot, where miss ratio is plotted against average
tardiness. Each point represents one trial of our experiment. Apart from three
outliers with a miss ratio over 0.35, the EDF-based scheduler approximately
reduces the miss ratio by half compared to the FIFO baseline. At the same time,
the average tardiness stays comparable.

These first results suggest that scheduling effectively reduces the miss ratio.
However, the miss ratio remains around 20%, due to the following reasons. First,
we deliberately stressed the system by triggering multiple events simultaneously.
Second, we noticed that the Java garbage collector has a significant non-deter-
ministic influence on the results. For a full garbage collection, the system is
paused for approximately 200ms.

6 Summary and Future Work

This paper presented first steps towards a self-tuning context infrastructure.
The system seeks to improve responsiveness through timely delivery of context-
events. A scheduling mechanism monitors the communication relationships be-
tween agents and schedules their activation to meet application-specified end-
to-end timeliness constraints. The scheduler was evaluated on a subset of the
BlueSpace smart space prototype. First results suggest that scheduling has a

0.9 ¢ FIFO Baseline

M Scheduler

0.8

0.7

0.6

°
&
a 05 =
s * o
04 DO I A] L
PBaad]
03 * * hd
.
]
0.2 .ﬂ—.—.—.—
. L
0.1
0 !
0 20 40 60 80 100 120 140

Avg. Tardiness

Fig. 3. Avg Tardiness vs. Miss Ratio scatter plot for bursty workloads

significant impact. The scheduler reduced the miss ratio on challenging work-
loads by approximately half.

In future work, we plan to provide more controlled degradation of service
quality when the system is overloaded. Supporting other QoS attributes in the
system poses additional challenges.

Acknowledgements

I am grateful to Dirk Grunwald and Rick Han for their invaluable advice and
encouragement. I am also indebted to Paul Chou for his willingess to provide
great feedback on early drafts of this paper. Furthermore, I thank the other
members of the BlueSpace team for designing and building the prototype that
motivated this work.

References

[1] D. Garlan and B. Schmerl. Component-based software engineering in pervasive
computing environments. In 4th ICSE Workshop on Component-Based Software
Engineering, 2001.

[2] C. Herring and S. Kaplan. Component-based software systems for smart environ-
ments. IEEE Personal Communications, 7(4):60-61, 2000.

[3] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven A. Shafer.
Easyliving: Technologies for intelligent environments. In HUC, pages 12-29, 2000.

[4] Armando Fox, Brad Johanson, Pat Hanrahan, and Terry Winograd. Integrating
information appliances into an interactive workspace. IEEE Computer Graphics
& Applications, 20(3), 2000.

[5]

[6]

[10]

[11]

[12]

H. Gellersen, M. Beigl, and A. Schmidt. Sensor-based context-awareness for situ-
ated computing. In Workshop on Software Engineering for Wearable and Perva-
sive Computing, 2000.

P. Chou, M. Gruteser, J. Lai, A. Levas, S. McFaddin, C. Pinhanez, and M. Viveros.
Bluespace: Creating a personalized and context-aware workspace. Technical Re-
port RC 22281, IBM Research, 2001.

Philippe Lalanda, Francois Charpillet, and Jean Paul Haton. A real time black-
board based architecture. In European Conference on Artificial Intelligence, pages
262-266, 1992.

F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time
reasoning and system control. IEEE Ezpert, 7(6):34-44, 1992.

B. Hayes-Roth. A blackboard architecture for control. Artificial Intelligence,
26:251-321, 1985.

G.S. Blair, N. Davies, A. Friday, and S.P. Wade. Quality of service support
in a mobile environment: An approach based on tuple spaces. In Proc. 5 th
International Workshop on Quality of Service, 1997.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit: Aiding
the development of context-enabled applications. In CHI, pages 434-441, 1999.
J. Liu. Real-time Systems. Prentice Hall, 2000.

