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Abstract—Embedded screen–camera communication tech-
niques encode information in screen imagery that can be decoded
with a camera receiver yet remains unobtrusive to the human
observer. These techniques have applications in tagging content
on screens similar to QR-code tagging for other objects. This
paper characterizes the design space for flicker-free embedded
screen–camera communication. In particular, we identify an
orthogonal dimension to prior work: spatial content-adaptive
encoding, and observe that it is essential to combine multiple
dimensions to achieve both high capacity and minimal flicker.
From these insights, we develop content-adaptive encoding tech-
niques that exploit visual features such as edges and texture
to unobtrusively communicate information. These can then be
layered over existing techniques to further boost the capacity.
Our experimental results show that there is potential to achieve
an average goodput of about 22 kbps, significantly outperforming
existing work while remaining flicker-free.

I. INTRODUCTION

With the pervasive use of screens and cameras, screen–

camera communication through QR-code-like tags has

emerged in diverse applications from pairing devices to ob-

taining context from advertisements and other screen content.

When placing such codes on screens, they occupy valuable

screen real estate, which results in undesirable compromises.

Either the visual code replaces most of the imagery on the

screen, which usually distracts from the aesthetics of the

image or video, or the code only uses a small area of the

screen, which leads to less throughput and requires the camera

receiver to be closer to the screen. This conundrum motivates

embedding such codes into the screen imagery so that the code

is detectable with camera receivers but imperceptible for the

human visual system.

While there have been a few existing efforts on embedded

screen-camera communications, they tend to achieve either

high throughput but noticeable flicker or virtually flicker-free

embedding but low throughput, as illustrated in Fig. 1. In

particular, InFrame++ [1] utilizes the flicker fusion property

of the human visual system to embed data. It relies on high

screen refresh and camera frame rates to modulate the image

at rates faster than the human eye can perceive. It can therefore

transmit data at 18 kbps, but noticeable flicker remains.

HiLight [2] modulates bits through slight pixel translucency

changes, which reduces flicker to unnoticable levels but only
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Fig. 1: State of the art methods for screen–camera com-

munication compromise either visual obtrusion or goodput.

TextureCode selectively embeds in textured regions of images

to reduce flicker, but still achieves superior goodput.

supports a low bit rate. The setting is also related to the classic

watermarking literature, but only some of the work considers

camera capture, usually involving ultra-low data rates of a

few bits per second [3], [4]. These are sufficient for digital

rights management applications to address movie piracy, but

do not meet the capacity and flicker requirements of pervasive

screen tags. Overall, existing work tends to each explore one

technique for embedding, and it is unclear what the limitations

are.

In this paper, we systematically explore psychovisual factors

leading to flicker perception and uncover additional dimen-

sions of the flicker-free embedding design space. In particular,

we study adaptive spatial encoding in the screen–camera com-

munication channel, which has hitherto remained unexplored.

Conceptually, spatially adaptive encoding in screen–camera

systems resembles adapting modulation and coding rates on

different streams in a spatially multiplexed precoded Multiple

Input Multiple Output (MIMO) radio system. In practice, how-

ever, the screen–camera communication channel imposes very

different challenges. Radio frequency MIMO often requires

precoding because typical MIMO spatial streams interfere

with one another and need to be decorrelated for the best



encoding opportunities and decoding performance. In the case

of screen–camera communication, or visual MIMO, however,

the individual pixel-to-pixel links are very directional, and

there is little interference between such “spatial” links (ne-

glecting image blur). Instead, the primary challenge is that

the modulation and coding techniques should not only max-

imize communication performance but also minimize image

distortions and flicker for the human observer. In addition,

the communication techniques must be robust to noise from

the carrier image or video and work without feedback from

the receiver, since the screen–camera channel is a one-way

channel.

Our work addresses the challenges by exploring several

factors for flicker perception and combining corresponding

coding opportunities. First, since both flicker perception and

receiver noise depend on the visual content of the frame that

the information is embedded in, we design a texture-based

estimator that determines the suitability for embedding in

each pixel block of the screen. This information then governs

the choice of modulation and lends to the spatially adaptive

approach. It also addresses the unknown channel state at the

transmitter, since the texture analysis effectively provides an

estimate of receiver noise on each block. Second, the technique

aligns the boundary of each encoded region along the existing

edges in the video sequences to minimize the visible artifacts

caused by encoded messages. Third, akin to earlier work,

we also modulate at a rate beyond the critical flicker fusion

threshold for most observers but remains decodable with the

high-frame rate (slow motion) cameras available in today’s

smartphones. Finally, we identify a lightweight approach fol-

lowing the same principles and delivering similar performance

at a much lower computational complexity.

In summary, the salient contributions of this work are:

• We analyze factors contributing to distortions and the

flicker perception of embedded screen–camera commu-

nication.

• We identify techniques to achieve spatially and content

adaptive embedding. We also show that it is possible

to achieve similar performance using a lightweight ap-

proach.

• We explore and combine multiple encoding methods to

embed information into arbitrary video content without

noticeable distortions or flicker.

• We show experimentally that our proposed methods have

the potential to more than double the goodput of existing

flicker-free screen–camera communication techniques.

II. FLICKER PERCEPTION FOR EMBEDDED

SCREEN–CAMERA COMMUNICATION

Flicker is a perceptual attribute normally defined for dis-

plays, seen as an apparent fluctuation in the brightness of the

display surface [5]. Prior psycho-visual studies have revealed

various effects in the displayed video that may contribute to

the perceivable flicker, such as the frame rate, image content,

saccades, and the viewer’s field of view.
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Fig. 2: Signal amplitude experiment.
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Fig. 3: Performance of flicker perception for different video

samples

By inducing brightness changes in a regular video to

modulate bits, embedded screen-camera communication can

naturally generate flicker. Therefore, we explore how to bal-

ance the conflicting goals of embedding bits and avoiding

flicker. Where applicable, we perform simple experiments to

provide qualitative hints. These follow the same settings as in

Section V, and the flicker level is assessed visually by the first

two authors.

A. Frame rate

It has long been known that flicker perception is prominent

for luminance fluctuations below 100 Hz [6], [7]. Although

this frequency threshold was determined using a single light

source, it is still applicable if we consider the modern display

as a collection of LED light sources.

In our case, the fluctuation is caused by switching between

bits at the same position of the video across frames. Since

such bit streams are random, we are constrained by the largest

differences between the codewords, the available display re-

fresh rate (up to 144 Hz), and the camera capture rate (up to

240 fps). Given the latter two constraints, we can expect to

display at 120 fps. The maximum codeword distance can then

be determined accordingly.

We place two uniform grayscale blocks side by side (Fig.

2). In each run, the left block has a fixed intensity value x,

while the right block’s color flips between x+α and x−β at

120 fps. Across runs, x varies from 0 to 250 at steps of 25.

Experiments show that the color deviation without inducing

flicker perception is α = 2 and β = 3. In other words, only

very slight color differences between adjacent blocks can be

tolerated. This suggests very limited scope for encoding bits

directly using pixel intensity changes.

B. Image content

Images of natural scenes often contain many textured re-

gions that we can use in our coding method. It is well known



that human vision is sensitive to even small intensity edges

[8], [9] and that texture affects the perception of intensity

transitions [10]. As a practical consequence of these perception

traits, intensity modifications in smooth regions are more likely

to cause flicker than textured regions. To take advantage of

this flicker reduction, our method adapts to image content by

detecting textured regions and embedding message bits within

this space.

To qualitatively evaluate the intuition of texture-based em-

bedding, we experiment with 20 videos of varied contents.

We divide each video frame into smooth and textured regions

(detailed in Section III), and embed bits into the smooth

regions only, the textured regions only, or all regions to

compare the flicker perception. Fig. 3 shows that embedding

into textured regions exhibits the least amount of flicker.

C. Saccades

Saccades are rapid, ballistic movements of the eyes that

abruptly change the point of fixation. In [11], the authors

introduced an edge between a white half frame and a black

half frame. The colors of the two halves were inverted in

rapid succession, and the human subjects still observed flicker

artifacts regardless of the switching frequency, even at 500 Hz.

Since it is common to use a block of pixels to encode a bit,

we also encounter edges between adjacent blocks of different

bits. When the two neighboring blocks are modulated with

“different phases”, i.e., one block changes from x+α to x−
β while the other changes in reverse, flicker is noticeable.

However, separating the blocks with some distance can reduce

or minimize the effect.

D. Viewer’s field of view

In the course of experiments, we also observe that the

level of flicker perception depends on the size of the encoded

regions in the video and the distance of the viewer from the

video displayed. We capture both effects with a single metric,

the size of the ”viewer’s field of view”. To measure this size,

we use a square block of different sizes for encoding without

changing other parameters and view the video from different

distances. Results show the smaller area fell into viewer’s

retina, i.e., the smaller block size or further distance, the less

flicker the viewer perceives. This suggests using only small

code blocks for encoding and avoiding parts of the image scene

that might attract attention.

E. Hints for code design

We make several observations from the exploration so far.

First, the first three factors above suggest opportunities for

modulating bits, while the field of view cannot be leveraged

easily, since the encoder side has no control. Second, each

factor alone offers limited flexibility in modulation. In other

words, to control flicker perception in the encoding process,

we have to work within a small range of brightness fluctu-

ation, which significantly constrains the code capacity. This

is precisely why HiLight and Inframe++ either achieves a

high goodput or negligible flicker perception, but not both
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Fig. 4: The block diagram of the different components in

TextureCode.

simultaneously. Third, the first three factors are orthogo-

nal, paving way for combining the corresponding techniques

leveraging the factors. Frame rate is a temporal property of

the video, whereas the image content and saccades mostly

affect the spatial domain. Based on these insights, we design

TextureCode to achieve high capacity at negligible flicker.

III. SPATIAL-TEMPORAL EMBEDDING

We exploit these observations of flicker perception and

explore schemes that operate both in the spatial and tem-

poral dimensions. We first discuss the temporal dimension

through the design of high-frame rate embedding that seeks

to operate beyond the human flicker fusion frequency. We

then discuss schemes that employ spatial adaptation based on

texture analysis to address the image content factor. Finally, we

align the boundary of each encoded region along the existing

edges in the images, to minimize the effect of visible artifacts

caused by encoded messages and to address saccades. This

is accomplished through a superpixel encoding technique. We

refer to combining these ideas in an approach that we call

TextureCode. A block diagram of this approach is shown in

Figure 4. In addition, as we will show in Section V, the video

frame content not selected in TextureCode could still be used

in other mechanisms to produce a hybrid version with better

goodput and no flicker.

A. Temporal embedding

We apply basic temporal embedding as follows. In our

system, we utilize a screen capable of playing video at high

speed (120 Hz) as our transmitter. The 120 fps video is created

from an original video at 30 fps by duplicating each frame in

the original videos to 4 new frames. These 4 new frames are

then used to embed messages.

Figure 5 shows how we embed messages inside a video

sequence. For each frame, the message structure is a rect-

angular M×N grid where each grid block carries one bit of

information. We choose a Manchester-like encoding scheme

for modulating bits to keep the frequency components of

the encoded video signal above 60 Hz. Since Manchester

encoding ensures a transition on every bit, it generates less low

frequency components in the modulated signal when multiple

consecutive bits are identical. For example, for a block with

bit 0 encoded, its luminance will be denoted as LOW-HIGH

in two consecutive frames. For a block with bit 1 encoded, its

luminance will be denoted as HIGH-LOW in two consecutive

frames. This modulation signal is then combined with the

sequence of carrier image frames. The carrier pixel values

inside each HIGH block are increased by α, which means

these pixels are made brighter. The pixel values inside each

LOW block are decreased by β, which is equivalent to making
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Fig. 5: Illustration of the encoding method.

these pixels darker. In our implementation, the two values are

chosen as α = 2, β = 3. This change is applied to the Y

channel in a YUV encoded frame.

B. Spatial embedding based on texture analysis

The effect of message-hiding to human eyes is not universal

across the video sequence. We observe that in some regions,

especially in regions having no or little texture, the flicker

is more obvious to see. This becomes motivation for us to

use texture analysis to select “good” regions to embed in

the video sequence. In particular, we seek to categorize the

blocks inside each video sequence as “good” or “bad” based

on its flicker effect when being encoded by Manchester coding

described above. We propose two techniques for this task: one

based on a machine learning technique called texton analysis

and the other one is pixel-based texture analysis method.

The former is the more accurate and complete technique for

identifying “good” and “bad” blocks, but it is computationally

heavy. Therefore, although the technique allows us to explore

to what extent of data throughput we can achieve with our

texture analysis, for dynamic scene videos, we employ the

second simpler method.

Texton analysis. For texture analysis, we employ texture

classification based on textons [12], [13]. The algorithm is

divided into a learning stage and a classification stage. In the

learning stage, training blocks are convolved with a filter bank

to generate filter responses as shown in Figure 6. Exemplar

filter responses are chosen as textons via K-means clustering

and are collected into a dictionary. After learning a texton

dictionary, we model texture as a distribution of textons. Given

a block in a video frame, we first convolve it with a filter bank

and then label each filter response with the closest texton in

the dictionary. The histogram of textons, which is the count

of each texton occurring in the labeling, provides us a model

corresponding to the training block.

Next, we use K-means clustering to divide our training set

of texton histograms into groups. For each group, we segment

videos so that only blocks belong to that group are encoded.

The videos are then graded based on their level of flicker.

Then, each texton histogram group is labeled “good” if the

videos have low flicker, and “bad” otherwise. In this manner,

we identify the type of texture that is amenable to message

embedding.

Each new block of an input video is pre-processed to

compare its texton histogram with our training set of texton

Fig. 6: Texton Method of Representing Textured Regions

histograms to find its label (“good” or “bad”). Based on this

label, the block is either used for message embedding or not.

Pixel-based texture analysis. Texton analysis is a compu-

tationally intensive process and becomes more challenging to

use in the dynamic scene videos as the varying content on each

frame will require recomputing the ”good” blocks to encode.

To address this issue, we also propose a computationally

efficient method to find the ”good” regions to encode. This

pixel-based texture analysis is based on the variations of spatial

pixel intensities. A larger variation value indicates a more

textured region.

C. Superpixels

In above sections, we described the Manchester encoding

at 120 fps, which ensures the frequency component in our

temporal video signal are above critical frequency threshold,

and texton analysis, which excludes the region with the kind

of textures that are likely to cause flicker. The flicker, although

significantly reduced, is still observable. We observed that the

flicker artifacts appear along the edges between checkerboard

blocks. This is the result of the phenomenon described in sec-

tion II, where two neighboring blocks modulated at different

phases would cause flicker artifacts at their edges, even at

frame rate as high as 120 fps. In addition, these edges are not

naturally aligned to existing edges in original video contents,

causing visible flicker to human eyes. From these observations,

we are motivated to seek another technique to improve the

unobtrusiveness of the encoded videos. This technique would

ensure: (1) Separate the encoded regions (i.e., get rid of edges

between them), and (2) align the border of each encoded region

to the existing edges in the original frame.

The technique we chose to fulfill this requirement is super-

pixels, a computer vision technique that provides a convenient

primitive from which to compute local image features. It is a

method of oversegmentation techniques: an image is divided

into sub-regions with respect to image edges, and pixels inside

each region are uniform in color and texture. To generate

superpixels, we use SLIC (Simple Linear Iterative Clustering)

algorithm [14], which is fast and has high segmentation

performance.

We use superpixels to determine which pixels inside

checkerboard grid to embed information. Recall that in our

scheme, pixels inside each block alternate between dark and

bright intensity values. However, we observe that if all pixels

inside each block are allowed to alternate, boundary between

blocks are perceivable by human eyes. Superpixels, therefore,

are employed to limit the region inside each block where pixels



Fig. 7: Texture encoding method (the pixels inside the blue

regions are encoded). The texton analysis avoids encoding in

plain texture area in the video frame, such as the road, the

sky, etc. while encoding in the high texture area, such as the

cars, the buildings, etc. The superpixels method then further

separates encoded blocks (avoid boundary effect), and also

aligns their boundaries to the existing edges in the video frame.

are allowed to alternate. This approach also allows boundaries

of each encoded region to align with the real edges in the video

frame, thus reduce significant perceivable flicker to human

eyes.

Although superpixels can align the boundary of each en-

coded region to the existing edges of the original video frame,

the receiver needs to know the location of each super pixel (i.e.

which pixels in the original video frame belongs to which

superpixel), which means it needs to rebuild the superpixel

map for each video frame. The superpixels are also varying in

size and shape, which can cause varying quality of decoding.

To solve these problems for block-based decoding, we propose

a block-superpixel hybrid encoding method as follows.

Each video frame is first segmented into superpixels and

also divided into checkerboard blocks. In each checkerboard

block, we find superpixels that completely fall into that block,

and mark pixels inside these superpixels to be encoded. These

pixels are then alternated following the previously described

method, while other pixels in the block are kept the same.

Figure 7 shows an example of how pixels inside each block

are chosen to be encoded. This hybrid encoding method has

the following desirable properties: 1) it aligns the boundary of

each encoded region to existing edges in each video frame; 2)

it ensures there is no common edge between any two encoded

units (blocks), and 3) it allows an easy block-based decoding

method—there is no need to rebuild the superpixels map on

the receiver side.

D. Receiver and decoder

The receiver in our system is a camera capable of capturing

video at 240 Hz. To evaluate our decoding algorithm, we first

captured high frame rate videos from the camera and then

extracted all frames inside these videos for offline processing.

The offline processing algorithm is implemented in Matlab.

1) Frame perspective correction and spatial block division:

Because of the capturing angle and the camera distortion, the

received video frames are normally trapezoids. This would

bring some difficulties to the decoder when recovering the

correct location of spatial blocks. Therefore, after extraction,

all frames need to be warped into correct perspective. We use

projective transformation for frame correction. After a frame

has been corrected, it will be divided into blocks for later

decoding process.

2) Decoding algorithm: The main challenge for the de-

coder is to extract the desired intensity change among the

intensity changes due to noise and the video content itself.

To minimize the effect of video contents to the decoder,

we choose to decode 8 encoded frames from an original

video frame. We are able to choose these 8 frames thanks

to the following observation: the change by pixel modulation

is relatively small compared to the change in video contents.

Therefore, by calculating the pixel-by-pixel difference between

consecutive frames, we can detect the starting point of each

8-frame group. As we capture the videos at double the screen

refresh rate, one frame from the transmitter would produce two

frames on the receiver. Therefore, within 8 received frames (or

4 sent frames), each checkerboard block will contain two bits,

as can be seen in Figure 5. We compare the average intensity of

each block over two frames with the average intensity over the

next two frames to determine the transmitted bit in this block.

The pseudocode for our decoding mechanism is described in

Algorithm 1.

Since the objective is primarily to evaluate the limits of

spatially adaptive embedding, we assume that the decoder

knows the checkerboard size, the original video resolution

and the encoded regions for each frame. This eliminates pixel

offsets and error for texture analysis on the receiver side

introduced from several factors, including video distortion,

ambient light change and camera exposure setting. In a full

protocol design, these parameters can be included in packet

headers or inferred through additional receiver processing.

IV. IMPLEMENTATION

The implementation of TextureCode consists of a transmitter

and a receiver component. For the transmitter, we take an

original image or video stream and a data bitstream as input,

generate an YUV sequence, and use glvideoplayer [15] to play

the video at 120 fps on a computer screen, whose refresh rate

is set to 120 Hz. We choose an uncompressed YUV format to

avoid any artifacts caused by video compression schemes. The

receiver is a smartphone camera with high frame rate video

recording capability. We chose the iPhone6 since it allows 240

fps capture. It captures the video sequence displayed on the

screen and detects the message embedded inside the video

sequence.

Currently, both the transmitter and the receiver work offline.

We use Matlab to multiplex the original video sequence with

the data stream to create an encoded version of the video. For

the receiver, we use a Matlab script to post-process the video

file recorded on the the iPhone.

We implement two algorithms to evaluate TextureCode. One

is the refined texton analysis and superpixels based method

for finding ”good” regions to encode. The other is more

computationally efficient, using pixel-based texture analysis



Algorithm 1 Decoding algorithm

Input: a captured video.

Output: a decoded stream of bits.

Extract frames from the capture video;

for each frame in the extracted sequence of frames do

Warp the frame into the correct perspective;

Crop the video region inside the frame;

end for

Detect the starting point of each 8-frame group;

for every 8-frame group of the same content do

for each block inside each frame do

a1, a2,..., a8 := average intensities of all pixels inside

this block in these 8 frames;

for i = 0, 1 do

if a4i+1 + a4i+2 < a4i+3 + a4i+4 then

outBit = 0;

else

outBit = 1;

end if

Save outBit to the output buffer;

end for

end for

end for

to find the ”textured pixels” and encode only in those blocks

with a high number of “textured pixels”. For the latter method,

we leave a few pixels unencoded at the block boundaries to

avoid flicker. We use the first method for videos with static

scene, as the texton analysis and superpixels are better at

detecting regions with near-zero flicker perception. We use

the lightweight pixel-based texture analysis for dynamic scene

videos.

V. EVALUATION

We experimentally evaluate the effectiveness of spatial-

temporal embedding and its orthogonality to different

schemes. In particular, we study the communication link

performance of the TextureCode approach in terms of goodput

and bit error rate and compare it with the existing HiLight [2]

and InFrame++ [1] schemes as baselines.

Experiment Settings. We conducted experiments in a well-

lit indoor office room environment using a display monitor

screen as the transmitter and a smartphone camera as the

receiver. We used an ASUS VG248QE 24-inch monitor to

display a set of test videos at a rate of 120 Hz1. The screen

resolution is 1360×760 while video resolution is 1280×720.

The displayed videos were recorded as video streams at 240

fps with an iPhone6 using its built-in camera application in

the Slo-Mo mode. The default distance between the screen

and the camera was set to 70 cm, where the screen fills

the camera image. The iPhone was mounted on a tripod as

shown in Figure 8. We selected a set of 10 videos from two

publicly available standard data sets [16], [17]. Table I shows

screenshots of sample test video sequences.

1the maximum refresh rate of the monitor is 144 Hz

Metrics. The primary metrics for evaluation are bit error

rate and goodput. We chose goodput over throughput since

the bit error rates can be highly variable for embedded screen-

camera communications. We define goodput as follows.

Goodput =
∑

all frames

D

t
(1)

where D is the number of correctly decoded bits and t is

the transmission time.

In addition, we also consider the transmit rate to understand

the effectiveness of the spatially adaptive embedding approach.

Note that the transmit rate in TextureCode is dependent on the

content of the carrier frames, because it encodes more bits in

image areas that are conducive to embedding. The transmit rate

therefore varies in TextureCode, while it remains constant in

the baseline schemes.

Transmit Rate =

N∑

i=1

Bi × b× V

N × F
(2)

where Bi is the total number of encoded blocks in frame

number i, b is the number of bits encoded in each block, V

is the video frame rate, N is the total number of frames in

the video sequence, and F is the number of frames needed to

encode one bit.

Schemes for Comparison. The two existing techniques

can be summarized as follows. HiLight [2] utilizes the alpha

channel to encode messages into each frame. In each carrier

frame, the alpha value is either 0 or ∆α, which is small (about

1-4%). The messages are embedded using Binary Frequency

Shift Keying (BFSK), where 6 frames are used to encode

bit 0 or 1 by translucency at 20 Hz or 30 Hz respectively.

InFrame++ [1] uses Spatial-Temporal complementary frames

(STCF) to design frame structures. In InFrame++, a Cell

consists of p × p physical pixels; a Block consists of c × c

neighboring Cells, and it is considered the basic information

carrying unit. InFrame++’s design boosts data throughput by

allowing each block to deliver multiple bits, distinguished by

different visual patterns.

For each sample video, we generated one test video se-

quence each for the three candidate encoding schemes (Tex-

tureCode, HiLight and InFrame++) where each image frame

of the test video was embedded with a random bit stream.

While we used the original implementation of HiLight using

the code provided by the authors, we implemented InFrame++

based on the description available in the paper [1], as we did

not have access to the code.

In addition, we implemented a hybrid encoding scheme

where we used our proposed TextureCode technique and the

HiLight scheme on different regions of each video frame.

As we will show through our evaluations, the hybrid scheme

improves the communication performance of HiLight while

inducing no flicker.

A. Communication Performance of TextureCode

We evaluate the communication link performance of Tex-

tureCode for two use-cases: (i) dynamic, where the visual
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TABLE I: The screenshots of some test video sequences.
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Fig. 8: Experiment setting

content (i.e. background) of the test video is changing, and

(ii) static, where the visual content of the test video does

not change. The experimental results are shown in Fig. 9,

where we plot the transmission rate, goodput, and BER of

TextureCode for each test video, for both the dynamic and

static cases, respectively. As mentioned earlier, TextureCode

achieves near-zero flicker perception for all the tested videos.

The experimental results from these plots indicate that Texture-

Code has an average goodput of 16.52 kbps for the dynamic

case and 15.16 kbps for the static case, while bounding the

average BER within 7% for the static case and within 20% for

the dynamic case. We observe that the BER achieved in the

static case is usually smaller than the dynamic case. This large

error spike in the dynamic case happens because the original,

unaltered video signal is changing, but our algorithm assumes

a constant base-video signal. In fact, the Jockey dynamic video

sequence has the fastest motion in our test, causing the highest

BER (18%).

B. Comparison of TextureCode with prior work

We compare the performance of TextureCode with HiLight,

InFrame++ and the Hybrid schemes in terms of the goodput

and flicker perception for the dynamic video cases, as shown

in Figure 10. We elaborate our inference on each of these

dimensions as follows:

1) Perceived flicker: We observed that while TextureCode,

HiLight and Hybrid schemes showed no signs of flicker

(flicker level was much below perceivable (subjective) thresh-

old), there was still some residual flicker in InFrame++ at

the test viewing distance of 70cm. While there are several

proposed objective metrics for video flicker, we are not aware

of any metrics applicable to high speed videos. Therefore, the

flicker assesment is the subjective assesment of the first two

authors, according to the grading scale described in Fig. 3. It

is worth noting that the flicker level of the InFrame++ scheme

can be reduced by limiting the encoding block size to 12x12,

as described in the the original paper [1]. Reduction in block-

Average

(kbps)

Max

(kbps)
Min

(kbps)

Standard

deviation

(kbps)

InFrame++ (S) 19.26 23.78 15.93 2.05

InFrame++ (D) 18.05 21.23 15.21 1.63

HiLight (S) 9.66 9.82 9.01 0.13

HiLight (D) 9.27 9.47 8.99 0.1

TextureCode (S) 15.16 22.94 6.96 5.55

TextureCode (D) 16.52 33.08 3.85 9.31

TextureCode-hybrid (S) 21.9 28.68 13.7 4.4

TextureCode-hybrid (D) 22.57 39.13 9.89 8.84

TABLE II: Summary of goodput for the four systems: In-

Frame++, HiLight, TextureCode and Hybrid system. S: Static

scenes, D: Dynamic scenes

size reduces the area over which the block spatial transitions

may be perceived by the human-eye. However, a reduction

in block size also translates to a reduction in communication

range. This is avoided in TextureCode as the design inherently

reduces flicker without reducing block size. In particular, the

texton analysis and superpixels methods ensure there are no

edges between neighboring encoded units and align the edges

of each encoded block to the edges already present in the

content of the image.

2) Goodput and BER: To ensure a fair comparison of the

candidate schemes we use a 32×32 block-size for all schemes.

We can observe from Figure 10 that TextureCode can achieve

higher goodput than HiLight, slightly lower goodput than

InFrame++, but InFrame++ introduces more visible flicker.

The measured BER of TextureCode is 10%, which is also

lower than the measured BERs of InFrame++ (31%) and

HiLight (40%). It should be noted that InFrame++ improves

the goodput by using a smaller block size—a block size of

12×12 would produce a throughput of hundreds of kbps.

However, when we experimented InFrame++ with block size

24×24, 12×12 and 8×8, we observed BER close to 50%,

which offers virtually no usable capacity. This is the result

of the inter-symbol interference and the pixel offset errors.

HiLight encodes bits by modulating the alpha channel to

reduce human flicker perception. Although this technique

significantly reduces flicker, with a block size of 32×32, the

luminance changes are not easily captured by the camera,

resulting in larger bit errors. We observed that the bit error

rate is as high as 40% for HiLight, hence reducing effective

goodput to about 10kbps.

The main advantage of using TextureCode is that it se-

lectively encodes pixel regions in the frame that have a

high signal-to-noise ratio at the receiver thus reducing the

number of errors in decoding such pixels, resulting in a high
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Fig. 9: Transmit rate and goodput performance. (a) Dynamic scene, (b) Static scene.
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Fig. 10: Comparison between systems.

goodput. To further improve the goodput of TextureCode, we

also explored a new hybrid technique, named TextureCode-

Hybrid, where we employ a mix of HiLight and TextureCode

in a screen-camera communication system. In particular, we

use TextureCode in “good” (high texture) blocks, and apply

HiLight encoding to embed messages in the “bad” (plain tex-

ture) blocks, resulting in a higher transmit rate. This technique

still ensures that there is no flicker in the encoded videos. Table

II shows the average goodput (averaged over all test video

samples) of the four candidate schemes: InFrame++, Texture-

Code, HiLight and the Hybrid systems. On average, the hybrid

system achieves 22 kbps of goodput, increasing the goodput of

TextureCode by 45% and the goodput of HiLight by 125%.

There is a larger deviation in goodput of TextureCode and

TextureCode-hybrid systems, because different texture content

results in different amounts of encoded video content. It is

worth noting that HiLight was demonstrated in real time and

InFrame++ achieved online encoding while the algorithm for

TextureCode currently runs offline. We plan to address this in

future work.

C. Microbenchmarking

1) Communication Range: We examine the communication

range of TextureCode by measuring the goodput and BER at

increasing screen-camera distance from 70 cm (the minimal

distance at which only the screen pixels project onto the
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Fig. 11: BER and goodput vs. distance.

camera image) to 150 cm. We plot the average bit error rate

(averaged over all videos) and goodput in Figure 11. The block

size is 32×32 in this experiment. As one can expect, the BER

increases with distance as the camera-captured block size be-

comes smaller, resulting in higher inter-pixel interference [18].

We observe that TextureCode performs well when the distance

is within 1 m, maintaining bit error rate less than 10% on

average. One possible solution to improve performance at

greater distances is to adaptively change encoded block sizes.

We reserve such considerations for future work.

2) Maximum Transmit Rate: Table III shows the maximum

transmit rates for HiLight, InFrame++, and TextureCode. A

major improvement through TextureCode is that it can embed a

bit for each block within every two frames of the carrier video,

while HiLight requires 6 frames and InFrame++ requires 8

frames (including about 4 transitional frames) respectively. Al-

though in TextureCode, the maximum transmit rate is reduced

by a factor of encodedPercentage, we observed that this factor

is about 30-40% from our experiments. As a result, the overall

theoretical limit on transmit rate of TextureCode is almost of

the order of HiLight and InFrame++.

VI. RELATED WORK

Screen-camera communication. Screen-camera communi-

cation began with codes that are not embedded. PixNet [19]

uses 2D OFDM to modulate high-throughput 2D barcode

frame, and optimizes high-capacity LCD-camera communica-

tion. COBRA [20] is a color barcode system for real-time

phone to phone transmission optimized for reducing decoding

errors caused by motion blur. Another orthogonal class of work



System Capacity

HiLight
frameRate∗N

6

InFrame++, τ = 4
frameRate∗N∗bitsPerBlock

8

TextureCode
frameRate∗N∗encodedPercentage

2

TABLE III: Comparison of Maximum Transmit Rate, which

is normalized for the video display frame rate and the number

of blocks per video frame. In InFrame++, bitsPerBlock is the

number of bits per encoded block. In TextureCode, encod-

edPercentage is the percentage of encoded regions over the

whole video frame.

includes resolving the frame synchronization problem [21],

extending the operational range [22], boosting the reliability

and throughput of the screen-camera communication link [23].

More recent studies have focused on embedded screen-to-

camera communications. Visual MIMO [24] is a real-time

dynamic and invisible message transmission between screen

and camera. VR Codes [25] is an invisible code to human

eye, which uses high-frequency red and green light to transmit

data to a smartphone’s camera, where only the mixed colors

are perceived by human eyes. HiLight [2] leverages pixel

transluency channel to encode data into any screen. InFrame++

[1] uses complimentary frame composition, hierarchical frame

structure and CDMA-like modulation to embed messages into

videos. TextureCode differs in that it explores spatial coding,

an orthogonal dimension to these previous works.

Video watermarking and steganography. Video water-

marking and steganography also make the embedding into

images and videos imperceptible [3] [4]. However, the tech-

niques do not address real-world challenges in screen-to-

camera communication channel as our system does. We made

observations as to finding appropriate regions (in an image) for

embedding inspired by the work in watermarking community

and proposed a novel technique that addresses screen–camera

channel distortions by encoding over spatio-temporal dimen-

sions.

VII. CONCLUSION AND FUTURE WORK

In this paper, we study high-rate flicker-free embedded

screen-camera communication. An examination of factors that

affect flicker perception leads us to explore the spatial dimen-

sion of the design space and to combine it with more conven-

tional temporal schemes. The resulting encoding scheme, Tex-

tureCode, is spatially adaptive based on texton and superpixel

analysis. Experimental results show that this approach reduces

flicker to unobservable levels while offering the potential to

meet or exceed the goodput of existing schemes. Realizing

this potential will still require a receiver that can automatically

recognize and adapt to the changing encoding regions in the

video stream.

These results also show promise for significantly improving

the performance of embedded screen-camera communications

through techniques that jointly use multiple dimensions of em-

bedding. This motivates future work to design such protocols,

more complete receivers, and online or real-time encoders.
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