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Pedestrian Safety Applications
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Abstract—As smartphone rooted distractions become commonplace, the lack of compelling safety measures has led to a rise in the
number of injuries to distracted walkers. Various solutions address this problem by sensing a pedestrian’s walking environment.
Existing camera-based approaches have been largely limited to obstacle detection and other forms of object detection. Instead, we
present TerraFirma, an approach that performs material recognition on the pedestrian’s walking surface. We explore, first, how well
commercial off-the-shelf smartphone cameras can learn texture to distinguish among paving materials in uncontrolled outdoor urban
settings. Second, we aim at identifying when a distracted user is about to enter the street, which can be used to support safety
functions such as warning the user to be cautious. To this end, we gather a unique dataset of street/sidewalk imagery from a
pedestrian’s perspective, that spans major cities like New York, Paris, and London. We demonstrate that modern phone cameras can
be enabled to distinguish materials of walking surfaces in urban areas with more than 90% accuracy, and accurately identify when
pedestrians transition from sidewalk to street.

Index Terms—Pedestrian safety, Material classification, Texture features, Mobile camera, Urban sensing
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1 INTRODUCTION

Mobile cameras have evolved over time, and can now
support a multitude of techniques that seemed difficult less
than a decade ago. Camera sensing is not only instrumental
in the self-driving cars initiative [1], [2], but also drone guid-
ance [3], [4], augmented reality [5], real-time surveillance [6]
through dashboard mounted and body worn cameras [7],
agriculture IoT [8] and urban sensing [9]. Cameras are one
of the richest sources of data, and ubiquitously deployed.

In the realm of pedestrian safety, mobile cameras, such
as in-car cameras, are also increasingly used. Researchers
have also explored the use of smartphone cameras to target
distracted pedestrians [10], [11]. Texting while walking is
widely considered a safety risk. On average, a pedestrian
was killed in the United States every 2 hours and injured
every 8 minutes, in 2014 [12], [13]. While not all these acci-
dents are related to distracted walking, it is notable that US
pedestrian fatalities have risen in the past decade, to account
for 15% of all traffic fatalities. Research has attributed this
increase to the phenomenon of distracted walking [14].

Existing camera-based pedestrian safety approaches,
such as TypenWalk [15] uses the current camera view as
a background for user’s application, to help them observe
their surroundings while using the application. However,
the onus to watch for hazards still lies with the pedestrian.
This approach can help but it is not clear how many dis-
tracted pedestrians would pay adequate attention to the
subtle screen background of the path in front. Walksafe [11]
is another smartphone camera based approach for pedestri-
ans who talk while crossing the street. It detects approach-
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ing vehicles in direct line of sight using the rear camera.
Although ingenuous, it can only detect vehicles when the
phone is held up to the ear and only vehicles from one side.
Outdoor obstacle detection [16] using smartphones seeks to
detect obstacles in the camera’s frame that are potentially in
the pedestrian’s path. Recently, Tang et al [10], demonstrated
the use of the smartphone rear camera for alerting distracted
pedestrians by detecting tactile paving on sidewalks. We
have observed that such paving, although desirable, is not
commonplace, which makes the approach hard to deploy in
diverse environments. Despite its progress, camera sensing
in the real world has been largely limited to object detec-
tion and recognition. Most prior research mentioned above
applies object recognition techniques.

The question that arises is: Can we enable mobile cameras
to sense the environment without necessitating the presence of
specific objects? While several such techniques have been
demonstrated on sophisticated camera setups [17] and con-
trolled environments [18], it is unclear whether they work
with the smaller, lower quality smartphone image sensors
and lenses. One such technique is that of recognizing and
identifying material. Differentiating materials is harder than
recognizing objects, even for the human eyes. Objects have
well-defined shapes and high level attributes that can be
quantified to identify them against a background, even in
extreme lighting and weather conditions [19], [20]. On the
other hand, texture attributes used for material recognition
are a quantitative measure of the local and global arrange-
ment of individual pixels. It is unclear how the smaller sen-
sors on smartphone cameras capture this spatial relationship
between pixels. Noise in camera pixels are generated due
to the photons from ambient lighting. At the output of a
camera, the noise current in each camera pixel manifests
as fluctuations in the intensity of that pixel [21]. Mobile
camera use in outdoor environments also leads to much
more significant image quality degradation than those in
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(a) Texting pedestrian
and smartphone posi-
tion.

(b) Street
sign captured
during data
collection in
London.

Fig. 1: Smartphone camera field of view during texting.

staged indoor environments—for example, due to motion
blur, over and under exposure, and compression artifacts.

Our focus is on studying whether texture recognition
is possible on mobile phones using a pedestrian safety
application as a case study. We are enabling smartphone
and other mobile cameras to distinguish between materials
that comprise real world outdoor walking surface, particu-
larly streets and sidewalks. A principal distinguishing factor
between street and sidewalk is the material they are made
of. One may therefore be tempted to attempt distinguishing
street and sidewalk surfaces based on color. This approach is
fragile, however, since the color perceived by a camera can
change significantly depending on lighting conditions. We
thus explore a more permanent characteristic, the texture of
the surface. When a pedestrian is texting, the rear camera is
favorably directed to the ground in front of the user, thereby
gazing at what the user may be walking on next, as in
Figure 1a. We envisage using this camera opportunistically
to identify the pedestrian’s walking path, and distinguish
between safe and unsafe walking locations. For all practical
purposes, streets are considered unsafe for pedestrians, and
sidewalks, safe.

In this paper, we explore texture-based material recog-
nition for mobile cameras. The primary challenge lies in
enabling day-to-day smartphone cameras to distinguish
between materials, such as that of sidewalks and street. We
investigate the efficacy of light-weight texture descriptors on
real world images, to leverage the subtle textural differences
between materials that comprise real world streets and side-
walks. This encompasses a large set of images captured in
various illumination and weather conditions. Also, the im-
ages are captured opportunistically, while the user is using
the phone. We also consider ways of optimizing camera use
without affecting performance, to conserve battery. We note
that this paper focuses purely on the technical feasibility of
the sensing aspect. Its interaction mechanism with the user
and evaluation of user response will be left for future work.

Specifically, TerraFirma makes the following key contri-
butions:

• demonstrating, through design and implementation,
the feasibility of texture analysis for material classifi-
cation on images captured using mobile cameras.

• developing a detection algorithm that can leverage
textural features of the terrain to distinguish between
street and sidewalk surfaces, and perform crossing
detection.

• gathering a first of its kind, unique database of
street/sidewalk imagery across various countries.
We collected camera footage in New York, London,
Paris, and Pittsburgh. The entire dataset includes 10.5
hours of walking.

• evaluating the performance of the proposed camera
sensing system in various crowded high-clutter ur-
ban environments and comparing the performance
of camera-sensing with dedicated inertial sensors on
the same dataset.

2 BACKGROUND AND RELATED WORK

In this section we discuss the related work, and provide the
necessary background for a gradient profiling technique. We
compare how TerraFirma compares to this scheme.

2.1 Related Work

Visual attributes have raised significant interest in the com-
puter vision community. Specifically, texture-based material
recognition have been advanced over the years [17], [22]
to the most recently proposed texture descriptors [23], [24],
[25]. Given the challenging nature of texture recognition,
early work often focused on images captured using specific
camera setups [17]. Numerous datasets have been created
that contain a diverse array of textures and materials. The
more recent ones have been collected using images from the
Internet [18], [23], [26], [27].

In earlier work on pedestrian safety, we have proven
GPS [28] and inertial sensors [29] on the smartphone to
be insufficient for pedestrian safety in dense urban envi-
ronments. Our wearable sensing approach LookUp! [30]
profiles the ground and detects street entrances via ramps
and curbs. Although, it requires dedicated inertial sensors
on shoes.

Among camera-based approaches to pedestrian safety,
obstacle detection based on smartphone camera, for the
visually impaired [31] and for distracted pedestrians [32]
is also common. These systems primarily work indoor to
detect the presence of an object in the user path, and
cannot classify the path in front of the user. Crosswatch
[33] provides guidance to the visually impaired at traffic
intersections. However, it requires the user to precisely align
the camera to the crosswalk. Surround-see [34] is a smart-
phone system equipped with an omni-directional camera
that enables peripheral vision. Smartphone cameras have
also been proposed for use in indoor navigation [35]. As
discussed earlier, approaches such as Walksafe [11] detects
approaching vehicles when the pedestrian is already in-
street, and only those approaching from one side. Type-
NWalk [15] requires the user to watch the surroundings
through smartphone camera while using an application,
which already distracted users may not pay attention to.
In addition, this approach requires the camera to be always
on, thus increasing the battery consumption of the phone.
The approach proposed by Tang et al [10] is close to ours,
but very different in that it assumes the presence of tactile
paving at sidewalk-street transitions. As observed in our
dataset collected across various cities, such tactile paving is
not common.
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Texture based approaches are vogue in the fields of
medical imaging, for example for detection of Diabetic
Retinopathy [36], an eye condition. Computer vision based
texture analysis techniques are also widely used for defect
analysis in civil infrastructure, such as concrete bridges and
asphalt pavements [37], [38]. These systems use digital cam-
eras and dedicated mounting scheme for image capturing.
Texture and other features on smartphones have been used
for biometric recognition, such as iris scanning [39], food
recognition [40]. However, they require the user to directly
point the camera and in some cases it also needs direct
inputs from the user, such as bounding boxes [40]. Our
proposed camera sensing system works opportunistically,
with no user intervention, and amidst practical constraints
such as camera motion, lighting changes, and blurring.

2.2 Gradient Profiling for pedestrian safety
A previous work, LookUp [30], addresses the challenge
of detecting sidewalk-street transitions through a robust
shoe-based step and terrain gradient profiling technique.
Wearable sensing has penetrated the fitness tracking market.
Shoe mounted sensors have been widely used for exercise
tracking, posture analysis, and step counting [41], [42].
LookUp uses similar sensors for sensing properties of the
ground, and constructs ground profiles. Roadway features
such as ramps and curbs [43] separate street and sidewalk,
and hence detecting the presence of these features can help
identify transitions from sidewalk to street and vice versa.
Often ramps are present at dedicated crossings. These fea-
tures are designed such that visually impaired pedestrians
can distinguish sidewalks and streets.

LookUp leverages these roadway features to develop
a sensing system that can automatically detect transitions
from a sidewalk into the road. Importantly, it can track the
inclination of the ground and detect the sloped transitions
(ramps) that are installed at many dedicated crossing to
improve accessibility.

One of the advantages we have over LookUp is that
the prototype requires additional hardware that includes a
sensor unit to be mounted on the shoes. LookUp acquires
inertial data from the sensor, to detect changes in step
pattern and ground patterns caused by ramps and curbs.
In particular, a salient feature of this work is that it senses
small changes in the inclination of the ground, which are
expected due to ramps and the sideways slope of roadways
to facilitate water runoff. Inertial sensors allow one to infer
information with a very modest power budget, compared
to GPS. The shoe-mounted sensor has the capability to
measure the foot inclination at any given time. The incli-
nation of the foot when it is flat on the ground is thus,
the inclination of the ground. Inertial sensor modules are
mounted on both shoes, and share their measurements with
a smartphone over a Bluetooth connection. Sensors on both
feet substantially improve the detection of stepping over
a curb, irrespective of the foot the pedestrian uses for the
action. Although, ramp detections can be achieved even
with a sensor on one foot. A smartphone serves as the
hub for processing the shoe sensor data and implementing
applications.

LookUp processes raw accelerometer and gyroscope
readings (sampled at 50 Hz) through a complementary filter,

and extracts traces of pitch, yaw, and acceleration magni-
tude features from these measurements. While it primarily
relies on this inertial data, it also collects magnetometer
readings to assist with the Guard Zone filtering step. Fur-
ther, the pitch traces are divided into distinct steps and
for each step cycle the period when the foot is flat on
the ground, known as the stance phase, is extracted. The
inclination of the foot during the stance phase represents
the slope of the ground. Therefore, the slope of the ground
is measured with every step of the pedestrian from the pitch
readings. The relative rotation of the foot is given by the
yaw readings, during the stance phase. LookUp also extracts
peak acceleration magnitude over an entire step cycle as
an indication of foot impact force. Finally, it aims to detect
stepping into the roadway through ramp and curb detec-
tion. Ramps are identified through characteristic changes
in slope, while steps over a curb usually show higher foot
impact forces. These candidate detections are then filtered
through a guard zone mechanism. This mechanism helps to
remove spurious events caused by uneven road surfaces.

LookUp achieves higher then 90% detection rates in the
intricate Manhattan environment. It is a robust solution
to sensing sidewalk-street transitions, but in addition to
requiring added hardware, it also does not perform well
when the sidewalk and street are at the same height.

3 APPLICATIONS

Texture sensing through mobile cameras can benefit numer-
ous applications.

Warning distracted pedestrians. Sensing the texture of
the ground that a person is walking on can be indica-
tive of potential risk and can help mitigate it. Inattentive
pedestrians can be alerted to watch out and be cautious as
they transition from sidewalk to street without realizing.
Opportunistically sensing such safety metrics also makes
the application unobtrusive. Additionally, the detection of
potholes or a water puddle in the user’s path can also trigger
such a warning.

Pedestrian-Driver cognizance. Identifying whether a
pedestrian is on the sidewalk or in-street can vastly reduce
the number of safety messages exchanged between pedes-
trians and drivers. When a pedestrian enters the street, this
information can be communicated to an approaching ve-
hicle. This helps in devising congestion control techniques,
specially in dense urban areas, on wireless channels, such as
DSRC [44], [45].

Infrastructure health monitoring. Camera sensing on
the smartphone can be used to crowdsource information
about the condition of the sidewalks and streets. Federal and
city authorities are investing significant financial resources
in detecting the condition of streets and sidewalks [37], [46],
[47]. An automated system that employs smartphone cam-
eras can warn the city planning authorities when they detect
perilous artifacts, such as potholes, bumps, hindrances to
wheelchair accessibility, and absence of street lamps.

Pedestrian localization through landmarks. Large scale
crowdsourced data can be used for enhancing outdoor local-
ization by creating a material-based street/sidewalk map of
the entire city. This system can be complementary to existing



IEEE TRANSACTIONS ON MOBILE COMPUTING 4

(a) Asphalt (b) Concrete (c) Brick (d) Tiles (e) Ideal Crosswalk (f) Crowded

(g) Rainy (h) Tiled Pattern (i) Broken sidewalk (j) Defaced Street (k) Cluttered (l) Same material

Fig. 2: (a)-(d): Samples of material classes found in our dataset. (e)-(l): Test examples from our dataset.

GPS based positioning. This mechanism can be used for fin-
gerprinting sidewalks by leveraging subtle unique imagery
and performing image based dead reckoning.

Enhancing vision-based navigation. Vision-based sys-
tems are increasingly dominating the autonomous guidance
and navigation arena, ranging from cars [1], [2] to visu-
ally impaired pedestrians [33]. Understanding mobile cam-
era based material recognition can augment these systems
based on precise knowledge of which materials are easier to
recognize, depending on changing light conditions. Similar
analysis can be used for the visually impaired to learn which
surfaces are more identifiable, particularly in bad weather,
or cluttered environments.

4 CHALLENGES

Texture based recognition renders to be a harder problem
than object recognition, because the real world ground sur-
faces often do not have a well defined shape, or predictable
markers such as edges and corners. In distinguishing be-
tween materials that streets and sidewalk are made of, and
to detect transitions from sidewalk to street, we encounter
the following vital challenges.

Lack of standard paving materials. Streets and side-
walks are not always constructed with the same type of
material. In the United States, concrete slabs are more com-
mon for sidewalk constructions, however, we encountered
stretches put together with tiles of different material, color,
size and shape. We also observed sidewalks originally made
of concrete slabs that were patched with asphalt in many lo-
cations. The lack of a standard guideline for which materials
must be used in paving sidewalks and streets, and frequent
changes in local policies [48] leaves our city sidewalks and
streets full of diverse materials.

Crosswalks as extension of sidewalk. At many desig-
nated crossings, crosswalks are constructed with the same
material as the sidewalk. For example, in Pittsburgh and
London, crosswalks are also often made with bricks when
sidewalks are made of bricks. In such cases detecting the
material alone is not sufficient to identify when a pedestrian
transitions from sidewalk to street.

Sensitivity to Camera Motion. Texture descriptors are
popularly designed for sharp focused images taken from
still cameras, and do not cope well with blurriness caused
by motion. Since we aim to develop a functional technique
for mobile cameras, blurriness in captured frames is a sig-
nificant challenge.

Environment noise. Street and sidewalk appearances are
impacted by lighting conditions and shadows. The visibility
of the surface is immensely affected by the time of the day,
presence or absence of street lights and the reflection of
these lights from the pavement or street. In addition to just
the variations in the surface appearance, there may be nu-
merous conflicting objects in the camera view. A few noisy
samples from Manhattan dataset are shown in Figure 2f and
Figure 2k.

Energy consumption of the camera. Camera based ap-
proaches commonly suffer from their high energy demand.
Although the system should capture images only when the
pedestrian is walking outdoor and actively using the phone,
continuous use of camera can severely affect the battery life,
and must be optimized in the best possible way.

5 SYSTEM DESIGN

We propose a mobile camera based approach that aims
to overcome the aforementioned challenges by deducing
subtle textural features of the walking surface, to distinguish
between paving materials. To achieve this, we leverage
the smartphone position when a pedestrian is texting and
walking, to opportunistically capture images of the ground
ahead. Instead of deploying object recognition techniques,
we remove the dependence on the presence of external
objects in the pedestrian’s path, such as lamp posts, or tactile
paving on ramps. Figure 3 displays the flow of our system
and the major steps involved. The camera on a distracted
walker’s smartphone captures snapshots. We capture snap-
shots instead of a video to conserve the smartphone battery.
This task must be carried out in the background, without
influencing how the user is interacting with the smartphone.
This action can be triggered by sensing that the user is out-
door, in motion, and is actively using the smartphone. Such
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Fig. 3: System Overview.

information can be gathered by minimally using the GPS,
inertial sensors and checking if the screen is on, respectively.

The captured image contains a view of the path that lies
in front of the user. This image may also capture objects
in its view, such as trash cans or even the people walking
around. A few examples of such images are shown in
Figure 2. We extract a fixed sized patch, R around the
center of the image, since this region is most likely to be
free of environment clutter. Further, we compute visual
information from R, known as features. These features
identify the type of surface the camera is looking at, or in
other words, the texture. We borrow our feature computation
techniques from the computer vision community [49], [50].
This texture information can be used to distinguish between
the paving materials found across our cities. In addition to
distinguishing these materials, we also aim to identify when
a pedestrian transitions from sidewalk to street. While it is
easy for the human eye to distinguish streets and sidewalks,
it is rather challenging to train a camera to acknowledge the
differences. To account for the subtleties in these features
and to ensure robustness, we use a supervised learning
algorithm, that can classify the extracted image as one of
the paving materials.We discuss the details of our feature
selection process and classification in the following section

6 UNDERSTANDING TEXTURE

Texture is a visual attribute of images, where unlike objects,
the overall shape is not important. Texture captures local
intensity statistics within small neighborhoods. These can
then be used to quantify the smoothness, or ‘feel’ of the
surface. Texture information adds a layer of detail beyond
object recognition.

6.1 Patch Selection
Often, captured frames include a view of the people walking
around, lamp posts and garbage cans that line the side-
walks, and amount to clutter in the image. They provide
little or no information about the ground surface ahead,

and thus we preprocess our captured frames to get rid of
clutter. This also helps us operate on more salient regions
of the image. We observe that these objects usually border
the perimeter of the image and the patch of land right in
front of the pedestrian is clear for him to take the next step.
Based on this observation, we attempt to reduce noise in
each frame and get a clear view of the path by extracting a
fixed size region,R, around the center from each frame.R is
a square patch of size n× n, and captures the paving of the
ground ahead with little or no clutter. After experimenting
with patches of size 250 × 250, 350 × 350, 420 × 420, and
500 × 500 around the center of the image, and 500 × 500
from the lower center and lower right regions of the frame,
we found the patch size of 500 × 500 around the center of
the image to be optimal for capturing the scene ahead, and
small enough so as not to cause significant computational
overhead compared to smaller patches. All further opera-
tions are conducted on the image R.

6.2 Texture Representations

In this section we discuss the feature descriptors computed
on the image region R obtained in the previous step. We
hypothesize that even though the gray level intensities are
similar, the localized pixel-wise arrangement will be signif-
icantly different across the materials used for paving streets
and sidewalks. We found three types of texture descriptors
to be suitable for assessment:

Haralick: Haralick [51] texture descriptors have proven
to be robust across various datasets for texture recognition.
Compared to recent texture descriptors, we were impressed
with the performance of these low-level texture descriptors
on our real world dataset. Gray-Level Co-occurrence Matrix
features (GLCM), can be used to extract Haralick features.
The GLCM is given by NxN matrix M , where N is the num-
ber of gray levels in the image. Each matrix element p(i, j) is
the probability of pixel with intensity value i being adjacent
to that with intensity value j. We extract 13 Haralick descrip-
tors [51] from M . Each of these captures a unique property
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(a) Street (No Crosswalk) (b) Crosswalk

(c) Concrete sidewalk (d) Crowded sidewalk

Fig. 4: Frequency Domain Representations. Samples from
New York Dataset.

of the image. These descriptors calculate the relationship
between a reference pixel and its neighbors in a 2D matrix
and second order statistics thereof. For example, entropy
feature is given by E(i, j) = −

∑
i

∑
j p(i, j)log(p(i, j)). E

calculates the degree of disorder in the image. For an image
where the transitions are very high, the corresponding E is
also high and vice versa. Each Haralick feature computation
returns n×n values computed forR, where n is the number
of pixels along each dimension. We encode these per-pixel
local descriptors into global feature values by summing
their values over all pixels. We obtain the Haralick feature
vector VH, which is a 13-dimensional vector, for each image
R.

CoLlAGe: Co-occurrence of Local Anisotropic Gradient
Orientations (CoLlAGe) [50], [52], a recently introduced
texture descriptor in the field of biomedical imaging, has
shown promise in distinguishing benign and malignant
tumors from anatomic imaging. It captures higher order co-
occurrence patterns of local gradient tensors at a pixel level.
CoLlAGe is different than traditional texture descriptors in
that it accounts for gradient orientations at a local scale,
rather than at a global scale. Mathematically, CoLlAGe
computes the degree of disorder in pixel-level gradient
orientations in local patches. As in [50], for every pixel c,
gradients along the X and Y directions are computed as:

∇f(c) = ∂f(c)

∂X
î+

∂f(c)

∂Y
ĵ (1)

where ∂f(c)
∂q is the gradient magnitude along the q axis,

q ∈ {X,Y }. A N×N window centered around every c ∈ C
is selected to compute the localized gradient field. We obtain
dominant principal components from the vector gradient
matrix, to compute the principal orientation for each pixel.
This captures the variability in orientations across (X,Y ).
Then individually 13 Haralick statistics are computed as
shown in [51]. For every feature, first order statistics (i.e.
mean, median, standard deviation, skewness, and kurtosis)
are computed. Variance is a measure of the histogram width
that measures the deviation of gray levels from the Mean.
Skewness is a measure of the degree of histogram asym-
metry around the Mean and Kurtosis is a measure of the
histogram sharpness. Computing five statistics for each of
the 13 features, gives us the CoLlAGe feature vector VC ,
which is a 65-dimensional vector.
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Fig. 5: Intensity Histograms.

Alternate representations: We observe that analyzing
alternate representations of the image provides significant
information about the image pattern. We consider the fol-
lowing values for each image in addition to the features
mentioned above:

- Prominent peaks in gray-level intensities: The number of
peaks in the intensity histogram, and the spacing between
them can be used to distinguish a cluttered image from one
with a pattern, possibly a crosswalk. To this effect, we calcu-
late the number of peaks in the image intensity histogram,
with a minimum height of 200 and at least 60 intensity
levels apart. These thresholds were computed empirically.
Sample intensity histograms from our New York City data
are shown in Figure 5.

- Fourier domain features: Fourier domain analysis pro-
vides us with the frequency domain representation of the
image. A 2D Fourier transform yields the frequency re-
sponse image indicative of the magnitude and phase of the
underlying frequency components. The Fourier transform F
of an M×N image is given by

F (p, q) =
1

MN

M−1∑
i=0

N−1∑
j=0

f(i, j)e−j2π(
pi
M + qj

N ) (2)

We take the magnitude image and compute first order
statistics from it (mean, median and skewness) as our
Fourier features. Fourier magnitude representative images
are shown in Figure 4. For the ease of visualization, the zero
frequency component has been shifted to the center. Fur-
thermore, the magnitudes of these frequency components
have been normalized to 10 levels and color coded. It can
be seen that a crowded sidewalk has a large number of
low frequency components, compared to a plain concrete
sidewalk. The crosswalk pattern is also identifiable and
distinguishable from others, as seen in Figure 4b.

- Range filter features: Instead of looking at the absolute
range of pixel intensities, we captured first order statistics
like mean and median within a 3 × 3 neighborhood of all
the pixels. After extracting features from alternate represen-
tations, we obtain the 16-dimensional feature vector VA.
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Fig. 6: Feature selection to identify the most distinguishing feature in each dataset.

6.3 Feature Selection and Classification

For each captured frame R, we compute the feature de-
scriptors mentioned above, and aggregate them to form the
feature space FS = {VA,VH,VC}, with 94 features. To ac-
count for the ‘curse of dimensionality’, the descriptors inFS
are dimensionality reduced by using Principal Component
Analysis (PCA). This maps the high-dimensional feature
space to a new space with reduced dimensionality, known
as feature transformation. We quantitatively analyze our
features to identify the most distinguishing features in each
test environment, irrespective of the learning algorithm. We
use the Wilcoxon rank sum test [53] for each corresponding
feature in each pair of classes, and select the one with
the lowest p-value. As we can see in figure 6(a), the most
distinguishing feature among all materials found in London
is the standard deviation of the range filter applied to the
image. Similarly, we see in figure 6(b) that CoLlAGe median
separates the New York City data well.

The materials are classified using an error-correcting
output codes (ECOC) [54] classification method, which re-
duces the classification to a set of binary learners. We used
a one-vs-all coding design, and Support Vector Machine
(SVM) classifiers with linear kernels as binary learners. The
training and testing sets are randomly generated for a 3-fold
cross validation. The generated sets contain approximately
equal proportions that define a partition of all observations
into disjoint subsets. We use two-thirds of the data for
training and one-third for testing the classifier. Despite
our biased dataset due to disproportionate occurrences of
materials across cities, we train an unbiased classifier to
avoid overfitting to any one class. We provide the classifier
with equal number of samples from each class. We train
a separate ECOC classifier for each test city. The model
is validated using ten fold cross validation. Furthermore,
we perform Platt sigmoid fitting [55] on top of the SVM
results, i.e. the scores returned from cross validation. We
estimate the posterior probabilities by entering the cross-
validation scores into the fitted sigmoid function. The results
are reported in Section 8.

6.4 Street Entrance Detection

When pedestrians transition from sidewalk to street, the
material of the ground may or may not change. We observed
a few common scenarios. First, if the transition is made via a

designated crossing, the street may have a crosswalk, which
can be made of the street material (often asphalt), or may
be made of the same material as the sidewalk (for example
bricks in Pittsburgh). When made of asphalt, it may or may
not have alternate light and dark stripes (also called a zebra
crossing). Second, when crossing via a curb, in most places
there is a border that separates street or sidewalk. Even in
our dataset from Paris, where most sidewalks and streets
are both made of asphalt, a small concrete or tiled border
separates sidewalks from street, as shown in Figure 2l. We
aim to detect this transition border. The frames captured
during transition have multiple textures. To detect these
frames with multiple textures, we create a small training
set with just the transition frames, and train a one-vs-all
classifier as described above, with transitions as the positive
class and all other materials as negative class. We use this
classifier on an unseen test sequence, and classify every nth

frame as transition or not a transition. We find n = 6, which
is equal to 5fps to give us optimal performance. Note that to
conserve battery, we only capture images and do not record
a video. Since many frames may have multiple textures,
we get rid of false positives by using guard zone filtering,
similar to that described in LookUp [30]. When a transition
is detected with a high score from the classifier, we reckon
this to be a definite entrance into the street and mark it as
a high confidence event. We set a guard zone following this
detection, for 2 seconds, which means that all detections
within the next 2 seconds are discarded. The guard zone
value was chosen empirically based on our observation that
a transition typically lasts 3− 4 seconds.

7 DATASET DESIGN AND COLLECTION

To evaluate the performance of our system, and to en-
sure robustness, volunteers from various metropolitan ar-
eas across the world collected data while walking in their
cities. The advantages of doing this were manifold. First,
the data was collected by a diverse set of pedestrians,
therefore accounting for variances in how pedestrians hold
their phone, and walking behavior. Second, the data was
collected on different models of smartphones, all of which
had different camera specifications. Third, we were able to
gather a large amount of data, leading to a unique database
of street/sidewalk imagery from a pedestrian’s perspective,
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City Volunteers Total Duration Sidewalk Street
New York 5 5h Concrete Asphalt

London 1 45m Tiles Asphalt
Brick Brick

Paris 2 3h 30m Asphalt Asphalt
Brick

Pittsburgh 1 1h 10m Concrete Asphalt
Brick Brick

TABLE 1: TerraFirma Dataset Summary.

the TerraFirma dataset1. Fourth, due to the duration of our
data collection efforts, our dataset comprises of dissimilar
seasons, weather conditions, and illumination. Therefore,
our test data was collected in the wild, on real smartphones,
on people’s daily walking paths, and not in controlled
settings.

Table 1 introduces details of the TerraFirma dataset,
which is a collection of real-world videos recorded during
the pedestrian’s commute and daily chores. There is a
wide variation in the angles that the phone was held in,
which adds diversity to our test set. The videos capture
the ground that the participant is walking on. In a typical
texting position, the view of the smartphone’s rear camera
comprises the ground surface ahead of the user. To avoid
any bias, participants were not made aware of the purpose
of the data collection. They only captured videos during
daytime, to ensure their safety during data collection. They
were asked to make recordings only when walking alone,
to avoid capturing participants’ conversations. However, as
a precaution, all the collected videos were stripped of any
audio before processing.

The videos were manually labeled to annotate the exact
frame number when (i) the pedestrian sets first foot into
the street from the sidewalk- an entrance instance, and (ii)
the pedestrian sets first step from the street to the sidewalk-
an exit instance. The entrance instants were used as ground
truth for correctness and timeliness of street entrance detec-
tions. The entrance and exit instances, together, were used
to divide each video into street, sidewalk, and transitions.
Further, streets and sidewalks were manually subdivided
into the materials they were made of. Moreover, for training
only those images were retained where the primary material
fills at least 80% of the image. This is to ensure that we
can study texture recognition independent of texture seg-
mentation. However, to maintain the characteristics of an
in-the-wild dataset, we retain images with ground artifacts,
for example, tree trunks, manhole covers, poles, ramp grates
etc, but no crowds. The frames retained as transitions, were
those that covered the sidewalk-street transition. These were
frames where more than one material was visible in the
camera view. They capture the street sidewalk separators,
such as ramps and curbs. All ramps, without or without
tactile paving were captured.

In New York City, the data was collected from the mid-
town area of Manhattan. This is the same data set as used
in LookUp! [30]. The camera sensing data was collected by
five volunteers, who traversed a 2.1 miles long path. Half the
data was collected during the day, while the other half was
collected after sunset. The average time taken to complete

1. Available upon request.

each loop was about 60 mins and involved 32 crossings. The
data was collected at various times, including weekday rush
hours and weekends. For our experiments in this paper, we
only used the data collected during daytime. This dataset
was collected using a GoPro Hero 3 camera. This camera
was placed upon the pedestrian, using a chest harness,
and oriented to point downwards, simulating the texting
position of a smartphone. The GoPro recorded video at 60
frames per second at a resolution of 720p. We subsample
this high frame rate data for our analysis and evaluation,
as presented in the next section. In London, the data was
recorded using a Nexus 6, during daily commutes and
weekend chores over a period of two months. In Pittsburgh,
the data was recorded in one 70-minute long walking ses-
sion using an iPhone 6s. It was recorded around dusk, in
the downtown area, and also covers two bridges. In Paris,
the data was recorded using an LG Nexus 5 during the
early morning and afternoon hours, primarily during daily
commute.

In addition to detecting pedestrian transitions from side-
walk to street, TerraFirma dataset can be used for other
opportunities in pedestrian safety, such as detecting the
presence of hazard in pedestrian’s path. Beyond that, this
dataset can be of immense use to the computer vision
community who is aiming to build more robust models for
material detection and classification. The cities represented
in the TerraFirma dataset can immediately monitor the
condition of their sidewalks, including information about
the crosswalks (visible markings, obstructed crosswalks etc).
Additionally, this dataset can form the basis for gathering
pedestrian analytics in the city, including but not limited to
waiting times at intersections, crossing times, crossing speed
variability, crowd estimation etc.

Additionally, we expand our evaluation dataset by uti-
lizing the Ground Terrain Outdoor Scenes [56] database
that recently became available as part of a CVPR publica-
tion [57]. To the best of our knowledge, this is the only
open sourced database that captures ground terrain. This
dataset consists of 40 classes of outdoor ground terrain
under various weather and illumination conditions. The
classes have multiple instances (between 4-14) under 19
viewing directions. We selected three materials from this
database, that overlap with the TerraFirma dataset. These
were asphalt, brick, and concrete (cement). We obtained 120
images of dimension 256× 256 for each class.

8 EVALUATION

Our study of outdoor walking surfaces aims to answer the
following questions:

• Can paving materials be classified via images cap-
tured on a mobile phone?

• Can we detect when a pedestrian transitions from
sidewalk to street?

• How generalizable are models across cities/datasets?
• How does the camera-based technique compare with

existing techniques, such as shoe-sensing?
• How do various texture descriptors compare for

diverse set of materials?
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Fig. 7: City-wise material classification.

8.1 Distinguishing paving materials on streets and
sidewalks

The future of navigation in autonomous cars and wheel-
chairs, and large scale smart city data services relies heavily
on the ability of cameras in detecting and distinguishing our
environment, which includes paved surfaces. It is therefore
pertinent to quantify how these materials are perceived by
mobile cameras in different locations and varying weather
and lighting conditions. The choice of materials used for
paving streets and sidewalks vary vastly, as can be seen in
Table 1. There are many factors that determine this choice,
primarily for maintenance and strength for expected traffic
flow.

In the United States for example, streets are commonly
paved with asphalt, with more than 94% of paved roads
made of asphalt [58]. Asphalt is hard and durable, and it
is easy to replace damaged or broken asphalt. Concrete,
often used for sidewalks, is installed in the form of stiff
solid slabs that are prone to cracking and breaking. Brick,
however expensive than concrete, is another commonly
used material for sidewalk paving [59]. For the purpose
of our classification, we combine clay brick and concrete
brick under the category of bricks, also not considering the
tessellation, or type of brick laying. In Paris, our dataset
from two volunteers in different parts of the city, com-
prised primarily of asphalt streets and sidewalks. We also
encountered several brick street crossings. We observed
that in many of these places, concrete was still used to
make curbs that separated street and sidewalk. In London,
sidewalks were commonly tiled or made of bricks. We use
the multiclass classifier described in Section 6, to classify the
materials in each city. For each material, we split the data
into 3 parts, and use 2 parts for training and one for testing.
During both, training and testing, we use the same number
of observations from each class. The results are shown in
Figure 7. Performance on the training data is not a good
indicator of classifier performance on unseen data, therefore
these results were obtained on an unseen test data, which
was not used during the training phase. As a metric for
classifier performance, we use the area under the ROC curve
(AUC). We believe it provides a more comprehensive un-
derstanding of classifier performance than overall accuracy
because there is no hard threshold. It can be seen that we
can identify any material in our dataset with at least 85%
accuracy, with most materials having a higher than 90%
AUC. We notice that our accuracy for tiles is lower than
other materials. This is likely because we made simplifying
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Fig. 8: Entrance Detection Performance.

assumptions during data labeling when the material of the
tiles was not recognizable due to blurring caused by camera
motion. Thus, we demonstrate that texture features can be
used for accurate material recognition in uncontrolled urban
environments.

8.2 Street Entrance Detection

We evaluate the proposed technique by detecting transitions
from sidewalk to street, and their timeliness. We assign
detection windows around the actual entrance. If a detection
occurs in the specified window, it is considered correct. This
window helps us evaluate the latency of detections, which
in turn helps us estimate the usefulness of the warnings
thus generated. We consider detections that occur within 2
seconds before a pedestrian enters the street and at most
one second after entering the street, to be useful in alerting
the user to pay attention. Figure 8 shows detection results
that were evaluated on data collected in London, Paris,
and Pittsburgh. We chose these three locations because
of their similarity in data collection means, i.e. using a
smartphone, as opposed to a GoPro used in the New York
city dataset. Paris dataset comprises asphalt sidewalks and
streets. Therefore entrance detection relies on detecting the
transition curb or ramp accurately. We see that for our test
walking trials, we can attain 100% detection for London and
95% for Paris. The lower performance in Paris is likely due
to the fact that transitions between asphalt sidewalks and
streets are not always marked by curbs. We see that for our
test walking trials, we can attain 100% detection for London
and Paris, and 85% for Pittsburgh. The lower performance
in Pittsburgh is likely due to the fact that street and sidewalk
were commonly made of the same material, and transitions
are harder to detect. We obtain scores, for transition and not
transition, for each observation, and determine the class by
varying the score difference threshold from 0 to 1 in steps
of 0.01. Based on the true and false positives determined,
we plot the Receiver Operating Characteristic (ROC) that
marks the true positive rate against the false positive rate,
at each threshold. At a small sampling rate of 6 frames per
second, we can detect greater than 90% of entrance events,
as the pedestrian enters the street, with less than 2.5% false
positives. This illustrates the timeliness of the detections.
We also find that the algorithm performance is unaffected
by the camera tilt angle, if some part of the walking path
features in the camera view.
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Fig. 9: Cross-dataset asphalt classification.

8.3 Cross-dataset learning
In the previous section, we obtained the results by training
and testing on the data obtained in the same city. Given
the overlap in the paving materials used across cities, we
are interested in investigating the generalizability of models
trained on each city. To realize this, we used models trained
on one city, to classify test data from another city. Since
asphalt is the common material among all cities, we conduct
these experiments for classifying asphalt. Figure 9 shows
the results of our cross-city asphalt classification. It is clear
that each city performs best with a model trained on the
same city, which is expected in a machine-learning setting.
Additionally, some cities have very strong similarity in the
materials, for example a model trained in London performs
very well in Pittsburgh and Paris (> 0.8). Similarly, mod-
els trained in Pittsburgh and Paris perform very well in
London. However, the low correlation with data in New
York City is likely due to the fact that New York city
data was collected using a GoPro, while the other data
was collected using smartphones. The lower right 3 × 3
cells in Figure 9 indicates that almost all models collected
using smartphones are easily usable in other cities. The key
takeaway from this analysis is that when adding new cities
in the mix, one need not train a model from scratch, and
techniques such as transfer learning can be deployed to
quickly converge the model to optimum performance.

8.4 Comparing Feature Descriptors
The feature space FS presented in Section 6 was defined
after experimenting with several texture descriptors and
quantifying their performance across various materials. Fig-
ure 10 shows the classifier performance obtained by using
different feature descriptors. It is important to note that
these features exhibit dissimilar performance for classify-
ing different materials. For example, Local Binary Patterns
(LBP) perform worse than all other features for all materi-
als. While Haralick features perform well for all materials.
Our combination of alternate representations, haralick and
CoLlAGe features is seen to give the best performance for
all materials.

Fig. 10: Comparison of feature descriptors based on classifi-
cation performance. Data from Pittsburgh.

8.5 Micro Benchmarks

We implemented our algorithm on a Nexus 5X Android de-
vice using the OpenCV library [60] and JNI framework. The
classifier was trained offline using OpenCV Support Vector
Machine [61] implementation, and the model was exported
to the smartphone. This implementation was trained and
tested on the data collected around our lab. With as few
as 6 frames per second we can obtain similar performance
as presented in section 8. It takes approximately 62 ms per
frame for feature computation. Over an hour of continuous
operation, the application consumes less than 5% of battery
charge, when no other application was running. We con-
sume very little power because instead of capturing videos
at higher frame rates, we capture images only periodically.
Our average power consumption is −127.42mW . A 2800
mAh battery can be used for 83.65 hours with the Ter-
raFirma app running. This power analysis was conducted
using the Monsoon Power Monitor [62]. Moreover, the sys-
tem is turned on only when the user is walking outdoors
while also using the phone. We detect phone use by the
status of the display. If the display is off, we assume that
the user is not distracted by the phone, and is more aware
of the surroundings. To conserve the power consumed by
the display during camera, we reduce the display size to
quarter of the screen when capturing the image.

9 COMPARISON WITH GRADIENT PROFILING

In our previous work, we proposed shoe sensing based
gradient profiling approach to detect sidewalk-street tran-
sitions. This approach detects roadway features such as
ramps and curbs in crowded urban environments. To quan-
titatively analyze the performance of our camera-based ap-
proach, we compare it to the shoe-based gradient profiling
approach in LookUp! [30].

LookUp was evaluated in two different urban environ-
ments. The first test site was Manhattan in New York City.
The experiments were performed near Times Square, which
is one of the world’s busiest pedestrian intersections. The
second test location was the the European city of Turin,
in Italy. Of these, we use the camera data collected during
LookUp experiments in Manhattan, New York.

We discuss the results from LookUp briefly. First off,
crossing detection algorithm is evaluated for delay and
detection performance. This evaluation is carried out for
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Fig. 11: Comparison of Camera and Shoe-Sensing Approach.
Data from New York.

the Manhattan and Turin testbeds. These results establish
that the crossing detection algorithm has very low false
positives for a high detection rate, even at locations that
have completely different street designs. LookUp uses steps
as the evaluation metric, which provides a comprehension
of time and distance. To understand the timeliness of event
detections, the delay distribution of the detections is an-
alyzed. Maximum number of detections occur at the step
right before the entrance, followed by the first step into the
street. The highest density of detected events lies in the steps
before the entrance.

9.1 Comparison results
Figure 11 shows a comparison of the true positive rate and
false positive rate from both the systems. It is important
to remember that true positives are the correct detection of
street entrance events, while false positives denote incorrect
street detections. The camera system alone had a detection
rate of 88% compared to 94% of the shoe-sensing. 85%
detections were common among both (intersection), while
together (union), they exhibit a true positive rate of 97%.
Of the total false positive rate of 2.6%, almost none were
common among the two approaches. 1.5% were caused
by shoe sensors and 1.1% by the camera approach. This
reveals that while the gradient profiling approach has better
performance, the camera-based approach may be slightly
more resilient to false positives. Moreover, the absence of
common false positives denotes that these two approaches
are complimentary to each other, and thus can be potentially
combined to formulate a robust system.

10 DISCUSSION

Accurately distinguishing materials in urban environments
is a challenging problem due to the apparent similarities
in their appearances. We have presented a mobile-camera
based material classification approach, which unlike previ-
ous work, aims at recognizing texture rather than objects
in camera’s field of view. Through large-scale test data
collected across cities, we have demonstrated that texture
information can be used for distinguishing between mate-
rials in noisy outdoor environments. We developed a street
entrance detection algorithm based on the aforesaid material

classification, as a system for alerting distracted pedestrians
when they enter the street.

The unique dataset from a pedestrian’s perspective is
one of our significant contributions. However, the data was
labeled manually, and certain simplifying assumptions were
made based on the pattern of the paving. For example,
concrete bricks and clay bricks were both labeled in the
broader bricks category. Similarly, asphalt includes both,
streets with and without painted crosswalk. Sometimes,
due to blurriness caused by motion, it is hard to exactly
identify the material. The aforesaid simplifications help us
narrow down the target groups for classification, and reduce
complications.

Camera sensing approaches, in general, are prone to
lighting conditions, and can be severely impacted by am-
bient noise, such as bright lights. Additionally, real world
environments are cluttered and the presence of unexpected
objects can influence the algorithm performance. Like any
vision-based technique, the performance of TerraFirma dur-
ing night depends heavily on the presence of street lights.
In the absence of street lights, this performance deteriorate.
While the present data was collected mostly during the
day, we will gather data during night time, and explore
TerraFirma’s performance.

Camera sensing is also vulnerable to obstruction by the
user’s hand during texting, which is more likely when the
phone is being used in the landscape mode. Recently, with
the advent of deep learning techniques, the performance of
the system may be significantly improved, but our system is
targeted at mobile cameras with meager resources. Consid-
ering the limitations in computation power and memory,
and the rich image data, deep neural networks can be
computationally intensive.

We contrast our approach to earlier approaches of
smartphone-based sensors and shoe mounted inertial sen-
sors. In terms of performance, we site our work in between
these two approaches. In urban environments, camera sens-
ing yields better results compared to other sensors on the
smartphone, such as GPS and inertial sensors. However,
even with efficient texture analysis techniques, considerable
amount of work would be needed to match the performance
of the shoe-sensor. Cameras potentially capture a much
richer feature space than an inertial sensor, which would
lead one to believe that higher accuracy should be possi-
ble. However, it is challenging to extract this information
from imagery and even a design based on the state-of-
art texture algorithms cannot yet match the accuracy of
the dedicated shoe sensor. Nonetheless, it can detect street
entrances irrespective of the ramps or curbs, that the inertial
technique relies on. Consequently, it can also be effective
in scenarios that inertial ground profiling is impervious to,
such as where street and sidewalk are at the same level with
no palpable difference in gradient. Overall, we have demon-
strated that our technique can provide useful information
when dedicated sensors are not available or complement
inertial sensing approaches in mitigating false positives, and
designing a robust system. This work is a demonstration of
the feasibility of performing fine-grained pixel-based texture
recognition on mobile cameras. One can further improve the
performance by employing sophisticated vision techniques
that can reduce blur and compensate for changing light
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conditions.

11 CONCLUSION

To address the concerns surrounding heightened pedestrian
risk, we explored the potential of smartphone-based camera
sensing to identify paving materials in urban environments,
and to detect sidewalk-street transitions. We collected in-
the-wild walking data across complex metropolitan envi-
ronments - New York, Paris, London, and Pittsburgh. This
outdoor uncontrolled dataset will be released for public use,
and is currently available upon request. We show through
experiments across four major cities of the world that tex-
ture analysis techniques can be effectively used for such
classification. For material classification, our results show
encouraging classification accuracy of more than 90% for as-
phalt, brick, and concrete. We also evaluated our algorithm
across cities, and achieve high accuracy for data collected on
similar types of cameras, such as smartphones. Our entrance
detection results show encouraging detection rates of 90%
with less than 3% false positives. We demonstrate through
an Android implementation that with lower frame capture
rates, our system can be used favorably during routine
outdoor walking sessions. Overall, by demonstrating that
mobile cameras can be used for texture recognition and
material classification in outdoor cluttered urban environ-
ments, we believe that we have introduced new avenues in
mobile camera sensing.
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