
FusionEye: Perception Sharing for Connected
Vehicles and its Bandwidth-Accuracy Trade-offs

Hansi Liu∗, Pengfei Ren†, Shubham Jain‡, Mohannad Murad†, Marco Gruteser∗, Fan Bai†
∗Rutgers University, North Brunswick, NJ, US

†General Motor Inc, Warren, MI, US
‡Old Dominion University, VA, US

∗{hansiiii,gruteser}@winlab.rutgers.edu,
†{pengfei.ren,fan.bai,mohannad.murad}@gm.com,

‡jain@cs.odu.edu

Abstract—Automated driving and advanced driver assistance
systems benefit from complete understandings of traffic scenes
around vehicles. Existing systems gather such data through
cameras and other sensors in vehicles but scene understanding
can be limited due to the sensing range of sensors or occlusion
from other objects. To gather information beyond the view of one
vehicle, we propose and explore FusionEye - a connected vehicle
system that allows multiple vehicles to share perception data
over vehicle-to-vehicle communications and collaboratively merge
this data into a more complete traffic scene. FusionEye uses
a self-adaptive topology merging algorithm based on bipartite
graph. We explore its network bandwidth requirements and the
trade-off with merging accuracy. Experimental results show that
FusionEye creates more complete scenes and achieves a merging
accuracy of 88% with 5% packet drop rate and transmission
latency around 200ms. We show that richer vehicle descriptors
offer only marginal accuracy improvements compared to lower
communication overhead options.

Index Terms—Connected Vehicles, ADAS, Vehicle Verification

I. INTRODUCTION

The robustness of automated driving and advanced driver
assistance systems (ADAS) depends on accurate awareness
of the traffic scene around the vehicle. Such scene informa-
tion includes position, velocity, and types of nearby traffic
participants. Vehicles capture this information with the help
of various on-board sensors, which largely require line-of-
sight. Radars and lidars primarily measure distances to objects
in specific directions while cameras capture richer visual
information about objects and their surrounding environment
albeit with less accurate distance measurements. Thanks to
recent advances of deep learning in computer vision, vehicles
can recognize objects and traffic participants from the captured
images and create semantically labeled traffic scenes.

However, occlusion and limited range of these line-of-sight
sensors pose restrictions on how completely a car can sense
its surrounding traffic. Blind spots can create hazards or cause
existing automated driving systems to move slowly due to the
resulting uncertainties [1]. While increasing the quantity of
sensors or adding specialized non-line-of-sight sensors [2] [3]
may yield improvements, it increases the complexity and cost
associated with each vehicle.

Therefore, we consider an approach where vehicles share
their individual perceptions over wireless vehicle networks

Fig. 1. FusionEye system overview

and fuse different perspectives into a more complete traffic
topology. Existing work on vehicle-to-vehicle communication
networks also proposed information sharing but was limited to
traffic participants’ announcing their own positions [4] [5] [6].
An advantage of perception sharing is that vehicles can also
share information about other vehicles or traffic participants
that have been detected with sensors but are not equipped
with their own transponders. The few projects that have begun
to study this approach have focused largely on the extremes
of sharing dense lidar point cloud data [7] and sharing basic
position estimates of detected traffic participants [8]. Although
Meng et al. [9] provide a framework for map sharing between
vehicles, its evaluation is limited to simulation and little is
known about how to merge such information efficiently and
how much information about detected objects should be shared
to accurately fuse the views in real world traffic scenarios.

This paper explores the design space of perception sharing
and fusing systems by developing and studying a prototype
system that allows multiple vehicles to share and fuse sur-
rounding traffic topologies over a wireless network connection.

We focus on sharing information of vehicles, because vehicles
are the most common traffic participants and a challenging
case due to many vehicles looking similar. For each observing
vehicle, we aim to create a merged topology that contains all
nearby vehicles, both those detected by its own sensors as
well as those detected by other observing vehicles. To achieve
a complete and accurate merged topology, it is essential to
correctly match the same vehicles from different views. In
particular, we design a self-adaptive bipartite merging algo-
rithm that determines which vehicles in two perspectives are
the same and need to be merged when constructing the merged
topology. At one vehicle node, the algorithm merges two
topology maps (one locally created, another received from a
nearby vehicle) and treats each detected vehicle as a node in
the bipartite graph and determines an optimal matching based
on scores of feature representations.

We analyze several feature representations with increasing
complexity to explore the network bandwidth and accuracy
trade-offs in sharing and merging perceptions of vehicle po-
sitions. In our system, each car is equipped with a camera
that detects nearby vehicles using a deep neural network, and
collects data on multi-lane suburban roads. We first associate
vehicles using longitudinal and lateral lane position features
determined by our proposed lateral lane position determination
algorithm. Then we adopt other features with varying sizes
and overhead, including SIFT [10], SURF [11], and color
histograms of bounding box patches of the detected vehicles
in a captured image to further associate vehicles from two
separate views and analyze how these different features affect
our merging accuracy as well as network communications.

The contributions of this work are summarized as follows:
• Explore the design space of wireless perception sharing

systems that allow a car to benefit from other car’ views.
• Design a bipartite merging algorithm, which determines if

detected vehicles from two views are the same, to create an
accurate merged topology map.

• Develop a lane determination algorithm for fine-grained de-
termination of each detected vehicle’s lateral lane position.

• Show through field tests that the algorithm adapts well to
outdoor traffic scenes and achieves high merging accuracy.

• Analyze trade-offs between network bandwidth and merging
accuracy for vehicle representations of different sizes.

II. FUSIONEYE DESIGN

Each FusionEye vehicle logically has two main roles: (i) it
can share its own perceptions with its neighboring vehicles to
expand their visions; (ii) it can receive and fuse perceptions
of neighboring vehicles with its own perceptions to expand its
own vision. The FusionEye design consists of three main func-
tional components: Perception Generation, Perception Sharing,
and Topology Fusion. Figure 1 shows these components along
with major steps of the FusionEye algorithm.

Perception Generation module acquires and processes sen-
sor (cameras in our implementation) data captured at each ve-
hicular node. The important steps here involve lane awareness,
vehicle detection, distance estimation, and feature extraction.

From each captured frame, FusionEye identifies all the vehi-
cles in its view using YOLO [12], then determines which lane
each car is in, and its distance to the observing vehicle as well
as other visual features. Perception Sharing module gathers
the aforementioned features and its location to form feature
representations which are crucial components of the local
views, since they allow the system to share critical attributes
from the scene without transmitting raw frames. The feature
selection process is discussed in detail in Section 4. Features
are then assembled into a UDP packet which is broadcast
to all neighboring vehicles within the transmitting range.
Finally, in Topology Fusion module, each vehicle receives
perception packets from one neighbor to match and associate
same vehicles across different views to create an enhanced and
complete topology of the scene. Here we address the problem
of association using a proposed bipartite merging algorithm for
images of detected vehicles captured by two separate vehicles
with different perspectives, illumination, and image sizes.

Sharing full visual information alone would require a large
amount of bandwidth. Instead, FusionEye shares light-weight
feature information of detected vehicles. We carefully identify
the key information with different transmitting costs and
explore the effects of sharing them. Specifically, each vehicle
shares it’s own depth of the detected vehicles, color histogram,
SIFT/SURF descriptor of detected vehicles in 2D images.
Together with kinematic information (GPS coordinates), this
light-weighted visual information is shared with neighboring
vehicles for topology fusion.

III. PERCEPTION GENERATION

The Perception Generation module obtains relative positions
of observed vehicles to the observing vehicle in both lateral
space (i.e., lane position) and longitudinal space (i.e., depth).
This is a key step in creating a topology map of the surround-
ing vehicles and forms an important feature for matching. We
develop vision-based solutions for accurate lateral lane match-
ing as well as depth estimation in the following subsections.

A. Lane-level Position Determination

Besides detecting vehicles in cameras’ views using YOLO,
it is of great significance to identify which lane they’re
traveling in since understanding the specific lane is crucial for
traffic topology generation and fusion. Typical lane detection
algorithms are mainly used to identify the lane in which the
observing vehicle is traveling. Here we extend lane detection to
identify the lane positions of all detected vehicles in a camera
view. We first employ Hough Transform on the extracted
frames, which aids in identifying if a detected car is to the left
or right side of the observing vehicle. To further determine the
lane-level position of each detected vehicle (e.g., left1, left2,
middle, right1, right2), we propose a heuristic based on the
distance from the left (right) bottom corner of a bounding box
to the right (left) lane marker and the bounding box’s height.

Assuming the camera mounted vehicle is in the “middle”
lane, we first determine if the bounding box of a detected
car is in the left or right portion of the image. According

Algorithm 1: Get left lane level position

Input1: box - Bounding box coordinates
Input2: lane - Lane marker y = kx+ c
Output: pos - specific lane position for a bounding box

1 [k, c]← getParam(lane)
2 [l, r, t, b]← extractCoord(box)
3 boxHeight = b− t
4 boxCenter = [(l + r)/2, (t+ b)/2]
5 if boxCentery < k × boxCenterx + c then
6 boxCorner = [r, b]
7 distToLane← dist(boxCorner, lane)
8 if boxCornery < k × boxCornerx + c then
9 if distToLane < boxHeight/2 then

10 pos = “left1”
11 else
12 pos = “left2”
13 else
14 if distToLane > boxHeight/3 then
15 pos = “middle”
16 else
17 pos = “left1”
18 return pos

to the center coordinates of the bounding box (x̄, ȳ) and the
estimated left/right lanes y = kx + b; if ȳ < klx̄ + bl,
the bounding box is on the left portion, if ȳ < krx̄ + br,
then the bounding box is on the right portion. (The origin
of the pixel coordinate system is at top left corner of the
image.) According to perspective projection, as a detected
vehicle gets further away from the middle lane, its bounding
box will be further away from the detected lane markers, and
proportionally smaller, which can be reflected by the bounding
box size and its distance to the lane marker. Based on this
observation, we compare the bounding box’s height h with
the distance d from the left (right) corner of the box to the
right (left) lane marker for vehicles on one side to determine if
it is driving in the first or second left(right) lane. Algorithm 1
presents the detail of the algorithm that determines the specific
position of a left bounding box. Similarly, we use the same
logic to specify lane positions for the right bounding boxes.
Figure 2a and 2b show a typical pair of frames in which lane
markers as well as multiple vehicles with lane level positions
are determined.

B. Distance Estimation

We consider two approaches for distance estimation to esti-
mate relative distances of the detected vehicles using bounding
box coordinates: Mono-camera and RGB-D camera distance
estimation. To understand the first method, assume that the
world’s coordinate frame is coincident with the camera’s co-
ordinate frame. Then perspective projection (with no rotation
and translation of the camera coordinate frame) formulates the
relationship between a 2D image pixel and a 3D real-world
point as follows: x

y
w

 =

 fx 0 cx
0 fy cy
0 0 1

×
 X

Y
Z

 (1)

where [x, y, w] are 2D homogeneous pixel coordinates,
[X,Y, Z] are 3D real-world coordinates. fx, fy, cx, cy in the

matrix denote the intrinsic parameters of the camera. Convert-
ing the homogeneous coordinates x into pixel coordinates xp,
we obtain:

xp = fx ·
X

Z
+ cx (2)

The above equation shows that the depth of a point can be
estimated by its 2D pixel coordinates with known lane width
(L = X) and camera intrinsic parameters. Thus the estimated
depth is:

d = Z = fx ×
L

|x− cx|
(3)

The second approach to obtain a detected car’s distance
is referring to the depth map captured by a RGB-D stereo
camera, which is usually generated for each frame pair. The
depth map stores the estimated distance of the corresponding
pixel in the image frame, for every pixel (x, y). Since the
vehicle detector component outputs the image coordinates
where a vehicle was detected, the system can simply retrieve
the distance from the depth map at these coordinates. Our im-
plementation focuses on the first approach since we observed
that the range of the RGB-D camera we had access to was too
limited for the driving scenarios in our experiments.

Finally, we use the estimated distances and lane level
positions of the detected vehicles to create a 2D topology map
with respect to each observing vehicle, as shown in Figure 2f.

IV. TOPOLOGY FUSION

Associating vehicles from different views is essential to
merging vehicle perceptions. FusionEye proposes an N -to-M
bipartite graph matching algorithm which is flexible in that
it can accommodate a range of possible vehicle descriptors.
We first briefly introduce the concept of bipartite graph, then
discuss how we utilize bipartite graph matching to merge
separate views obtained from different vehicles.

A. Topology Fusion via Bipartite Graph

A bipartite graph G = (V,E) contains nodes v ∈ V that
can be separated into two independent sets L and R, and each
edge e ∈ E of the bipartite graph connects a node from set L
to a node in set R. In a fully-connected or complete bipartite
graph, every pair of nodes in the two sets are connected and
no two nodes from the same set are connected. A matching M
of a bipartite graph is a subset of edges such that each node
in V appears in at most one edge in M . A maximal matching,
by definition, is a matching to which no more edges can be
added without increasing the degree of a node to two.

B. Vehicle Verification as Bipartite Matching

We interpret groups of detected vehicles from car A and car
B as two sets in the bipartite graph. As shown in Figure 1,
we represent each detected left-sided vehicle viewed from car
A using a node in set L and denote each detected left-sided
vehicle viewed from car B as a node in set R. Then we connect
all the nodes from L and R to construct a fully-connected
bipartite graph G in which the scores of the edges describe
the similarity between one vehicle to another under certain
metrics. The more similar the two vehicles are, the smaller

(a) Left view (b) Right view

(c) Merging results using
depth information only

(d) Merging results using
depth, color histogram
and SURF features

(e) Merging results using
depth, color histogram,
and SIFT features

(f) Individual topology maps (g) Merged topology maps

Fig. 2. Merging results of three different merging policies of a pair of
synchronized frames. (a)(b): left view and right view, where estimated lane
markers are shown in blue (left) and green (right), YOLO [12] detected
vehicles are highlighted by bounding boxes with IDs and lane positions.
(c)(d)(e): different merging results after bipartite pruning. Left/right bipartite
shows merging in left/right side for each view. Each vehicle is represented by
red nodes with an ID corresponding to the bounding box ID. The scores of
each edge is also shown. (f): Individual topology maps from two views. Two
observing vehicles are shown in red and blue triangles and their detected
vehicles are represented by red and blue circles respectively. (g): Merged
topology via transmitting features of depth, color histogram and SURF
descriptors. Green stars indicate the same vehicles observed in both views.

their edge score is. In this manner, we transfer the merging
task to a problem of finding the optimal maximal matching of
G that has the minimum sum of scores, which indicates that
each pair of nodes are most likely to be the same. To assign
each edge a discriminative score, we focus on three categories
of visual features that comprehensively and uniquely describe
each vehicle node, and use them to calculate the scores of the
edges that quantify the differences between a pair of nodes in
the bipartite graph.

Category 1: Difference based on spatial information.
First, lane level positions can help us distinguish two vehicles.
Recall that we assign each bounding box of a detected vehicle
with a position tag, it is certainly impossible to predict a left-
sided vehicle is the same as a right-sided vehicle. Second,
the estimated depth of each detected vehicle gives us infor-
mation of relative position, which provides a certain level
of uniqueness since vehicles in moderate traffic conditions
tend to keep safety distances with others. Thus each detected
vehicle’s estimated depth is more likely to be unique from

one observer’s perspective. Suppose we are constructing a
bipartite graph based on the left-sided detected vehicles from
two views, for a node u in left view (car A) and node v in
right view (car B), their edge score is computed as

sdist = ||u.dist− v.dist| −DAB | (4)

where DAB represents the distance between car A and car B
computed from the Euclidean distance of their GPS readings.
Notice that s essentially denotes the depth difference of two
detected vehicles under the same coordinate system. Thus we
expect s to be small if the vehicles in two views are the same.
Although GPS readings in reality contain errors in urban areas,
which makes s a noisy measurement, the error will affect all
edge scores equally and therefore have little effect on the
association decisions. More significant are camera distance
estimation errors to observed cars.

Category 2: Representation difference based on Color
Histogram. Matching vehicles based on spatial information
alone is insufficient and may lead to errors. For example, a de-
tected vehicle u in the left view is compared with two detected
vehicles v1, v2 in the right view where they are driving side
by side. So they have similar estimated depth and the score of
edge u−v1 is close to the score of u−v2. We therefore also use
visual information. Considering that we are observing the same
scene at the same moment during our experiment, we assume
the images of a vehicle observed under two perspectives do
not have much illumination variance. Moreover, each image
patch cropped based on the vehicle detector bounding box
mostly contains a vehicle body with uniform color. Thus we
adopt color histogram as our second visual feature. While
relatively straightforward we expect them to be effective in
this environment based on the aforementioned considerations.
For each detected vehicle, we compute its color histogram H
where H is a 24× 1 vector where the first, second, and third
set of 8 elements represents the color histogram for R, G and
B channel, respectively. Then, the color histogram score for
two nodes u and v in the bipartite graph is computed as

shist = || Hu

||Hu||
− Hv

||Hv||
|| (5)

Category 3: Representation difference based on
SIFT/SURF descriptors. Considering that there still exist
cases where color histograms of vehicle patches vary too much
due to strong reflections or different backgrounds resulting
from perspective changes, we also adopt SIFT and SURF fea-
tures, which are widely used to find correspondences between
scenes or objects because they are invariant to color as well
as minor shifting and scaling. For each detected vehicle, we
compute SIFT and SURF features within the bounding box
image patch and the SIFT/SURF score for two nodes u and v
in the bipartite graph is computed as

sdesc =

N∑
i

||desc[i]u − desc[i]v||

N
(6)

where desc[i] represents the 128×1 SIFT descriptor or 64×1
SURF descriptor for key point i and N represents the total

Algorithm 2: Bipartite pruning
Input: G - A fully connected bipartite graph
Output: Gp - The pruned bipartite graph

1 lNodes, rNodes← getLeftRightLaneNodes(G)
2 if len(lNodes) ≤ len(rNodes) then
3 side1 = lNodes, side2 = rNodes
4 else
5 side1 = rNodes, side2 = lNodes
6 foreach index ∈ indexList do
7 cnt = 0 ; // counter for matches
8 minScore = + inf
9 foreach s2Node ∈ side2 do

10 if s2Node.isMatched == True then
11 Gc.removeEdge(side1[i], side2Node)
12 else
13 cnt++
14 curScore← Gc.score(side1[i], s2Node)
15 if cnt == 1 then
16 minScore← curScore
17 msNode← s2Node
18 else if curScore ≥ minScore then
19 Gc.removeEdge(side1[i], side2Node)
20 else
21 minScore← curScore
22 Gc.removeEdge(side1[i], msNode)
23 msNode← s2Node
24 (msScore, side1[i]).isMatched ← Ture
25 s← s+minScore
26 Gp ← mins(Gc)
27 return Gp

number of matched key points from the two bounding box
patches. Notice that there are situations in which N = 0,
which means there are not enough matched key points between
the two bounding boxes. Although tweaking the implementa-
tions of SIFT/SURF may create more features, it also increases
erroneous key point correspondences which negatively affects
the similarity scores. For these special cases of insufficient key
points, we assign very large scores to indicate that these two
image patches likely show different vehicles.

The complexity and robustness of scoring system increases
from category 1 to category 3. In our experiments, we ex-
plore how these different combinations of scoring policy will
affect our merging accuracy as well as transmission qualities
since it is indeed our intention to understand the impact of
Bipartite graph design options on the end-to-end performance
of FusionEye system. Once the scores in the bipartite graphs
for all the given frame pairs have been calculated, we propose
Algorithm 2 to prune the fully connected bipartite graph into
an optimal maximal bipartite graph that has the minimum sum
of scores.

Goptimal = arg min
G

∑
u∈L,v∈R

suv (7)

C. Perception Sharing

FusionEye focuses on several different options for sharing
visual information. Certain information is much more critical
than others during the topology fusion process. At the same
time, these visual features have different sizes in terms of
communication transmission. For instance, depth information
and color histogram are small, taking only tens of bytes;

TABLE I
PACKET FORMATS

Timestamp Frame
ID

Vehicle
ID

Kinematic
Info

Light-weight
visual Info

Timestamp Frame
ID

Vehicle
ID

Kinematic
Info

Heavy-weight
visual Info

Batch
ID

on the other hand, the size of SURF descriptors and SIFT
descriptors could vary from 1KB to 100 KB. According to
their contributions and data sizes, we put these pieces of visual
information into three layers: 1) Kinematic information such
as GPS coordinates, is the most important part for topology
fusion. 2) Light-weight visual information including object’s
bounding box, depth, and color histogram. Although it only
takes tens of bytes, it plays an important role in topology
fusion. 3) Heavy-weight visual information including SURF
descriptors and SIFT descriptors, which also contributes to
topology fusion. Its size, however, is much larger than the
light-weight visual information. Following this information
hierarchy, we design our own customized perception sharing
protocol. Three information layers are assembled into two
types of packets, as seen in Table I. Kinematic information
is the most critical one while it takes only a few bytes.
So it is put in the header of both packets. Light-weight
visual information are assembled into a single packet. This
packet is usually small but important. It could be transmitted
multiple times accordingly, based on the wireless technology
and environment. Heavy-weight visual information is usually
too large to fit in a single UDP datagram, so we split them
into multiple batches.

V. FUSIONEYE IMPLEMENTATION

To validate FusionEye, we conduct real-time transmission
field tests to evaluate wireless channel bandwidth, latency, and
packet drop rate in real-world environments. Figure 3 shows
our system setup. We adopt two vehicles, each equipped with a
laptop (Intel Xeon E3-1505M v5 CPU, 32 GB of DDR4 RAM,
NVIDIA Quadro M2000M GPU). Each laptop is connected
to a camera, a UBlox GPS, and a TP-Link Talon AD7200
wireless router. cameras capture frames and compute depth
with a resolution of 1920×1080 at 30fps. Ublox GPS samples
at a rate of 5Hz. For our implementation only the observing
vehicles are equipped with GPS modules. Considering that
the exchange of complex visual information requires large
bandwidth, we adopt wireless routers that operate in 802.11
b/g/n mixed mode.

Data Collection. Our data collection effort was conducted
in Warren, MI, with normal city driving speed of 40 Mph -
50 Mph. Several measurement campaigns had been conducted,
with each lasting about 2 hours. During each measurement
campaign, the two vehicles were driving side by side on
adjacent lanes and cameras were set to record the front view
with GPS information associated with each captured frame.
We down-sample the video frames every 300ms. Overall,
our system captured 30,000 frames and exchanged 3.3 GB
information.

Fig. 3. Experiment
setups. Red and blue
lines represent perception
ranges of red and blue
car respectively

Fig. 4. Parallelized system pipeline. Camera
ROS sends captured frame and depth map to
FusionEye ROS. The three threads runs con-
currently to perform real-time processing and
transmission

Implementation. During real-time wireless transmissions
field tests, each captured frame and the corresponding depth
map are first fed to YOLO’s pipeline to generate bounding
boxes for detected vehicles. Based on bounding box coor-
dinates, 3 kinds of visual features are extracted: (1) Depth
value of the bounding box center. (2) Color histogram. (3)
SIFT/SURF features. Once features are extracted for all the
bounding boxes in each frame, vehicle A assembles both
kinematic and visual information into UDP datagrams, and
broadcasts these datagrams to its neighboring vehicles over a
WiFi channel. It also stores a copy of the information locally.
We then apply our Bipartite graph fusion algorithms to the
information that vehicle A stores locally and the information
it received from vehicle B. The same procedure is repeated
at vehicle B. Finally, we evaluate merging accuracy and
transmission qualities under four merging policies that use
different combinations of the above 4 information: depth only,
depth with color histogram, depth with color histogram and
SURF or SIFT features.

Both depth map extraction and object detection need to be
performed on GPU since they require significant amount of
computational resources. We build customized C++ wrappers
for capturing the RGB-D map and YOLO real-time object
detection. These two tasks are configured to run in two
ROS [13] nodes implemented as two different processes, so
they share GPU’s resources most efficiently without conflicting
with each other. In addition, we design our efficient system
pipeline to fully utilize parallel processing, thus enabling faster
data processing. As summarized in Figure 4. We assign three
threads in the second ROS node for concurrent execution of
GPS sampling, distance estimation, feature extraction, data
transmission, and logging.

Another critical component of FusionEye is time synchro-
nization. All information shared among vehicles must be
synchronized in order to be appropriately fused together. We
use NTP for time synchronization. One vehicle is configured
as a NTP server of the WLAN, while the other vehicle is
configured to synchronize with this NTP server periodically
over WiFi.

VI. EVALUATION & ANALYSIS

A. Merging Accuracy

To evaluate the performance of our bipartite merging al-
gorithm, we compute true positive rate (TPR), true negative

rate (TNR), false positive rate (FPR), and false negative
rate (FNR) using predictions provided by pruned bipartite
graph and ground truth that we manually labeled offline.
While a seemingly reasonable baseline comparison might
be to use only GPS readings to fuse the topology, recall
that we assume only the observing vehicles to share GPS
readings. This allows for a scenario where not all vehicles
are equipped with the same technology. We therefore focus
on comparing performace with different feature combinations.
Figure 5 presents precision, recall, and F-scores for 4 merging
policies in which different combinations of features are used to
compute the edge scores in the bipartite graph. We notice that
in general the performance of the merging algorithm improves
as we incorporate more fine-grained descriptors to compute
edge scores. Naturally, the merging accuracy also improves
as the description of a vehicle becomes more comprehen-
sive and robust as more information is taken into account.
However, the merging performance using depth information,
color histogram, and SIFT features is worse than using depth
information only. It is counter-intuitive that SIFT features did
not contribute as well as SURF features in distinguishing
two vehicles. The reason behind this phenomenon is that the
number of SIFT features is much less than the number of
SURF features for the same image patch. As a result, there
exist situations in which no SIFT key point match exists for
two vehicle nodes and the score of their edge is set to be a
large number. This uniform score assignment when no SIFT
match exists leads to verification errors, since it is possible for
two views of the same vehicle to have few SIFT features and
yet no key point matches especially when they are observed
from a larger distance and the bounding box sizes are small.

Another observation is that the precision is less than recall,
which indicates that false negative rate is lower than false
positive rate. This can be explained by the process of our
bipartite merging algorithm. As we are pruning the complete
bipartite graph to be a maximal match, we inevitably preserve
some of the false matching since a matching of a complete
bipartite graph has edges for all the nodes. Thus, even if nodes
from two sets represent different vehicles, they can still be
matched if they are the only two nodes in the bipartite graph.

As an example, we present the predictions of different
merging algorithm applied to the same pair of image frames
shown in Figure 2a and Figure 2b. Figure 2c shows the
merging results of using depth as the only information to
compute the bipartite scores. Here depth information did not
successfully predict similarity between car3 in left view and
car6 in right view, since car3 and car6 have almost same depth
with respect to the observers. However, once the information
of color histogram and SURF descriptors of the bounding box
is taken into account, as shown in Figure 2d, the merging
decision is correct as car3 from left view is now successfully
matched to car8 from right view. Notice that the same car in
two views has a similar color distribution as well as similar
appearances over the bounding box, which provides color
histogram and SURF descriptors that exhibit small Euclidean
distance. Figure 2e, on the other hand, is a counter-example

depth depth
+colorHist

depth
+colorHist

+surf

depth
+colorHist

+sift
Criterion combinations

0.5

0.6

0.7

0.8

0.9

1.0
F-

sc
or

e/
Pr

ec
isi

on
/R

ec
al

l

F-score
Precision
Recall

Fig. 5. F-score, precision and
recall for different merging policies

depth depth
+colorHist

depth
+colorHist

+surf

depth
+colorHist

+sift
Criterion combinations

50

100

150

200

250

La
te
nc

y
(m

s)

Fig. 6. Different time duration before
merging algorithm begins

depth depth
+colorHist

depth
+colorHist

+surf

depth
+colorHist

+sift
Criterion combinations

103

104

105

Da
ta
siz

e
tra

ns
m
itt
ed

pe

r f
ra
m
e
(b
yt
es
)

Fig. 7. Distribution of the number of
bytes transmitted per frame

depth depth
+colorHist

depth
+colorHist

+surf

depth
+colorHist

+sift
Criterion combinations

0

1

2

3

4

5
Pa

ck
et
 e
rro

r r
at
e
(%

)

Fig. 8. Packet error rates for different
merging policies

showing that SIFT might not be a good criterion for our
merging problem, as it failed to distinguish the similarity of
{car2, car7} and {car1, car4}. Regarding perception expansion
results, we qualitatively validated that our system can alleviate
partial perception situations. As shown in Figure 2f, vehicle
6 is not detected in the left view, thus not plotted in the left
observer’s topology. However, since the right car successfully
detects vehicle 6, its estimated position is plotted in the merged
topology as shown by the blue circle in Figure 2g. Besides,
FusionEye successfully associates same vehicles ({vehicle 3,
vehicle 8}, {vehicle 0, vehicle 5}, {vehicle 2, vehicle 7} and
{vehicle 1, vehicle 4}) that occur in both views in the merged
map. Now that we have shown qualitatively that bipartite
merging alleviates partial perceptions, it is more valuable
to focus on the bandwidth trade-off studies to understand
whether partial perception can be alleviated with acceptable
resource consumption and under what configurations the sys-
tem achieves optimal performance.

Each merging accuracy has a different cost. Here we focus
on the latency involved with each scheme. Latency is defined
by the duration from the time a frame is grabbed by the
camera till all necessary information is received by the receiver
side so that the merging process can begin for that frame. As
shown in Figure 6, we observe that latency increases as we
transfer more information through the network. Notice that
the latency for merging using depth information is the same
as merging using both depth and color histogram information
since we transmit both depth and histogram in one packet due
to their smaller size compared to SIFT/SURF features. The
baseline latency is shown in blue for each bar, which consists
of image processing time including vehicle detection using
YOLO, estimating depth value according to the bounding box
coordinates as well as computing SIFT/SURF descriptors for

that bounding box patch. The green part of each bar indicates
how much time is needed before all the necessary information
is received at the receiver side so that merging algorithm can
start. This includes the overhead of constructing each depth
packet by combining timestamp, depth value, along with color
histogram as a whole, as well as the processing time to split
the SIFT/SURF descriptor matrices into a sequence of sub-
packets.

B. Transmission Analysis

We compute two categories of error rate during data trans-
mission: incomplete bounding box rate and packet drop rate.

Incomplete Bounding Box. When transmitting a sequence
of packets of SIFT/SURF descriptors for a bounding box
patch, it is likely to lose packets in transmission and packet
receive rate at the receiver end will be affected. In such cases,
the received information only describes part of the bounding
box. We define the incomplete bounding box rate as the
percentage of the bounding boxes whose received SIFT/SURF
descriptors are less than transmitted SIFT/SURF descriptors.

The comparison of incomplete bounding box rate under
different transmission policy is shown in Figure 9. Notice that
when we only use depth compared to when we use depth and
color histogram to compute the edge scores, the incomplete
bounding box rate is the same as packet drop rate. This is
because the packet we transmit is at “bounding box level”.
In other words, each packet contains depth information and
color histogram of the whole bounding box. As long as the
packet is successfully received, the corresponding bounding
box information reaches the receiver side successfully. Thus,
the incomplete bounding box rate is the same as the drop
rate for depth packet. SIFT/SURF packets on the other hand,
need to be split into multiple packets which renders their data
to be at a “sub-box” level. If the number of received feature
points is less than the number of transmitted feature points, the
corresponding bounding box’s information is not completely
received. We observe that SIFT packets cause a higher count
of incomplete bounding boxes than SURF packets.

Average packet drop rate. We compute the average packet
drop rate for each type of packet by calculating the ratio of the
number of dropped packets to the total number of transmitted
packets of a certain type. As shown in Figure 8, although
SIFT sub-packets contribute to more incomplete bounding
boxes than SURF sub-packets, the drop rate of SIFT sub-
packet is lower than the SURF sub-packet. This counter-
intuitive observation gives us an insight that SURF sub-packets
have a “clustered” dropping manner in which a large number
of SURF sub-packets drop can happen within one bounding
box’s feature transmission sequence, while SIFT sub-packets
are dropped in a “uniform-distributed” manner where more
bounding boxes are incomplete but each bounding box only
loses less feature points compared to SURF scenarios. The
explanation can be further substantiated by checking the
transmitted data size distribution per frame at receiver side.
As shown in Figure 7, the transmitted data per frame reaches
the peak when merging two views using information of depth,

depth depth
+colorHist

depth
+colorHist

+surf

depth
+colorHist

+sift
Criterion combinations

0

5

10

15
In
co

m
pl
et
e
bo

un
di
ng

bo

x
ra
te
 (%

)

Fig. 9. Incomplete bounding box rate
for different merging policies

0 1 2 3 4 5
Number of bounding box

per frame

0

250

500

750

1000

1250

1500

Fr
am

e
co
un

ts

Fig. 10. Bounding box numbers in
every frame

0 50 100 150 200 250 300
SURF feature counts
per bounding box

0

100

200

300

400

500

Bo
un

di
ng

 b
ox

 c
ou

nt
s

Transmitted
Received

Fig. 11. Transmitted/Received SURF
sub-packets for every bounding box

0 100 200 300 400
SIFT feature counts
per bounding box

0

100

200

300

400

500

600

Bo
un

di
ng

 b
ox

 c
ou

nt
s

Transmitted
Received

Fig. 12. Transmitted/Received SIFT
sub-packets for every bounding box

color histogram, and SIFT packets. Although size of each SIFT
sub-packet and SURF sub-packet is the same, we observe more
SIFT data is transmitted to the receiver side due to lower drop
rate of SIFT sub-packets.

We finally focus on characteristics of the collected data
itself. We are interested in how many bounding boxes exist
in each frame as well as how many SIFT/SURF features are
detected in each bounding box. Figure 10, Figure 11, and
Figure 12 show the distribution of bounding box per frame and
histogram of SURF/SIFT sub-packet numbers respectively. We
observe that for moderate traffic condition, in most cases we
have 1 to 2 bounding boxes per frame, and in each bounding
box there tend to be less than 100 feature points. Notice that
the value of each bin of the histogram of SIFT sub-packet
is always greater than the corresponding bin in histogram
of SURF sub-packet, which reflects the relationship shown
in Figure 7 where SIFT packets contribute to larger size of
transmitted data.

VII. RELATED WORK

Cooperative camera systems and connected vehicles. Re-
cent studies of cooperative camera systems including SLAM
and visual odometry [14] [15] explored methods leverag-
ing multiple camera’s view to improve the objects’ location
estimation as well as situation awareness. More recently,
with the substantiate feasibility studies of DSRC and other
connected vehicles systems [16] [17] ,there has been more
works that focus on sharing the camera perceptions through
V2V networks not just for autonomous vehicles but also for
other Advanced Driving Assistance Systems (ADAS). The
work of See Through Systems [18] [19] aim to improve driving
safety by expanding the front view of a vehicle when it is
occluded by the front vehicle in the same lane. The system

communicates through DSRC and warps the front car’s view
to adapt the back car’s viewing angle such that the blocking
vehicle ahead looks transparent in the back car’s augmented
view. More recently, OmniView [9] proposed a framework
that allows multiple vehicles to share and fuse their local
maps but only evaluated the system in terms of reception
rate and latency through simulation. In contrast, FusionEye
systematically evaluates the topology fusion in a real-world
fashion and explores relationship with merging accuracy with
communication quality. Inspired by SLAM’s philosophy, Hang
et al. [7] proposed Augmented Vehicular Reality (AVR) that
stitches raw 3D point clouds reconstructed by leading follow-
ing vehicles into a expanded view. Instead of sharing raw
pixel data to simply expand perception range, our system
aims to explore the bandwidth requirements and achievable
merging accuracy for vehicles that extract and share semantic
information such as vehicle features and positions from their
sensor data. Although AVR shares additional information in
terms of image pixels, topologies generated by FusionEye
contain more semantic information such as categories of traffic
participants and their distances Besides, FusionEye’s network
structure saves bandwidth significantly and supports more than
a few participating vehicles.

Vehicle verification and association. Recently there also
have been active research efforts in the area of vehicle veri-
fication and matching via computer vision [20] [21] [22]. In
these works, it is common to treat the verification problem as
a binary classification problem and apply supervised learning
on the collected data set. Feature representation is one of
the critical factors to achieve good verification accuracy, as
the work of Arrspide and Salgado [20] and Guo et al. [21]
proposed to improve Gabor Features in different manners.
Furthermore, Hsu et al. [22] proposed a sparse representa-
tion that adapted well to non-overlapped views of vehicles.
More recently, Deep learning methods also thrives in vehicle
verification domain. Liu et al. [23] adopted Triplet Loss [24]
with deep neural network to learn robust representations of
the on road vehicles and determine whether they are the
same based on their Euclidean distances. However, these
methods’ success rely on the systematic data collecting and
time-consuming training processes. Other vehicle association
methods in V2V communication systems such as [6] [8] use
GPS relative distance as spatial features or explicit vehicle type
(SUV, sedan, etc) as visual fingerprints to associate vehicles
detected by different observers. These methods either need
all participating vehicles in the experiment to be equipped
with GPS sensors or require their prior information such as
vehicle type. FusionEye differs from these works in a way
that only a limited number of equipped observing vehicles are
exchanging messages while any other vehicle on the road can
be a participant in the merged topology.

VIII. DISCUSSION

Our system mainly focuses on camera-based detection and
merging. It is also worth evaluating systems with lidar-based
detection, since it may provide better distance estimation

accuracy. Although it may not allow us to further extract rich
visual features as did in this work, the different characteristics
of lidar may allow using other features and it would be
interesting to compare the resulting merging accuracy with
that of camera-based merging.

The current bipartite merging algorithm algorithm and im-
plementation is limited to cases where the vehicles in one
view represent a subset of the vehicles in the other view.
For example, if there are no common vehicles but vehicles in
both views, the merging algorithm would still falsely match
vehicles across those two views. This could be addressed with
further pruning of the bipartite graph and more robust feature
representation for vehicles.

The experiment in this paper is intended as a first ex-
ploration of the design space for feature representations that
support topology merging across vehicles. While we started
with vehicles, pedestrian, bicyclists and other traffic partic-
ipants could likely be handled by incorporating respective
visual classifiers and adding features for association. Since
these traffic participants move more slowly and are often
sparsely distributed on roadways (in the United States) they
are likely easier to match. Generally, additional scenarios,
such as curved lanes, roads with varying number of lanes,
relative vehicle positions beyond side-by-side, pedestrians and
other traffic participants, and different weather/environments
are worth studying to further understand the generality of our
findings.

IX. CONCLUSION

This paper introduces FusionEye, a novel approach in
which vehicles share their individual perceptions over wireless
vehicle networks and fuse their different views into a more
complete traffic topology leveraging our fine-grained lane
determination and bipartite merging algorithm. Through ex-
tensive empirical experiments, we show that with two vehicles
on a roadway, the algorithm adapts well to the challenging
real-world urban traffic scenarios and achieve high merging
accuracy with low fidelity vehicle descriptors. More interest-
ingly, we found that the richer vehicle descriptors offer only
marginal accuracy improvements and that the features from
our lane determination algorithm and estimated distances real-
ize most of the achievable gains at much lower communication
overhead. These more compact descriptors appear preferable
from a bandwidth-accuracy trade-off perspective.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
National Science Foundation under Grant No. CNS-1329939.

REFERENCES

[1] D. Riley, “Report: Waymo self-driving cars are having problems turn-
ing around corners,” https://siliconangle.com/2018/08/28/report-waymo-
self-driving-cars-problems-turning-around-corners/, 2018.

[2] B. R. Chang, H. F. Tsai, and C.-P. Young, “Intelligent data fusion sys-
tem for predicting vehicle collision warning using vision/gps sensing,”
Expert Systems with Applications, vol. 37, no. 3, pp. 2439–2450, 2010.

[3] F. de Ponte Müller, E. M. Diaz, and I. Rashdan, “Cooperative posi-
tioning and radar sensor fusion for relative localization of vehicles,”
in Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE, 2016, pp.
1060–1065.

[4] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk, “A survey of
inter-vehicle communication protocols and their applications,” IEEE
Communications Surveys & Tutorials, vol. 11, no. 2, 2009.

[5] L. Li and F.-Y. Wang, “Cooperative driving at blind crossings using in-
tervehicle communication,” IEEE Transactions on Vehicular technology,
vol. 55, no. 6, pp. 1712–1724, 2006.

[6] S. Demetriou, P. Jain, and K.-H. Kim, “Codrive: Improving automobile
positioning via collaborative driving,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 72–80.

[7] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan,
“Avr: Augmented vehicular reality,” in Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services
(Mobisys), ser. MobiSys ’18. Munich, Germany: ACM, 2018, pp. 81–
95. [Online]. Available: http://doi.acm.org/10.1145/3210240.3210319

[8] S. Fujii, A. Fujita, T. Umedu, S. Kaneda, H. Yamaguchi, T. Higashino,
and M. Takai, “Cooperative vehicle positioning via v2v communications
and onboard sensors,” in Vehicular Technology Conference (VTC Fall),
2011 IEEE. IEEE, 2011, pp. 1–5.

[9] R. Meng, S. Nelakuditi, S. Wang, and R. R. Choudhury, “Omniview:
A mobile collaborative system for assisting drivers with a map of
surrounding traffic,” in 2015 International Conference on Computing,
Networking and Communications (ICNC). IEEE, 2015, pp. 760–765.

[10] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[11] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[13] M. Quigley, J. Faust, T. Foote, and J. Leibs, “Ros: an open-source robot
operating system.”

[14] D. Zou and P. Tan, “Coslam: Collaborative visual slam in dynamic
environments,” IEEE transactions on pattern analysis and machine
intelligence, 2012.

[15] M. Kaess and F. Dellaert, “Visual slam with a multi-camera rig,” Georgia
Institute of Technology, Tech. Rep., 2006.

[16] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of dsrc and
cellular network technologies for v2x communications: A survey,” IEEE
transactions on vehicular technology, vol. 65, no. 12, pp. 9457–9470,
2016.

[17] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected
vehicles: Solutions and challenges,” IEEE internet of things journal,
vol. 1, no. 4, pp. 289–299, 2014.

[18] C. Olaverri-Monreal, P. Gomes, R. Fernandes, F. Vieira, and M. Ferreira,
“The see-through system: A vanet-enabled assistant for overtaking
maneuvers,” in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE,
2010, pp. 123–128.

[19] P. Gomes, F. Vieira, and M. Ferreira, “The see-through system: From im-
plementation to test-drive,” in Vehicular Networking Conference (VNC),
2012 IEEE. IEEE, 2012, pp. 40–47.

[20] J. Arrospide and L. Salgado, “Log-gabor filters for image-based vehicle
verification,” IEEE Transactions on Image Processing, vol. 22, no. 6,
pp. 2286–2295, 2013.

[21] J.-M. Guo, H. Prasetyo, and K. Wong, “Vehicle verification using
gabor filter magnitude with gamma distribution modeling,” IEEE Signal
Processing Letters, vol. 21, no. 5, pp. 600–604, 2014.

[22] S.-C. Hsu, I.-C. Chang, and C.-L. Huang, “Vehicle verification between
two nonoverlapped views using sparse representation,” Pattern Recog-
nition, vol. 81, pp. 131–146, 2018.

[23] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang, “Deep relative distance
learning: Tell the difference between similar vehicles,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2167–2175.

[24] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 815–
823.

