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Abstract—By providing location traces of individual vehicles, 

mobile traffic sensors have quickly emerged as an important 

data source for traffic applications. In dealing with the privacy 

issues associated with this, researchers have been proposing 

different privacy protection algorithms. In this paper, we 

propose traffic-knowledge-based adversary models to attack 

privacy algorithms. By doing so, we can compare and evaluate 

different privacy algorithms in terms of both privacy 

protection and the convenience for traffic modeling. Results 

show that by having a relatively good privacy performance, the 

released datasets of both the 3.3 level of confusion entropy and 

the 0.1 individual likelihood can still be applied for a fine level 

of traffic applications. 

I. INTRODUCTION 

OBILE traffic sensors – those move with the traffic 

flow and have the potential to track the movement of 

individual vehicles by using location traces – have quickly 

emerged as an important data source and been widely used. 

Meanwhile, there are always privacy concerns associated 

with this approach [4], [7]. Some proposed privacy 

preserving methods try to address this issue via naïve 

anonymization techniques which simply remove vehicle 

identifiers [12]. However, by linking the driving pattern and 

sensitivity locations (e.g., home end, office building, etc.) 

with the driver, location traces can be easily re-identified. 

Other methods try to protect privacy by perturbing or 

reducing the accuracy for either spatial or temporal 

information [8], [11], [2]. In these cases, however, 

transportation modelers usually hesitate to use such datasets 

for traffic applications, especially for those requiring high 

accuracy spatial and temporal information (e.g., for arterial 

performance measurements). Similarly, reducing the 

sampling frequency [10] is also not a very promising 

approach, since the sampled location traces (say in a 1-

minute sampling interval) can barely be used for a fine level 

of traffic applications.  

Hoh et al. (2007) [4] introduced a novel time-to confusion 

metric to evaluate group-wide privacy in a set of location 

traces. They then propose an uncertainty-aware path 

cloaking algorithm which yields the time-to-confusion 
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criterion, in which the uncertainty of tracking is measured by 

entropy. Hoh et al. (2008) [5] proposed the idea of Virtual 

Trip Line (VTL), and showed that by using VTLs to regulate 

location and speed reports, privacy violations can be 

reduced. On top of that, Zan et al. (2011) [6] proposed a 

VTL zone-based path cloaking algorithm. The algorithm 

predefines VTL zones over the intersections of interests and 

only those vehicle trajectories within VTL zones (which also 

need to satisfy the entropy criterion) can be released. Using 

the released datasets as input, the success rate of traffic 

applications (in this case, queue length estimation) is 

acceptable. These existing algorithms use purely statistical 

traffic knowledge; information such as path likelihood and 

travel time distributions is estimated using historical data. 

Interestingly enough, the link between two neighboring VTL 

zones is actually similar to the concept of mix-zone as 

proposed by Bereford and Stajano (2004) [1]. In fact, the 

VTL-zone based algorithm defines the areas where mobile 

data should be collected, which can be considered as the 

opposite way of the mix-zone algorithm that defines areas 

where data should be suppressed. We believe the VTL-zone 

concept, by focusing on where data should be collected, 

minimizes the data collection effort and can better satisfy the 

data needs for traffic applications. For more comparisons 

between VTL zone based path cloaking algorithm and mix 

zone approaches, one can refer to [6]. 

In this paper, we evaluate how resilient these algorithms 

are to adversaries with more sophisticated traffic knowledge. 

In particular, we consider knowledge of travel time in the 

mix zones and signal delay patterns. We then measure how 

effective these are in linking released vehicle trajectories 

from two VTL zones. Moreover, since entropy is not a very 

intuitive metric in the transportation community, we also 

present results in terms of tracking success probability. The 

algorithms are evaluated using microscopic traffic 

simulation. The results reveal that by having a relatively 

good privacy performance, the released datasets of both the 

3.3 level of confusion entropy and the 0.1 individual 

likelihood can still be applied for a fine level of traffic 

applications. 

The paper is comprised of 6 sections. In Section 2, we 

introduce several privacy algorithms. We then propose our 

traffic-knowledge-based adversary models in Section 3. 

Evaluation of Privacy Preserving Algorithms Using Traffic 

Knowledge Based Adversary Models 

Zhanbo Sun, Bin Zan*, Jeff (Xuegang) Ban, Marco Gruteser* and Peng Hao  

Rensselaer Polytechnic Institute  

110 8th St. Troy, NY 12180-3590 

{sunz2, banx, haop}@rpi.edu 

*WINLAB, Rutgers University  

*671 Route 1 South, North Brunswick, NJ 08902-3390 

*{zanb, gruteser}@winlab.rutgers.edu 

M 



 

2 

 

 

Section 4 describes the performance measures we use to 

evaluate different privacy algorithms. Experiments and 

numerical results are shown in Section 5, followed by the 

conclusions in Section 6. 

II. THE PRIVACY PRESERVING ALGORITHMS 

In this section, we introduce several privacy algorithms 

including the baseline case, random sampling, individual 

likelihood based and entropy based algorithms. Detailed 

discussions of some of those algorithms can be found in [6]. 

A. VTL Zone and Baseline Case 

Being comprised of two Virtual Trip Lines (VTLs, [5]), 

one VTL zone covers one direction of an intersection. The 

two VTLs are designated to avoid major deceleration and 

acceleration processes due to traffic signals. GPS trace data 

is only collected within VTL zones: starting with the sample 

right before a vehicle enters into a VTL zone and ending 

with the sample right before a vehicle leaves a VTL zone. 

See Fig. 1. In this paper, the metric of privacy is based on 

the chance that vehicle trajectories may be linked at two 

VTL zones. 

In the baseline case, all the vehicle trajectories within 

VTL zones are released. Because of the discontinuity of 

vehicle trajectories at the link between two VTL zones, it is 

not a trivial task for the adversary to keep tracking the 

vehicle trajectories between two VTL zones.  

B. Random Sampling 

On top of the baseline case, in order to enhance the level 

of privacy, a naïve random sampling approach is proposed. 

In which a proportion of the sample trajectories is randomly 

selected and released at each VTL zones, so that it is even 

harder for the adversary to continuously tracking vehicle 

trajectories between two VTL zones. 

C. Individual Likelihood  

Inspired by the individual likelihood of being tracked [6], 

we use equation (1) as a privacy metric, which illustrates the 

likelihood of taking a given time period for a particular 

vehicle to go from one VTL zone to another, normalized 

over the summation of the likelihoods of all the possible 

vehicles which cannot be distinguished from the object 

vehicle.  

    
  

            
  

∑ ∑  
    

     
    
  

 
    

        

          (1) 

Where  is the whole set of vehicle IDs,   is the whole set 

of VTL zones,   is the target vehicle we are trying to track, 

which have the latest disclosed trajectory in VTL zone  ,   

is the current VTL zone we are looking at,      is the 

likelihood of any vehicle go through the path from   to  , 

which is calculated using historical data,     
  is the time 

period it takes for vehicle   to go from VTL zone   to  , and 

      is a discrete probability density function of the travel 

time distribution (from   to  ), which yields a three 

parameter Log-normal distribution, parameterized by Least 

Square Estimation (LSE) using historical data.  

Notice that the trajectory of vehicle   at VTL zone   

cannot be released when the individual likelihood     
  is 

larger than a predefined level, e.g., 0.1.  

D. Entropy 

Some researchers have used entropy to measure the 

tracking uncertainty [4], [6] and equation (2) is proposed to 

calculate the system-wide tracking uncertainty.  

   ∑ ∑      
 

                
          (2) 

Where   is the entropy metric and other related terms 

have already been defined in equation (1). By comparing the 

privacy metric   with a predefined confusion level  , we 

can then determine if one sample can be released or not. 

Intuitively, entropy is related to the factor that among how 

many vehicles the target vehicle can be indistinguishable.  It 

is also an aggregated measure of the probability of not 

tracking vehicles between two VTL zones. For example, 

when the entropy is equal to 0.95, this is about to say that 

one target vehicle is indistinguishable between two vehicles. 

We also try to combine both individual likelihood and 

entropy as the privacy metrics, and the overall performance 

has no major deviation from the one of individual likelihood 

dataset.  

III. TRAFFIC-KNOWLEDGE-BASED ADVERSARY MODEL 

In this section, we propose traffic-knowledge-based 

adversary models, which can be used to attack the released 

datasets by trying to link vehicle trajectories from two 

different VTL zones together. Two general cases are 

considered.  

A. Case 1 

Consider two neighboring VTL zones (   and   ) which 

cover two consecutive intersections, and with one link (   ) 

in between these two VTL zones, as shown in Fig. 1. 

On    , since vehicles are usually proceeding at a speed 

close to the Free Flow Speed and the 

acceleration/deceleration processes are usually unnoticeable, 

the travel time on      is very stable. In this paper, we 

propose two methods to estimate the travel time on    , one 

is simply the Free Flow Travel Time, which can be obtained 

by the length of      divided by the design speed; the other is 

an adjusted travel time, which can be obtained by the length 

of     divided by the estimated average speed on this link. 

The estimated average speed is calculated by taking the 

average of the speed of the last sample in    and the first 

sample in   . In essence, the adversary does not know which 

Fig. 1.  VTL zones (Case 1) 



 

3 

 

 

travel time is closer to the ground truth; however, it is 

conservative to assume that the adversary will always 

choose the travel time which has the best performance, 

referred as    . 

Now target on a set of released vehicles (    which go 

through   . Then for vehicle     , based on its trajectory 

in   , it is easy to tell when it leaves   , referred as   
 . The 

time that   enters    can then be approximated as   
     

 , 

referred as   
 . See equation (3). 

   
     

     
                  (3) 

If we slightly relax the travel time estimation and give a 

threshold   , then the vehicle enters VTL zone 2 within time 

period [   
        

    ] are very likely to be the same 

vehicle as vehicle  . In other words, consider a set of 

released vehicles (    which go through    , then for 

vehicle     , with   
  as the time that vehicle   enters 

into   , if   
       

     
    , we add   into a 

suspect list ( ), meaning that   is likely to be the same 

vehicle as  . If   is not empty, we can then choose the 

vehicle  ̂ which satisfies equation (4) as an inference.  

 ̂           |  
     

 |             (4) 

That means  ̂ is the vehicle whose entrance time to    is 

the closest to the estimated entrance time of vehicle       
  . 

If the inference is correct ( ̂    , the vehicle trajectories at 

two neighboring VTL zones can be linked, the privacy is 

thus violated.  

B. Case 2 

Consider two VTL zones which are not neighbored with 

each other (e.g.,   ,    and   , which cover a corridor with 

three intersections, and the adversary model is trying to link 

the vehicle trajectories from    to   , as shown in Fig. 2). 

Following the same logic as Case 1, the travel times on the 

links (    ,    ) between two consecutive VTL zones are 

very stable, which can be estimated as     and    , using the 

same approaches as Case 1. 

Now we attempt to link the trajectories from a set of 

released vehicles (    which go through    to a set of 

released vehicles (    which go through   . For 

vehicle     , the time that   enters    can then be 

approximated as equation (5).  

   
    

     
      

     
             (5) 

Where   
  is the estimated time that   enters   ,    

  is the 

time that   leaves   ;    
  and    

  are the estimated travel 

time of   on the links between   and   , and between    

and   , respectively;     
  is the travel time of vehicle   

within   , which can be estimated via the delay pattern of    

[14]. See Fig. 3. Notice that the delay pattern of    is 

reconstructed using the trajectories of a set of released 

vehicles (    which go through   , and the signal timing 

information. Thus for vehicle     , with   
 as the time that 

vehicle   enters into   , if   
       

     
    , we 

add   into a suspect list ( ). If   is not empty, we can then 

choose the vehicle  ̂ which satisfies equation (6) as an 

inference.  

 ̂           |  
     

 |             (6) 

If the inference is correct ( ̂    , the vehicle trajectories 

at     and     can be linked, the privacy is thus violated.  

IV. PERFORMANCE MEASURES 

In this section, we describe the measures we use to 

evaluate the performance of the privacy algorithms, with 

respect to both privacy protection and the convenience for 

traffic modeling.  

A. Privacy Protection 

In terms of privacy protection, the performance of the 

privacy models can be evaluated by applying the adversary 

models. In this paper, we use two measures to indicate this, 

namely, the percentage of tracked trajectories (    and the 

percentage of correct inference (   . Obtained by using the 

number of correct inference divided by the total number of 

trajectories (do not necessarily need to be released) going 

through both the VTL zones (e.g., both    and     in Case 

1;   ,    and   in Case 2),    indicates the probability that 

the trajectories of one vehicle can be successfully linked at 

the two VTL zones. Different from   ,    is obtained by 

using the number of correct inference divided by the total 

number of inference, which indicates how accurate the 

inferences are. 

From the perspective of individuals,    may seem to be 

more important, since it reveals the potential risk that one 

vehicle trajectory can be tracked. However,    is indeed 

equally important, because even though the trajectories can 

be linked, the linkage is highly possible to be incorrect, thus 

the adversary has no way to prove that the linked trajectories 

Fig. 2. VTL zones (Case 2) 

 
Fig. 3. Reconstruction delay pattern. A typical signalized intersection is 

shown here. Given the trajectories of a set of released vehicles   that 

go through    (dashed lines) and the signal timing information, we can 
use the bold solid triangles (in the upper part) to represent how queue 
forms and dissipates. By analyzing the geometry of the triangles, we 

can then construct the theoretical delay curve (piecewise linear curves 

at the bottom), which indicates the travel time an imaginary vehicle 
will experience when arriving at the intersection at a given time. 
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correspond to the same driver. 

Notice that in our adversary models, one released vehicle 

trajectory in the current VTL zone (e.g.,   , as of Case 1) 

can at most correspond to one inference (which is selected 

from the suspect list) based on equation (4) or (6). It is also 

worthy to mention that there are some situations in which 

the suspect list (   is empty, therefore no inference can be 

made in these situations.  

B. Convenience for Traffic Modeling 

A tradeoff usually exists between privacy protection and 

traffic applications, meaning by having a high level of 

privacy, transportation researchers may have to, to some 

extent, sacrifice the ease of traffic modeling. Thus it is 

important to make sure that after applying the privacy 

algorithms, the released datasets can still be used for traffic 

modeling, especially (and to the greatest interest of the 

author) arterial performance estimation (e.g., queue length 

estimation, delay pattern estimation, etc.). Two measures are 

used in our work: one is the released number of trajectories 

in each VTL zone (compared with the total number of 

trajectories in the baseline case); the other is the percentage 

of the number of cycles (out of the total number of cycles in 

the simulation) for which queue length estimation can be 

successfully performed, which is defined as the success rate 

in [13].  

V. EXPERIMENT AND NUMERICAL RESULTS 

In this section, we evaluate the privacy algorithms using 

the performance measures we mentioned in section IV. 

Detailed results of the numerical experiment are presented 

here.  

A. Simulation Settings 

The traffic simulation is run in Paramics for about an 

hour. Vehicle trajectory data is then extracted from a sub-

network of the SR41 corridor located at the city of Fresno, 

CA [9]. The selected network covers over 90 signalized 

intersection and 15 ramp metering controller. A total number 

of 102 VTL zones are deployed. See Fig. 4.  

B. Evaluation in Terms of Privacy Preserving 

By using the traffic-knowledge-based adversary model to 

attack the released datasets, we can evaluate the performance 

of the privacy algorithms in terms of privacy preserving.  

1) Case 1 

For Case 1, we list the results of 10 pairs of VTL zones, in 

which the traffic volumes are relatively large. Table 1 shows 

the performance of baseline case: column 2 and column 3 

are the upstream and downstream VTL zones, expressed by 

the link sequence that one VTL zone covers; column 4 is the 

number of released trajectories which go through both    

and    (as of the baseline case, trajectories of all vehicles are 

released); column 5 and column 6 are the number of released 

trajectories within    and   , respectively; column 7 is the 

number of inferences can be made, notice that one released 

trajectory in    can at most correspond to one inference (it is 

possible that   is empty, no inference can be made in this 

case); column 8 is the number of correct inferences; column 

9 corresponds to    in section IV, which can be obtained by 

using column 8 divided by the actual number of trajectories 

which go through both    and   ; column 10 corresponds to 

   in section IV, which can be obtained by using column 8 

divided by column 7. 

Table 1 essentially illustrates that the idea of only 

releasing vehicle trajectories within VTL zones is, to some 

extent, useful to preserve privacy; however, this may not be 

sufficient since there are still a large proportion (about 35% 

in average) of vehicles trajectories can be successful tracked.  

The results for random sampling (50% trajectories are 

released) case are shown in Table 2. Compared with the 

baseline case, random sampling models are able to protect 

privacy by filtering out some sample trajectories at each 

VTL zone, so that fewer trajectories can be tracked and more 

inaccurate the inference becomes. As it is shown in Fig. 5, 

when sampling rate decreases, more trajectories are filtered 

out, and as a result, the first privacy measure (    drops. 

However, the second privacy measure (    may not 

necessarily decrease as the sampling rate increases, meaning 

the random sampling method cannot guarantee the accuracy 

of the inferences will decrease as more samples are filtered 

out, see Fig. 6. 

 

 

 

 

 

 

  

 
Fig. 5. Baseline case vs. random sampling      

 
Fig. 6. Baseline case vs. random sampling (    

 

Fig. 4. Simulation network 
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Table 1. Privacy performance of the baseline dataset (Case 1) 

No.       No. of Released 

Trajectories 

(Both    and 

  ) 

No. of Released 

Trajectories(  ) 

No. of 

Released 

Trajectories 

(  ) 

No. of 

Inferences 

No. of 

Correct 

Inferences 

Percentage of 

Tracked 

Trajectories 

Percentage of 

Correct 

Inferences 

1 597_598_599 601_602 1136 1496 1225 1446 269 23.7% 18.6% 

2 554_555 556_557 517 586 1144 585 196 37.9% 33.5% 

3 556_557 559_560 452 1144 622 944 184 40.7% 19.5% 

4 559_560 562_563 579 622 757 597 191 33.0% 32.0% 

5 612_613_614 616_617 886 969 1112 934 183 20.7% 19.6% 

6 658_659 660_661_662 495 999 642 871 228 46.1% 26.2% 

7 780_781_782 784_785 424 475 923 466 183 43.2% 39.3% 

8 690_691_692 692_693_694 625 915 672 807 196 31.4% 24.3% 

9 692_693_694 694_695_696 514 672 599 643 203 39.5% 31.6% 

10 529_530 531_532_533 673 892 765 846 246 36.6% 29.1% 

 

Table 2. Privacy performance of the 50% random sampling dataset (Case 1) 

No.       

No. of Released 

Trajectories 

(Both    and   ) 

No. of Released 

Trajectories(  ) 

No. of Released 

Trajectories (  ) 

No. of 

Inferences 

No. of 

Correct 

Inferences 

Percentage of 

Tracked 

Trajectories 

Percentage 

of Correct 

Inferences 

1 597_598_599 601_602 278 729 604 640 125 11.0% 19.5% 

2 554_555 556_557 136 309 564 275 79 15.3% 28.7% 

3 556_557 559_560 104 564 306 345 58 12.8% 16.8% 

4 559_560 562_563 136 306 380 262 66 11.4% 25.2% 

5 612_613_614 616_617 231 497 559 413 77 8.7% 18.6% 

6 658_659 660_661_662 135 510 314 353 80 16.2% 22.7% 

7 780_781_782 784_785 97 237 443 216 60 14.2% 27.8% 

8 690_691_692 692_693_694 169 459 362 353 81 13.0% 22.9% 

9 692_693_694 694_695_696 140 362 299 315 84 16.3% 26.7% 

10 529_530 531_532_533 172 427 389 380 88 13.1% 23.2% 

 

Table 4. Privacy performance of the 3.3 level of confusion entropy dataset (Case 1) 

No.       

No. of Released 

Trajectories 

(Both    and   ) 

No. of Released 

Trajectories(  ) 

No. of Released 

Trajectories (  ) 

No. of 
Inferences 

No. of 

Correct 

Inferences 

Percentage of 

Tracked 

Trajectories 

Percentage 

of Correct 

Inferences 

1 597_598_599 601_602 622 1492 709 1214 185 16.3% 15.2% 

2 554_555 556_557 150 570 778 396 84 16.2% 21.2% 

3 556_557 559_560 174 778 461 414 66 14.6% 15.9% 

4 559_560 562_563 41 461 286 172 30 5.2% 17.4% 

5 612_613_614 616_617 125 496 574 307 46 5.2% 15.0% 

6 658_659 660_661_662 30 385 364 118 13 2.6% 11.0% 

7 780_781_782 784_785 28 345 550 93 18 4.2% 19.4% 

8 690_691_692 692_693_694 100 505 276 172 43 6.9% 25.0% 

9 692_693_694 694_695_696 80 276 363 209 51 9.9% 24.4% 

10 529_530 531_532_533 226 583 478 488 107 15.9% 21.9% 

 

Table 3. Privacy performance of the 0.1 individual likelihood dataset (Case 1) 

No.       

No. of Released 

Trajectories 

(Both    and   ) 

No. of Released 

Trajectories(  ) 

No. of Released 

Trajectories (  ) 

No. of 

Inferences 

No. of 

Correct 

Inferences 

Percentage of 

Tracked 

Trajectories 

Percentage 

of Correct 

Inferences 

1 597_598_599 601_602 341 1481 440 890 95 8.4% 10.7% 

2 554_555 556_557 177 519 870 412 75 14.5% 18.2% 

3 556_557 559_560 88 870 343 407 21 4.6% 5.2% 

4 559_560 562_563 36 343 466 262 11 1.9% 4.2% 

5 612_613_614 616_617 227 560 673 462 76 8.6% 16.5% 

6 658_659 660_661_662 51 468 413 266 11 2.2% 4.1% 

7 780_781_782 784_785 91 334 709 296 58 13.7% 19.6% 

8 690_691_692 692_693_694 159 669 307 387 60 9.6% 15.5% 

9 692_693_694 694_695_696 90 307 401 261 60 11.7% 23.0% 

10 529_530 531_532_533 292 750 480 613 109 16.2% 17.8% 
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Table 3 indicates the results of 0.1 individual likelihood 

dataset. By compared with Table 2, one can tell that while 

releasing much more samples than the random sampling 

dataset (e.g., Scenario No. 1, 2) or almost the same number 

of samples at each VTL zone (e.g. Scenario No. 5, 8), the 

individual likelihood dataset has overall higher level of 

privacy.  

We also show the results for different individual 

likelihoods (e.g., 0.2, 0.5, 0.8), as shown in Fig. 7 and Fig. 8. 

In contrast to the random sampling method, a stricter 

threshold here leads to decreases in both    and   , resulting 

a higher level of privacy. 

 The results for the 3.3 level of confusion entropy dataset 

are shown in Table 4. By comparing this with Table 3, one 

can find that in terms of privacy protection, these two 

datasets are comparable with each other, at least under the 

attack models considered here. For   , 0.1 individual 

likelihood dataset has better performance in 5 out of 10 

examples; for   , 0.1 individual likelihood dataset has better 

performance in 8 out of 10 examples. As expected, a higher 

level of privacy can be obtained by using a higher level of 

confusion, as shown in Fig. 9 and Fig. 10.  

Fig. 11 and Fig. 12 compare the performance of datasets 

generated by different privacy algorithms. Notice that the 

amounts of sample trajectories these three datasets release at 

each VTL zone are generally comparable. In terms of   , the 

performance of these three datasets are very close to each 

other, the 0.1 individual likelihood and the 3.3 level of 

confusion entropy dataset are slightly better than 50% 

random sampling dataset; in terms of   , 0.1 individual 

likelihood dataset has the best performance, followed by the 

3.3 level of confusion entropy dataset and then the 50% 

random sampling dataset.   

2) Case 2 

For case 2, here we list the results for 5 pairs of non-

neighboring VTL zones. Table 5 shows that for the baseline 

case, the average percentage of tracked vehicles is about 

12.6%, and among all the inferences, about 6.8% in average 

are correct. This implies that even though the adversary has 

access to the signal information and a relatively good traffic-

knowledge-based travel time estimation model, it is still very 

difficult to successfully track vehicle trajectories from non-

neighboring VTL zones.  

Similar experiments have been done using random 

sampling datasets, individual likelihood datasets and entropy 

datasets. The results and implications generally match with 

 
Fig. 8. Baseline case vs. individual likelihood (    

Fig. 7. Baseline case vs. individual likelihood (    
 

 
Fig. 9. Baseline case vs. entropy (    

 
Fig. 10. Baseline case vs. entropy (    

 

 
Fig. 11. Privacy performance of different datasets (    

 

 
Fig. 12. Privacy performance of different datasets (    
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those of Case 1. It is worthy to mention that the level of 

privacy of baseline dataset is already quite high. Even 

though further implementation of other privacy algorithm 

can improve the performance, not too much improvement 

can be obtained. For example, for 0.1 individual likelihood 

dataset, the value of    is 9.1% in average; and the value of 

  is 7.8%, which do not improve much from the baseline 

dataset.  

C. Evaluation in Terms of Modeling Convenience 

On top of an acceptable level of privacy, the modeling 

convenience of a released dataset should also be evaluated. 

Fig. 13 indicates the vehicle trajectories for the baseline 

dataset and Fig. 14 indicates the vehicle trajectories for the 

0.1 individual likelihood dataset. As we can tell, in order to 

protect privacy, some of the trajectories have been filtered 

out in Fig. 14. And we want to test if the remaining 

trajectories are still enough for queue length estimation [13]. 

In particular, we compared 0.1 individual likelihood 

dataset and 3.3 level of confusion dataset, and the results are 

shown in Table 6. Notice that both datasets release almost 

all the trajectories at the first intersection. The reason for this 

is that this intersection is the very first intersection which is 

close to the entrance of the road network, thus both 

algorithms pretty much release all the trajectories at this 

intersection. For the cases where success rates are relatively 

low (e.g., about 30% for intersection 6 and about 37% for 

intersection 15), that is because some of the cycles for those 

intersections are uncongested, thus there is insufficient data 

(even for the baseline case) to support queue length 

estimation. There are also some cases in which one dataset 

releases more trajectories but ends up having a smaller 

success rate (e.g., intersection 5, intersection 15 and 

intersection 17). That is because the algorithm is releasing 

more samples in the cycles which already have many 

samples, but is not releasing enough samples in some cycles 

which have little samples. Compared with the baseline case, 

Fig. 14. Released vehicle trajectories (0.1 individual likelihood, 556_557) 
 

Table 5. Privacy performance of the baseline dataset (Case 2) 

No.       

No. of Released 

Trajectories 

(Both    and   ) 

No. of Released 

Trajectories(  ) 

No. of Released 

Trajectories (  ) 

No. of 

Inferences 

No. of 

Correct 
Inferences 

Percentage 

of Tracked 
Trajectories 

Percentage of 

Correct 
Inferences 

1 554_555 559_560 197 586 622 495 39 19.8% 7.9% 

2 556_557 562_563 417 1144 757 972 60 14.4% 6.2% 

3 690_691_692 694_695_696 467 915 599 764 59 12.6% 7.7% 

4 529_530 533_534_535 553 892 730 651 55 9.9% 8.4% 

5 797_798 802_803_804 185 749 341 317 12 6.5% 3.8% 

 Table 6. Entropy vs. individual likelihood (convenience of traffic modeling) 

No. Intersection 

No. of Released Trajectories  Success Rate for Queue Length Estimation  

Winner 3.3 level of 

confusion 

0.1 individual 

likelihood 

3.3 level of 

confusion 

0.1 individual 

likelihood 
Baseline 

1 597_598_599 1492/1496 1481/1496 79.6% 79.6% 81.8% Entropy 

2 601_602 709/1225 440/1225 64.4% 57.8% 75.6% Entropy 

3 554_555 570/586 519/586 96.4% 96.4% 96.4% Entropy 

4 556_557 778/1144 870/1144 64.8% 64.8% 70.1% Individual likelihood 

5 559_560 461/622 343/622 79.0% 84.2% 92.1% Individual likelihood 

6 562_563 286/757 466/757 23.3% 31.4% 34.9% Individual likelihood 

7 612_613_614 496/969 560/969 65.2% 69.6% 91.3% Individual likelihood 

8 616_617 574/1112 673/1112 76.7% 83.7% 88.4% Individual likelihood 

9 658_659 385/999 468/999 40.2% 45.7% 66.3% Individual likelihood 

10 660_661_662 364/642 413/642 89.3% 89.3% 92.9% Individual likelihood 

11 780_781_782 345/475 334/475 96.9% 96.9% 96.9% Entropy 

12 784_785 550/923 709/923 64.9% 71.9% 76.2% Individual likelihood 

13 690_691_692 505/915 669/915 69.2% 71.2% 71.2% Individual likelihood 

14 692_693_694 276/672 307/672 57.1% 64.3% 80.1% Individual likelihood 

15 694_695_696 363/599 401/599 36.9% 35.4% 38.5% Entropy 

16 529_530 583/892 750/892 58.2% 59.1% 59.1% Individual likelihood 

17 531_532_533 478/765 480/765 57.0% 55.9% 66.7% Entropy 

 

Fig. 13. Released vehicle trajectories (baseline case, 556_557) 
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the success rate of both entropy dataset and individual 

likelihood dataset do not decrease much, implying that by 

filtering out some sample trajectories (to protect privacy), 

the remaining samples can still be applied for traffic 

applications. Moreover, one can find that in 11 out 17 cases, 

the 0.1 individual likelihood dataset has better performance 

than the entropy dataset with 3.3 level of confusion, which 

suggests that the individual likelihood datasets are more 

preferable in terms of the convenience for traffic 

applications.  

VI. CONCLUSIONS 

In this paper, we developed traffic-knowledge-based 

adversary models to link vehicle trajectories between two 

different VTL zones. By applying this to different datasets, 

we can evaluate the performance of different privacy 

algorithms in terms of both privacy protection and the 

convenience for traffic modeling. It is found that the idea of 

only releasing trajectory data within VTL zones helps to 

protect privacy. And by comparing the performance of 

different privacy algorithms, we can conclude that privacy 

algorithms, especially those based on the metrics of 

individual likelihood and entropy, can enhance the level of 

privacy. Meanwhile, the released datasets of these 

algorithms can still be applied to traffic applications with 

satisfactory performances.  
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