
An Architecture for Software Defined Cognitive Radio

Aveek Duttal, Dola Saha2, Dirk Grunwaldl,2, Douglas Sicker2
1 Department of Electrical , Computer and Energy Engineering

2Department of Computer Science
University of Colorado

Boulder, CO 80309-0430 USA {Aveek.Dutta, Dola.Saha, Dirk.Grunwald, Douglas.Sicker}@colorado.edu

ABSTRACT

As we move forward towards the next generation of wireless pro­

tocols, the push for a better radio physical layer is ever increasing.

Conventional radio architectures are limited to narrow operating

regions and fails to adapt with changing technology. This is fur­

ther strengthened with the advent of cognitive radio, which needs a

more versatile and flexible framework that is programmable within

the timing constraints of a protocol. In this paper we present an

architecture for Software Defined Cognitive Radio that caters to the

specific baseband processing requirements in a changing environ­

ment. We aim to provide more flexibility by de-constructing the

radio pipeline into a framework of user controlled kernels that can

be reconfigured at run-time. This architecture provides the bare­

bones of a OFDM based radio physical layer that can adapt to per­

form a varied number of tasks in different radio networks. We also

present a novel message based real-time reconfiguration method to

transmit and receive a wide range of waveforms used in concurrent

wireless protocols.

Categories and Subject Descriptors

C.O [GENERAL): Hardware/Software Interface; C.3 [SPECIAL­

PURPOSE A ND APPLICATIO N-BASED SYSTEMS): Signal

Processing Systems; C.4 [PER FOR MA NCE O F SYSTEMS):
Design Studies

General Terms

Design, Performance, Verification

Keywords

Cognitive Radio, NC-OFDM, Software Defined Radio, FPGA Im­

plementation

1. INTRODUCTION
Cognitive radios are an emerging wireless networking technol­

ogy that are generally characterized as "reacting to an environment"

in order to improve network performance. Equally important, most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS'1O, October 25-26, 2010, La Jolla, CA, USA.
Copyright 2010 ACM 978-\-4503-0379-8/10/10 ... $10.00.

450
400
350

u 300
� .= 250 � 200

150
100
50

-40 -30 -20 -10 0 10
Frequency Subcarricrs

20 30

Figure 1: Spectrogram captured using a vector signal ana­
lyzer showing over-the-air transmission of multiple packets us­
ing non-contiguous O FDM from a SDCR transmitter. Packets
are transmitted in a way to resemble the University of Colorado

at Boulder logo, using non-contiguous subsets of subcarriers
ranging between [-27 and + 27]. The maximum possible signal
bandwidth is 16.875M H z.

cognitive radios are envisioned to use Dynamic Spectrum Access
(DSA) to make use of fractured available spectrum. A radio node

employing (DSA) acts as a secondary user and could use a part

of a licensed frequency band while causing no interference to the

primary user of that band. Orthogonal Frequency Division Multi­

plexing (OFDM) multicarrier communication technique that allows

for such dynamic access of the medium. We discuss the applicabil­

ity of OFDM in cognitive radio in more details in §3 and discuss

why this is a good choice for such an application. Thus a new

paradigm of non-contiguous spectrum access has evolved that has

led to cause radio hardware architecture to be more adaptive and

self aware to the ever changing radio environment. While transmis­

sion in non-contiguous spectrum, often in multiple disjoint chunks

spread apart in frequency can be achieved with relative ease, re­

ceiving such waveforms greatly complicates the tasks facing the

radio - for example: correlators, used to determine if a signal is in

transmission, now must look up across multiple bands instead on

one continuous range of frequencies [1 6].

A quick example of such a cognitive transmission is shown in

figure 1 . The spectrogram (x-axis represents frequency denoted

by OFDM subcarrier index and y-axis represents packet airtime),

shows how a cognitive transmitter adjusts it's tmnsmission band­

width based on the available spectrum. The spectrogram is com­

prised of hundreds of small packets transmitted over 450JLsec but

each packet occupies a different part of the spectrum denoted
.
by

the high spectral energies in dBm (red zones). The unoccupIed

spaces indicated by low spectral energy (green zones) coul� be

thought of as occupied by a primary user (not shown here) In a

licensed band and hence avoided by the cognitive mdio. This exam­

ple shows how DSA coupled with OFDM is slowly �coming �e

choice for the next generation wireless networks. While transmIt­

ting such waveforms is relatively easy, receiver functionality needs

to be redesigned considembly to support a non-contiguous spec­

trum access. Thus, it is important to take a new look at the mdio

PHY and assess the requirements for next genemtion mdio archi­

tecture. This paper discusses the challenges involved in designing

such radio PHY that is adaptable, fast and easy to reconfigure and

backward compatible with legacy systems using OFDM.

The evolution of processing for wireless networking, particularly

for Software Defined Cognitive Radios (SDCRs), is approaching a

design choice similar to Internet routers which has advanced sub­

stantially over time. Network processors used two ways to speed

network processing. The first method, exemplified by the Intel

IXP processors, was to develop general purpose processors with

extensions and multiple specialized packet processing engines. Al­

though those processors are intended for network processing tasks,

they can be used for other purposes (e.g. storage processing). An­

other approach, adopted by systems such as the SiTerra/Vite�se

Prism processor accelerate specific steps of the network processIng

pipeline, such as implementing a specialized route lookup mech­

anism. Recently, a generalized packet processing approach based

on the OpenFlow model has been proposed, leading to a rethinking

of forwarding hardware [8]. This model of forwarding uses more

general "match logic" (e.g. TCAMs) coupled with general purp?se

processors for populating that hardware. The same trend of USIng

a general purpose processor, followed by specialized hardware �d

then evolving into some general purpose processor coupled WIth

hardware accelemtion is common in many computing domains and

reflect both the increase in available silicon for special purpose ap­

plications with analysis to determine the "kernel" of specific do­

mains.

Radio processing on the other hand was originally digital hard­

ware that was implemented using a combination of general purpose

DSPs or fixed-function logic implemented as an ASIC or using an

FPGA. Over time, specialized processor designs have evolved that

are finely tuned for handling a set of wireless protocols [27, 40].

However, these processors are mainly suitable for "3G" networks,

and it's not clear they are easily adaptable to "4G" or emerging ra­

dio standards. Alternative architectures, such as the PicoChip pro­

cessor [34] and other similar designs like SCA and XiRisc [1 0,
29] combine general purpose processors with fixed-function logic

designed to provide more efficient solutions to specific tasks (e.g.
correlators for determining if a packet is being received). The most

challenging problem in the domain of cognitive radio is supporting

non-contiguous spectrum access while remaining backward com­

patible and these architectures do not provide enough flexibility to

adopt this shifting pamdigm.

In this paper, we survey some of the techniques that we believe

cognitive radios will need to implement and highlight the impact of

those techniques on the underlying architecture. Our current imple­

mentation is at the point of special purpose functional blocks im­

plemented using an FPGA that form the foundation of 3G and 4G
wireless protocols and are easily reconfigumble at run-time. The

contribution of this paper is a review of the structure of processing

steps needed in cognitive radios rather than a final general purpose

design for those processing steps.

2. RELATED WORK
In this section, we discuss current research in the field of soft­

ware defined radio for current wireless networks. Wireless protocol

processing can be broadly grouped into four categories: (1) So�t­

ware processing only on general purpose processors, (2) On-chIp

network based architecture, (3) Multiprocessor architecture and (4)

Hybrid architecture - geneml purpose processors along with dedi­

cated accelemtors using reconfigurable gate arrays.

When wireless PHY processing is done entirely in software as in

[1] and [3], although it aids in reprogramming using simple high

level programming languages, they often fail to meet the protocol

timing requirements for modern wireless protocols such as 802. 16
and other cognitive mdio protocols like 802.22 because of a com­

bination of 110 throughput and post-processing using commercial

CPUs. The SORA platform [40], proposes a hybrid implemen­

tation of 802.11 physical layer using general purpose CPUs and

a radio control board. Although most of the transceiver chain is

implemented in software, the system is currently not able to sup­

port NC-OFDM transmission and reception, which is the basic n�­

quirement for the cognitive mdio environment. SORA uses van­

ous cache optimization techniques and core dedication for specific

functionalities, which might require redesigning for a wider band­

width cognitive mdio.

NOC based processing [6, 22], relies heavily on the performance

of the routing algorithm and the efficiency of the common func­

tional unit. Reprogmmming such devices can only be done at com­

pile time. Unless, the functional units are multi-mode, supporting

multiple protocols is a challenge using this form of architecture.

Multiprocessor architectures are particularly effective for mdio

processing because it meets the protocol timing requirements in

most of the cases. SODA [27] provides a multi-processor architec­

ture using optimized SIMD operations for digital processing, but

SODA fails to address the requirements for a SDCR and it is not

known if the processor could support non-contiguous OFDM pro­

cessing. In [34], the authors propose a multiprocessor architecture

using several hundred processors. Implementation of mdio PHY

using highly parallel processors is shown in [1 2]. Researchers

have also used embedded processor to implement a simple single

carrier radio transceiver as in [5].
Processor based architectures are often complemented by dedi­

cated hardware acceleration unit for particular algorithms. In [28,
34] employ FPGA accelemtors for DSP algorithms along with

RISC processors, where application specific functions can be

mapped. PicoArmy [34] is a tiled-processor architecture, contain­

ing several hundred heterogeneous processors, connected through

a compile-time scheduled interconnect. These systems often com­

bine dedicated hardware for correlations for signal detection.

Software controlled hardware is another form of processing en­

gine that uses software to control certain "knobs" in the hardware

to perform multiple tasks. The WARP [31] and KUAR [21] are two

such platforms that are capable of certain cognitive mdio transmis­

sion.

While most of the previous work focuses on architecture of the

actual processing engine, few focus on defining the requirements
of a true cognitive radio. Therefore, instead of architecting just

software defined mdio, future research should be inclined towards

the idea of a software defined cognitive mdio. It is important to

envision how next genemtion wireless networks will behave, and

the design of the underlying hardware needs to be such that the

architecture is ready to embrace any adaptation required. In this
paper, we present an architecture, which is capable of adapting in
a cognitive radio environment and also allows for simple additions
of newer functionality and tunable parameters.

3. OFDM FOR COGNITIVE RADIO
Orthogonal Frequency Division Multiplexing (OFDM) [9] is a

special type of Multicarrier Modulation (MCM), where the data
stream is divided into multiple bit streams and are modulated us­
ing closely spaced non-interfering frequencies called subcarriers.
In conventional Frequency Division Multiplex (FDM) systems, a
band-pass filter is used to filter to limit the bandwidth of the trans­
mission or reception. In OFDM, instead of using sharp cut-off fil­
ters, an Inverse Fast Fourier Transform (FFT) is used to convert
the frequency data carrying subcarriers to a time domains signal
which can be upconverted to the desired carrier frequency. An in­
verse operation at the receiving using Fast Fourier Transform(FFf)
reveals the frequency domain information. Establishing the cor­
rect symbol boundary is of utmost importance in any OFDM based
system. Apart from the simple waveform generation and recon­
struction, OFDM provides significant advantages over single car­
rier transmissions like : immunity to multipath distortion, scalabil­
ity and spectral separation, making it a superior choice for large
family of wireless protocols [30].

Cognitive Radio Networking is the next generation of wireless
networks, where each radio is expected to sense the environment
for available spectrum and adapt quickly to it without interfering
with the incumbent for that carrier frequency. The secondary sys­
tem should be able to avoid the primary transmission while com­
municating within its own network in a spectrum hole. This kind
of network requires sensing capability, and fast adaptation to new
frequency band for both transmission and reception. We believe
that OFDM is likely to be chosen as the communication substrate
in Cognitive Radio Networks due to its inherent capability of trans­
mission and reception in variable bandwidth and in multiple chunks
of subcarriers called subchannels without using any kind of band­
pass filters. Any subcarrier set can be suppressed to form a Non­
Contiguous OFDM (NC-OFDM) waveform, which can be utilized
to transmit in a spectrum hole, avoiding the primary user. The
use of FFT for OFDM also helps in sensing the spectrum, while
other adaptation capabilities, like changing the number of subcarri­
ers and subchannels makes OFDM the most appealing medium for
communication in Cognitive Radio Networks. Since most of the
newer protocols, like 802. 11, 802. 16, LTE, WRAN, WPAN, all
use OFDM at the physical layer, we believe that OFDM is a likely
choice for cognitive radio application. Table 1 shows some of these
common OFDM parameters for three contemporary wireless proto­
cols. This motivates our research in new architectures for software
defined radios which will allow innovation in future deployments
of cognitive radio networks.

Table 1: Common Transmission parameters

Parameter 802.1la/g 802.16 LTE

FFT Size 64 1 28,256, 1 024, 1 28,256,51 2,
2048, 4096 1 024,2048

CP size 1 /4 1 14, 1 /8, Variable
1 11 6, 1 /32

Bits/symbol 1 ,2,4,6 1 ,2,4,6 2,4,6
Pilots 4 Variable Variable

4. SDCR: REDEFINING THE RADIO PHY
The similarity amongst different communication protocols is

also reflected in their corresponding physical layer. There is an
increasing demand to redesign the common processing engines to
perform most of the functions in a fast changing environment of
cognitive radio. A close look at the current wireless protocols re­
veals that we can define a more fundamental set of operations or
primitives, beyond just the the parameters or functional operation
of a particular transceiver subsystem: e.g. , instead of having cor­
relators with fixed coefficients, we should have a method to feed
the coefficients required for a particular packet encoded using a
particular protocol. This is typically required in a cognitive radio
environment where the available spectrum varies over time and so
does the number of available OFDM subcarriers which changes the
time domain correlation coefficients [17, 33].

With various concurrent wireless protocols in mind we define a
set of fundamental operations, a generic transceiver should have
in order to operate as a SDCR. This de-construction of the radio
physical layer beyond a multi-mode type operation is motivated by
a substantial amount of prior research and publication in the cogni­
tive radio community. We list the barebones of the transceiver and
highlight the research that has motivated the design of this subsys­
tem :

• SDCR should be able to transmit and receive in any set of
subcarriers [24, 35, 17]. Essentially it should support non­
contiguous OFDM transmission and reception.

• Not only does it need to adapt to changing spectrum avail­
ability, the SDCR should be able to change its modulation
(e.g: BPSK, QPSK, 16QAM, 64QAM) at a subcarrier level.
Also, high throughput wireless PRY layer techniques require
advanced modulations such as superposition coding and hi­
erarchical modulation, which require a high degree of pro­
grammability in the modulation levels. In [26, 38], we can
find requirement of such systems.

• Depending on the availability of spectrum, the SDCR needs
to change the FFT size to control the number of subcarriers to
be used for the transmission. Also depending on the channel
conditions the duration of the cyclic prefix needs to change to
combat multipath channel distortions. WIMAX 802. 16 [24]
and LTE [19] are examples of wireless protocols that directly
requires this capability.

• In order to support NC-OFDM transmission, the SDCR re­
ceiver needs a programmable correlator which can support
an arbitrary set of correlator coefficients from a pre-defined
superset as chosen by the protocol. [42] and [7] are such
examples that require synchronization of NC-OFDM pream­
bles which changes the correlator co-efficients from one
packet to another.

• Equalization is an important signal conditioning step used in
the receivers. To accommodate with the changing environ­
ment, the transmitter selects different set of pilot subcarri­
ers [1 1 , 24] to assist in the equalization at the receiver end.
Therefore the pilot locations and their relevant phase is an
important information that the receiver needs to have in or­
der to equalize a NC-OFDM signal.

• Packets modulated using NCOFDM and with variable data
rates for every subcarrier, the demodulator has to be pro­
grammable to be able to receive this type of transmission.
In [35], we find the need for such a system with different
demodulators across different subcarriers.

--------------------------------------- , : Transmitter -----n=-----, I
1 Encoded r Bit

I � ______________________________________ J

Figure 2: A Generic OFD M Transceiver

• An important aspect of Cognitive Radio is Sensing [41] for
detection of the primary user a channel, which requires post­
processing of the FFT results. No other transmitter or re­
ceiver blocks are used in this mode. Recent works on simul­
taneous transmission and reception [15], [37] show require­
ment of a simple FFf block at the receiver and a threshold
based detection. So, a transceiver should be able to perform
only FFT and hand over the results to the Cognitive Engine
to make decision.

In the above discussion we intentionally omit the bit-level pro­
cessing engines such as error correction algorithms, scrambling­
descrambling, interleave - deinterleave, because we find that these
bit level operations could be done efficiently in software [36, 32,
1] as a part of the packetization process in the higher layer of the
SOCR. Another important function in an OFDM receiver is the car­
rier frequency offset correction [39]. This subsystem is considered
to be a part of the receiver that is not dependent on any particular
wireless protocol. Therefore, we can safely keep this system out of
our discussion. However, depending on the algorithm used it can
be programmable with inputs coming from other blocks like the
signal detection and subcarrier mapping.

In §4. 1, §4.2, §4.3 and §4.4 we examine the basic OFDM
transceiver pipeline, shown in Figure 2 and identify the primitives
that are fundamental to operate in a cognitive network environ­
ment. We build our system level architecture based on the basic
Wi-Fi (802.11a/ g) transceiver [18, 13]. Once the basic subsys­
tems are in place, we go about to decide on the additional func­
tionality required for a SOCR by adding programmable interfaces
and re-designing the subsystems for optimum use. The primitives
also allow us to identify a suitable programming interface that can
reconfigure the physical layer hardware to adapt to its environment
at run-time. This is particularly important in a Cognitive Radio
Network because with the changing environment, the transmission
and reception parameters can change within a short period of time,
often in order of microseconds. In this paper we limit our discus­
sion to the baseband processing elements called kernels which are
able to perform the required functionality without any knowledge
of the characteristics of its input samples. Once the Cognitive En­

gine sets the operation parameters for the kernels the transceiver
pipeline processes the packets as a pipeline that appears as a black
box to the user. It is only the configuration parameters that are re­
quired to be modified at runtime while the basic processing pipeline
remains unchanged. This makes our proposed design specially suit­
able for SOCR architecture.

4.1 OF DM Transceiver : The Top Level
One of the most important things in a SOCR is programmability

and how fast the radio PHY can adapt itself to the changing envi­
ronment. This requires: 1) barebone kernels broken down to the
most fundamental operations, making them more programmable
and avoid being always multimode and 2) reconfiguration of the
PHY at run-time without going through the compilation process.

We built our SOCR system on top of a basic 802.11a/ 9 PHY which
has been detailed in [18, 13], and contains the operation and im­
plementation of the signal processing algorithms employed in the
transmitter and the receiver. The system has a hybrid architecture
employing an FPGA and software running on the host. The FPGA
has all the signal domain processing while the host controls the
bit-level processing. In this paper we explore the possibilities of
extending the basic PHY to a highly programmable PHY for cog­
nitive radio.

Although our representative system is implemented using an
FPGA, the goal of this work is to determine an overall architec­

ture for SOCR processors. As indicated, FFf kernels are central to
the operation of the OFDM waveform which we believe will con­
stitute the core of SOCR algorithms. FFTs can be implemented in
software or in a hardware functional block; our initial system uses
a dedicated hardware block.

Figure 3 shows a hierarchical design of the control path for an
OFDM based SOCR transceiver. The PHY Controller is the inter­
face between the MAC or the Cognitive Engine and the underlying
hardware. For a typical cognitive radio environment the PHY Con­
troller can be in one of the following states : Transmit, Receive or
Sense. As shown in Figure 2, the transmit and receive path elements
are made functional based on mode selection. In Sense mode, only
the FFT block is functional. It performs FFTs on incoming signals
and sends the output to the Cognitive Engine. In our implementa­
tion, the PHY Controller can handle commands from the host or
the Cognitive Engine in the form of short messages called control

packets. Every control packet has a kernel ID followed by the num­
ber of bytes of message included for that message, followed by a set
of parameters to program that particular kernel register. The state
machine at the Transmitter(Tx), Receiver(Rx) or Sense Controller
level can decode and process any combination of kernel IDs in any
order and forwards the information to the respective controller. The
respective controllers extract the information and update the hard­
ware registers. As described in §4.2, §4.3 and §4.4, each module
of the transmitter, receiver or sensing mode operates using the in­
formation from these registers. In this way the the kernels can be
easily reconfigured within a short period of time.

We have designed four controllers, a) FFfIIFFT Controller, b)
Mod/Demod Controller, c) Correlator Controller, and d) Equalizer
Controller. Since FFf and IFFf have exactly opposite function­
ality in receiver/sensing and transmitter chain, but similar recon­
figuration requirements, we merged these two modules into one
FFTIIFFT Controller. Also, the Modulator(Mod) and Demodula­
tor(Demod) components have the same reconfiguration parameters.
We combined these together into a single Mod/Demod Controller.
Both the FFT/IFFf and modldemod controllers can handle pack­
ets from both Tx and Rx Controllers. Additionally, the FFfIIFFT
Controller can parse control packets from the Sense Controller as
well. A single FFf block is used in the hardware, which is either set
in FFf mode for receiving/sensing, or in IFFf mode for transmit­
ting. The "Mode ID" in the FFTIIFFT Controller denotes the mode:
Transmit, Receive or Sense. The other two programmable parame­
ters of FFTIIFFT are size and guard, which has been introduced as
tunable parameters in this level. FFTIIFFT Controller updates these
information in FFTIlFFT Register. Mode, size and guard size are
the three 8-bit parts of this register, making it a 3-byte register.

The ModlDemod controller is programmed using a variable
length list of configuration information for each subcarrier. An 8-
bit subcarrier information (Pi) is inserted, followed by 4-bit mod­
ulation type of frequencies Pi and PH1. The modulation type can
be BPSK, QPSK, 16QAM or 64QAM. We use the fourth bit of the
modulation type field to denote whether this subcarrier should be

I PHY Controller I
Tx lO Rx 10

I Tx Controller I Sense Controller I I Rx Controller I
�FTIO FFTy �OO ln

7 O �IO

Mod/Oemod Control Ie FFT/IFFT Controller Correlator Controller Equalizer Controller
Mod/Oemod Info 10
Num Subcarriers (s)
" ' :"fi.:: ' "

Mod, i Mod,
--------------·+Ji����������������

Mod3 i Mod.

F,

Mode 10
FT(Rx/Sense)/IFFT(Tx

Size 10
Size

Guard 10 .
Guard size'"

Preamble Superset 10
·····400·t;(t·map·fc;r·····
subcarriers -100:100

Frequency 10
200bit'mapfor

subcarriers -100:100

Pilot Freq 10
······r;.i,:im·piiots·(py·_·

*h
F,

Fo
Pilot Phase 10

**Ph, Ph, Php
Mods i Mods+l Register Name Bytes Mod/Oemod Level 10

(p bit vector)

........ �9.�!.I?��9.� FFT/IFFT Register 3 Pilot-Mod Init 10
16 bit Initializer Value 1 (16 bit) Preamble Superset Register & 75 •

I
Value, (16 bit) Subcarrier Register

Value m*** (16bit) Pilot Register 74

I Mod/Demod Info Register &
126 Mod/Oemod Level Register

* F; = Subcarrier Index (-100:100).

** Ph; = Phase of Pilot at subcarrier F;. Values can be O(Phase=O) or 1 (Phase=rr).

*** The value of m depends on Modulation Type. m=l(BPSK), 2(QPSK), 4(16QAM) or 6(64QAM).

Figure 3: PRY Controller

modulated or demodulated. Using this information, the cognitive
engine can suppress some of the subcarriers and transmit or receive
in some others. This design helps to keep the size of the control
packet smaller, and thus less time is required to parse the control
packet and update the registers. 'ModlDemod Level ID' is followed
by the modulation type (BPSK, QPSK, 16QAM or 64QAM), fol­
lowed by 16-bit values of the levels of that modulation. The num­
ber of preceding values depend on the number of modulation types.
ModlDemod info is stored in ModlDemod Info Register, where 4-
bit modulation type is stored for each subcarrier. Since our repre­
sentative design currently handles 200 subcarriers, this register is
800 bits or 100 bytes. ModlDemod Level information is stored in
ModiDemod Level Register. The maximum number of entries for
values depends on the modulation type, which is 1 , 2, 4, or 6 for
BPSK, QPSK, 16QAM and 64QAM respectively. Hence, a total of
(1 + 2 + 4 + 6) = 13 16-bit values can be stored at any time for
all the possible modulations, which makes the register size to be
13 x 16 = 208 bits, or 26 bytes.

The Correlator Controller handles packets only from the Rx Con­
troller and is used to program the Correlator block of the receiver.
The state machine at this controller can parse 'Preamble Superset
ID' and 'Frequency ID' messages. We allow the engine to program
a superset of preambles of all the frequencies, and then allow only
a few to be used at any point in time. In a cognitive radio envi­
ronment, it is likely that the superset of preambles will change less
frequently than the actual frequencies to be used for correlation.
This design helps the engine to send fewer bits to reprogram the
frequency set by keeping the superset constant. We assume that
preamble can be modulated either in BPSK or in QPSK, for which
at most 2 bits of information is required per subcarrier. Our de­
sign supports 200 frequencies, and so 400 bits of information will
suffice to encode the preamble. Hence, preamble superset consists
of a 400 bit map for subcarriers [-100 : 1001. This superset con­
tains all the frequencies that can possibly be used in a transmission.

The Correlator Controller parses these information and updates the
Preamble Superset Register, which is a 400 bit or 50 byte regis­
ter. In a cognitive radio domain for a non-contiguous OFDM re­
ception, only a subset of these frequencies will be used, which is
given by 'Frequency ID', followed by a 200 bit map of subcarriers
[- 100 : 1001, where 1 denotes that subcarrier will be used in the
preamble regeneration. This information is updated in the 200 bit
or 25 byte Subcarrier Register.

The Equalizer Controller parses control packets from the Rx
Controller and generates signals to modify the Pilot Register, which
is used by the Equalizer block of the receiver chain. The pilot lo­
cations are denoted by 'Pilot Frequency ID' and the phase of pilots
by 'Pilot Phase ID'. 'Pilot Frequency ID' is followed by number
of pilots(p), followed by 8-bit frequency of the p pilots. We con­
sider that phases of the pilots can be either 0 or 11', such that we
can encode the information in 1 bit. So, 'Pilot Phase ID' is fol­
lowed by a p-bit vector of the phases of p pilots. Currently, the
design can handle at most 32 pilots, compared to 8 pilots in a band
of 200 subcarriers in WiMax. Often a Pseudo Random Binary Se­
quence(PRBS) is generated to modify the pilot phases in each sym­
bol. Hence, an initializer is required to program the PRBS genera­
tor. We use a 16-bit initializer for this purpose, denoted by 'Pilot­
Mod Init ID', compared to 8-bit initializer in 802.1 1 and II-bit ini­
tializer for WiMax. Pilot frequency, phase and initializer informa­
tion are stored together in the Pilot Register. This register can store
32 8-bit pilot frequencies, 32-bit pilot phases, and a 1 6-bit initial­
izer, altogether the size of this register is (32 x (8 + 1) + 16) = 304
bits or 38 bytes.

4.2 Transmitter Kernels
The transmitter kernels are Modulator and IFFT with addition

of Cyclic Prefix as shown in figure 2. The bit-level processing en­
gines, like interleaver, scrambler, and encoder have been imple­
mented in software.

Mode FR (Tx. Rx or Sense)

From Mod (Tx) ..
From Pkt Select

Detect (Rx) Input

§]
Size t

IFFT(Tx)
or

� G��:Ut To DAC (Tx) Add CP (Tx) Select
or Output To �ualizer (Rx)

From ADC .. Line Samples FFT Samples Remove CP Samples Line In To Cognitive I (Rx. Sense) Out (Rx) Out .. (Sense)

i t
Engine (Sense)

FFT Start
rfRl FFT/IFFT Register-
� stores Mode (Tx. Rx or Sense). Size of FFT/IFFT and Size of Cyclic Prefix

Figure 5: Programmable FIT or (FIT Block

Coded Bits
from Coder

��M� o>.c(d_��-�-:I X (k)
Levels 1---'-""-"--___. To

Per Subcarrier
XO(k) IFFT

Mod Info

Subcarrier Count

I M/DLRIMad/Demod Level Register­
stares the levels far mod ar demad

I M/DIR I Mad/Demad Info Register-
stores the mad ar demad infa far each subcarrier

Figure 4: Programmable Modulator Block

4.2.1 Modulator

The modulator is one of the programmable units implemented
in the FPGA, that uses the information in 'ModlDemod Info Reg­
ister' and 'ModIDemod Level Register'. Figure 4 shows a block
diagram of the programmable modulator. A modulator block in­
takes coded bits and modulates them into complex samples of I
and Q values, depending on the modulation type and modulation
level. Advanced communication protocols such as Superposition
Coding [26] and Hierarchical Encoding [38] techniques need dif­
ferent levels of modulation; this is implemented by having a "con­
stellation mapping" table that is programmable rather than using
fixed values as in a convention transceiver design. The constel­
lation mapping is performed for each subcarrier. So, based on
the Subcarrier Count, which is another input of the modulation
block, the modulation type for that subcarrier is fetched from the
'ModlDemod Info Register'. Based on this modulation type, the
level for constellation mapping is fetched from 'ModlDemod Level
Register'. Then number of coded bits to be modulated is selected
based on the modulation type, which can be 1 , 2, 4 or 6 for BPSK,
QPSK, 16QAM and 64QAM respectively. Based on these informa­
tion, the I and Q values are generated by the Constellation Mapping
block, which are fed into IFFT. If the 4th bit of modulation type is
set to 0 for any subcarrier, it indicates that this subcarrier will not be
transmitted, and the Constellation Mapping block outputs 0 values
for both I and Q samples.

4.2.2 Inverse Fourier Transform

After the bits are modulated into complex samples, they enter a
common programmable FFTIIFFT kernel, used as transmitter, re­
ceiver or sensing mode. Figure 5 shows a block diagram of this
generic platform and in this section, we will discuss how this block
can be programmed for transmitter mode. The kernel uses informa­
tion from 'FFT/IFFT Register' to get the mode. If the mode is set
to transmitter, the Modulator output is selected as the input of the

IFFT. Also, the FFTIIFFT block is set to IFFT mode. Based on the
size information available in the register, the size of IFFT is chosen.
Then, IFFT is performed on the modulator output. In transmitter,
based on the Guard Size, the Cyclic Prefix is added to the samples.
Finally, depending on the mode, output line is selected. For trans­
mitter, samples are sent out to Digital to Analog Converters(DACs)
which are connected to the frontend radio.

4.3 Receiver Kernels
The receiver subsystems as shown in Figure 2 comprises of: Syn­

chronizer or Packet Detect, FFT and Guard Removal, Equalizer
and Demodulator. Apart from this there are other bit-level pro­
cessing engines like de-interleaver, FEC decoder, CRC check and
de-packetization to extract the information bits in the packet. As in
the transmitter we exclude the bit-level processing from our design
since they are efficiently performed in software at the host. §4.1
describes the control bits required to program all the kernels in the
receiver. In this section we delve into the details of how the control
bits are used to modify the kernels with changing environment.

4.3.1 Synchronizer and Packet Detect

The Synchronizer or the Packet Detect kernel is the entry point
of the baseband receiver. The primary job of the Synchronizer is
to identify the boundary of a valid OFDM symbol. This is partic­
ularly important because it introduces phase noise into the signal
which in turn makes the frequency domain decoding erroneous. In
an OFDM based system, synchronization is typically done using a
time domain correlation which searches for a pre-defined pattern
called the preamble. Since in OFDM, the preamble is constructed
and encoded in the frequency domain [23, 25], the time domain
samples changes significantly with the encoding process, i.e., if
the transmitter chooses to suppress a set of subcarriers then those
subcarriers are not used to transmit the preamble. This makes the
preamble quite different from the conventional preambles in wire­
less protocols that typically uses all the subcarriers supported by the
protocol. Furthermore, the frequency domain data for the pream­
ble varies from one protocol to the other. But fortunately they all
employ the same basic technique to acquire synchronization.

Therefore, due to the non-contiguous modulation of the pream­
ble and the variable nature of the frequency domain encoding, it is
required to have a programmable Synchronizer. The time-domain
Correlator employs a running comparison with a local copy of the
time-domain samples of the preamble being searched. Typically,
the Correlator size is of 64 samples. But depending on the sampling
frequency and the FFT size this may vary. The basic operation in a
Correlator is shift-multiply-accumulate for every fixed-point com­
plex sample in the Correlator block. As the size of the Correlator
increases in our design to 256 with increasing FFT size, the num­
ber of multipliers and adders increases significantly to make the

Psub � Pall

Input Sample,;

Locally Generated
Time Domain

Preamble Samples

Correlator
Output

� preamble Superset Register· stores a superset of preambles in all frequencies ·100:100 �Subcarrier Register· stores the information of useful subcarriers

(a) Functional Diagram of Correlator

P P l(255254) L[253.252)

PI [255,254) PI [253,252
I

-t- L
I PEi+l I 1- r _ J

I I

t j_
I PE; I
1- _ T J

---t.f-"
::l)

log,(128)=7
, ,�tages of adder� / /

P P l12,3) L 1.0J
P'".3) P,Ii.O)

---t.f-"
', + : '/

(b) Inner Structme of the Conelator (c) Smallest Processing Element of the Correlator

Figure 6: Programmable Correia tor

design too big for FPGA implementations. For a more efficient
low-cost implementation we decompose the complex fixed-point
Correlator to a simple logic operation that eliminates the require­
ment of expensive multipliers and adders. The Correlator has fom
key components as shown in figure 6(a):

• The sign bit of the I and Q samples is used instead of the
actual values to eliminate large fixed-point (often as large as
16 bit) operation.

• The local copy of the preamble consists of the sign of the
time domain signal being correlated with. In conventional
designs the local copy is not programmable. To support
cognitive radio applications, we need to program the co­
efficients. The Preamble Superset Register contains the com­
plete set of frequency domain preamble for a particular pro­
tocoL The Subcarrier Register holds the set of subcarriers
used for a particular reception. This information is obtained
from the subcarrier detection or the spectrum sensing unit
which is a standard kernel in a SDCR. Once the subcarrier
information is obtained the time domain preamble should be
regenerated either by using a look-up table or a dedicated
low cost IFFT core. We leave the process of subcarrier de­
tection of the preamble as futme work. Once the time domain
preamble is generated the sign bits of the I and Q components
are used as the coefficients of the Correlator.

• The Correlator has two 256-bit shift registers which feed
the coefficients to the core processing elements. Figure
6(b) shows the inner structme of the Correlator. There are
128 Processing Elements (P Ei), each capable of perform­
ing comparison of two samples of the preamble as shown in

figure 6(c). Since the objective of correlation is to search for
the exact set of samples as stored in the receiver, a simple
XNOR operation is sufficient to compare the similarity be­
tween the incoming samples and the local copy of the pream­
ble. Whenever the sign of the input sample matches that of
the local copy, the output is a T otherwise '0'. The output of
the 256 comparisons is accumulated using a 2 bit adder tree
which consists of [092(256) - 1 adder stages for a 256-bit
correlation,

• The last stage of the Correlator is a threshold based detec­
tion of the correlation energy. Once the Correlator finds the
exact 256 samples the output is a high energy peak, which
is used to trigger other subsystems of the receiver to decode
the packet. Although the Correlator uses 1 bit instead of all
the 16 bits of the complex sample, we still find the perfor­
mance to be satisfactory under varying SNR. We discuss the
performance of this kernel in §5.

4.3.2 FFT and Equalizer

The FFT kernel in the receiver is triggered by the Synchronizer.
Once synchronization is achieved the FFT converts the input I1Q
samples back to frequency domain. We use the common FFTIIFFT
block as shown in figure 5 to perform the FFT and remove the
Cyclic Prefix. Based on the information in 'FFT/IFFT Register',
the input line is selected, from where the samples are pushed in to
the FFTIIFFT block, which is set in FFT mode. Then the Cyclic
Prefix is removed based on Guard Size and samples are forwarded
to the Equalizer in receiver mode.

Once in frequency domain we can decode the information bits
after some signal conditioning called Equalization. The primary

Demod
Levels

Per Subcarrier
Demod Info

Subcarrier Count

I M /DLR IModloemod Level Register·

From E�ualizer
-I\. ",-

X1(k) XQ(k)

Demodulator
Output (Bits)

stores the levels for mod or demod
I M/DIR I ModlOemod Info Register·

stores the mod or demod info for each subcarrier

Figure 8: Programmable Demodulator

function of the equalizer is to compensate for any phase and ampli­
tude noise that was introduced by the wireless channel. The amount
of equalization will vary according to the signal to noise ratio and
also on the multi path distortion. OFDM transmission makes the
equalization process particularly simple. Pilot subcarriers are in­
cluded at regular intervals at pre-defined subcarriers which assist
in the equalization process. The phase and amplitude of these pe­
riodic pilots provide estimates of the channel at those subcarriers
which are used to compute the channel estimates of the interme­
diate subcarriers by performing linear interpolation between two
consecutive pilots. The hardware design of such an interpolation
based equalizer is shown in [13].

The basic equalizer performs well for the contiguous set of sub­
carriers where the interpolation is performed for all the subcarri­
ers. A closer look at different protocols reveals that the position
of the pilots as well as their phase and magnitude may not remain
constant over time. This requires some of the components of the
equalizer to be made programmable. Figure 7 shows the structure
and programmable registers for the equalizer. The Pilot Register

holds the information of the pilot phase and magnitude, and Sub­

carrier Register contains the subcarrier information that are used
for this particular OFDM symbol. The pilot latch unit stores the
channel estimates at the pilot subcarrier as defined by the contents
of the Pilot Register. Depending on the number of subchannels
used and the number of subcarriers in one subchannel, the number
of pilots can vary. The channel estimates for the intermediate sub­
carriers is computed using the estimates at the pilot. But instead
of interpolating over the entire bandwidth, only the subcarriers de­
fined by the Subcarrier Register is used for the interpolation. In
this way we can equalize any arbitrary OFDM transmission which
is the essence of a SDCR. We discuss the non-contiguous equaliza­
tion and its performance in §5 with noisy waveforms.

4.3.3 Demodulator

The demodulator uses a simple threshold test to decode the infor­
mation bits from the equalized I1Q samples [4] as shown in figure
8. The data rate or the modulation type can vary even for every
subcarrier; per subcarrier de-modulation information is a key pro­
gramming feature for this kernel. Apart from the data rate, the
decision boundaries to decide on which constellation was transmit­
ted can also vary. This is required for decoding packets encoded
with superposition coding as discussed in §4.2. Decision bound­
aries for each modulation type is obtained from the ModlDemod

Level Register and the demodulation type (BPSK, QPSK, 16QAM
or 64QAM) for each subcarrier is read from the ModiDemod Info
Register. The subcarrier count is an input to the demodulator to
selectively demodulate non-contiguous subcarriers. Based on these
inputs, the Boundary Decision module generates the boundary in-

Figure 9: Nallatech FPGA Boards with Radios and Antennas

Table 2: Configurations Supported by the SDCR

Kernel Supported Configurations

Subcarriers 256
Guard 114, 1/8, 1116
Correlator 256 samples wide
Data Rate BPSK, QPSK, 16QAM, 64QAM

and superposition coding using these
Pilots 32
FFT size 64, 256, 512, 1024, 2048

formation, which is then used by the Extract Bits module to per­
form threshold test on the I1Q samples from Equalizer to generate
demodulated bits.

4.4 Cognitive Sensing
The transceiver can be programmed in the sensing mode, by

changing the mode in the 'FFfIIFFT Register'. In this mode, only
the FFfIIFFT kernel remains functional as shown in figure 5. In
OFDM, sensing can be more than detection of carrier power; in
most of the cases it is actually the detection of power in each of the
subcarriers, which requires performing an FFT on the time domain
signal to detect which subcarriers have been transmitted. Spectrum
sensing is used by cognitive radio to detect primary users [41]. The
final detection mechanism depends on initial FFf results, and may
vary significantly from one procedure to another. Hence, we as­
sume that there will be a Cognitive Engine above the PHY to de­
termine the detection based on the FFf values. So, the FFT values
are passed on to the Cognitive Engine in sensing mode.

Recent advances in wireless network protocols show that indi­
vidual subcarriers can be used to transmit higher layer information,
like MAC layer acknowledgments [15], or parallel polling [37] or
voting mechanisms. This method can be used in any kind of sig­
naling procedure. In these scenarios, simple threshold checks on
subcarrier energy reveals whether there has been any transmission
in any subcarrier or not. We have implemented this detection mech­
anism in our FPGA system as shown in §5.

5. IMPLEMENTATION AND RESULTS
In this section, we describe the details of our implementation and

discuss how we program each of the modules in the transceiver to
perform as required in the Cognitive Radio Network.

5.1 Implementation
We implemented the programmable SDCR on a Virtex-IV FPGA

using a Nallatech ExtremeDSP kit [2] along with a custom front­
end radio capable of transmitting in 2.4G H z ISM band as shown

I- �
tt Mag-Phase B � E to :>
� Complex "0 0

I/O Sample E Q)
Converter 0

1'2

Subcarrier Count
r;;Rl Pilot Register -
� stores frequency and phase of pilots
rsRl Subcarrier Register -

XW) - Complex Samp e a -t su carner
X (k) - Complex Sample of k-th subcarrier, k E P (Set of Pilots)
{irk) - Complex Channel Estimate of k-th subcarrier
)((k) - Equalized Complex Sample of k-th subcarrier � stores the information of useful subcarriers
j - Subcarrier index, j E [F(Set of useful sub carriers) n P (Set of Pilots)]

Figure 7: Programmable EquaUzer

Table 3' Transceiver Hardware Utilization in Virtex - IV
Parameter Count / Max Utilization

Slices 14497 / 15360 94%
Slice Flip Flops 17,644 / 30720 57%
4 input LUTs 20,080 / 30720 65%
FIF016lRAMB 1 6s 1 05 / 192 54%
DCM_ADVs 3 / 8 37%
DSP48s 55 / 192 28%

in figure 9. The design flow consists of Xilinx System Generator:
used for designing all the baseband processing kernels and their
controllers and VHDL: to interface with the host Pc. The current
version of the design supports most of the transmission parameters
required for a cognitive radio deployment and are listed in table 2.
Finally, we have implemented the SDCR barebone on a Virtex-IV
FPGA and the logic consumption details is given in table 3.

5.2 Results
In this section, we demonstrate that our FPGA implementation

can be programmed as required and we show the results of repro­
gramming each of the modules.

5.2.1 Programmable FFT/IFFT

We have tested the transmitter kernels by transmitting packets
using non-contiguous OFDM by suppressing different set of sub­
carriers in each packet. Figure 1 , shows the spectrogram of the
University of Colorado emblem captured by an Agilent Vector Sig­
nal Analyzer which is transmitted using non-contiguous OFDM.

5.2.2 Programmable Modulator/Demodulator

Apart from supporting multiple forms of constellations, an
SDCR may be required to transmit arbitrary constellations as a part
of multi-layered modulations. Figure 10 shows the flexibility of
the SDCR by transmitting modified constellations using different
modulation levels. Figure 1O(a) is a modified l6QAM constellation
where as figure 1O(b) shows a modified QPSK constellation. This
is quite common in using hierarchical modulation and superposi­
tion coding. At the receiver the kernels have been tested by trans­
mitting waveforms using our transmitter over a simulated channel
multipath channel instantiated in the FPGA. This has been to com­
pensate for a lack of a wide band front-end, which is considered as
future work. We captured signals at the demodulation level in the
receiver chain to generate figures lO(a) and lO(b).

1.S ..
. 11

" . 1 ·

0. 5 ..
: 0 :
'" -0.5 " · · · i· ·

- 1 "
-1 .5 - • . - .

--2 - 1 o 1 ->

. ,
.. �

•
; 1-.

(a) Modified 16QAM

O.S

-1
-1 .S

--2 -1 o 1 -->

(b) Modified QPSK

Figure 10: Programmable Constellations using SDCR

1 .2 ,.S

(a) Non-Contiguous Spectrum

:r. lO·

4()() 600 800 1000 Samples ->
(b) Correlator output

Figure 11: Programmable Correlator Input and Output

5.2.3 Programmable Correlator
Figure 1 1 shows the input and output traces of the SDCR cor­

relator which computes correlation on a preamble transmitted in
non-contiguous spectrum. Figure l 1 (a) shows that the preamble
is tranmitted in two subchannels using subcarriers, [-68 : - 171
and subcarriers [44 : 691 . With prior knowledge of the subcarrier
information from the Cognitive Engine and the preamble superset,
the correlator regenerates the preamble and then performs the time­
domain correlation. Figure 1 1 (b) shows the correlation energy for
the preamble with two high peaks corresponding to the two pream­
ble symbols transmitted at the beginning of the each packet to aid
synchronization, The unequal amplitude of the two subchannel is a
result of the multi path effect and the additive noise in the received
signal at an SNR of approximately lOdB.

i 0

(a) Amplitude Equalization

0. 1 5
0. 1

0.05

-0.05
-0.1

. ' . . tf!.#� " " .

. : .. >:,� ':.if

-0.1 -0.(1'5 0 0.05 0. 1 0 . 15 1 ->
(c) Unequalized BPSK

2
, . . , � . " 1 ! ! l 11 , I � !

� ;
l' o.

0
, � -<J

1

- I ,

Ll

-

II � I :
i

� 100 50 0 50 100 Subcarricr lndcx ->
(b) Phase Equalization

0.5 • • '_ :
i O��+-: -l--f;�\-

CI • ••• � "Y"-- . -<J'

- '

-

: 1 -�'!;--2 -----';-_I-----cOC----:--� 1 ->

(d) Equalized BPSK

Figure 12: Equalizer Performance

5.2.4 Programmable Equalizer
Figure 1 2 shows the performance of the equalizer using the same

received signal. The red dotted line in figure 1 2(a) and 1 2(b) shows
the interpolation for magnitude and phase respectively over non­
adjacent OFDM subcarriers. Figure 1 2(c) shows the unequalized
constellation for the same waveform. As we can see that the noise
in the phase causes rotation of the constellation by almost 7r /2 radi­
ans which makes the demodulation quite erroneous. The equalizer
de-rotates the constellation after correcting the phase and magni­
tude of the OFDM subcarriers by channel estimation and pilot­
aided linear interpolation as discussed in §4.3.2. The de-rotated
constellation is shown in figure 1 2(d) which shows a clean BPSK
constellation that can be successfully demodulated without errors.
We captured signal from the FPGA at the Equalizer level to gener­
ate figure 1 2.

5.2. 5 Spectrum Sensing
Spectrum sensing is one of the fundamental operation of a cogni­

tive radio. Using OFDM offers the advantage of spectrum sensing
without the use of of any new hardware. The Fourier transmform
unit required to decode OFDM signal can also be used to sense the
spectrum for any primary user of the channel. The energy based
sensing is a simple mechanism that use a threshold on the FFT out­
put to decide on a spectrum hole. Figure I l (a) shows an example
of FFT output. Using a simple threshold we can clearly identify
which part of the spectrum is occupied and whch part can be used
for the secondary transmission.

6. EFFICIENCY AND GENERALITY
In this paper we aimed at addressing the implementation chal­

lenges that are faced in developing next generation wireless net­
work protocols. Using various contemporary research in the field
of wireless data communication [35, 17, 26, 38, 7, 42, 35, 1 5,
37], as examples we present a generalized framework for a SDCR
node. Although this implementation is based on FPGA, the de-

sign can be easily translated to ASIC implementation and it has
sufficient software interface to allow reconfigurability at real time
to support a wide variety of waveforms including those employing
OFDM based DSA.

We do not find any current research, described in §2, on software
defined cognitive radio architecture. However, we assume the soft­
ware based implementations, capable of processing OFDM signal
structure, can be modified easily to perform as a cognitive radio
platform. GNURadio and SORA are two such architectures, which
we study in detail. GNURadio [1] is a purely software based im­
plementation of SDR platform, and efforts [42] have been made to
use it as a software defined cognitive radio. However, large pro­
cessing delays [20] in the processing pipeline of GNURadio plat­
form is a fundamental limitation in implementing a radio chain in
real time. Another recent effort is SORA [40], which implements
802. 1 1 pipeline in software, taking advantage of streamlined pro­
cessing of multi-core architecture, cache optimized lookup tables
and core dedication for specific SDR tasks. SORA meets timing
requirements for 802. 1 1 , which handles data from relatively small
number of OFDM subcarriers (64 in case of 802. I l a/g). However,
a wider bandwidth cognitive radio may need to process data from
1024 or 2048 subcarriers which might require researchers to re­
design SORA, in a way to respond within the timing constraints
of a protocol. Compared to these contemporary architectures our
framework uses a more generic design approach that is equipped to
support future cognitve radio PHY processing at real-time.

The proposed architecture is built on a basic OFDM transceiver
used in 802.11a/ g [1 8, 1 4]. In order to make the design generic we
have included a simple programming interface using registers and
state machines. While the state machines are responsible to gener­
ate control signals for various signal processing blocks the signal
processing blocks themselves need to have additional resources to
interpret those signals and adapt to a changing radio environment.
This leads to additional hardware resource. Compared to a basic
802. 11a/ g, OFDM based transceiver, the SDCR framework con­
sumes requires an additional 5.41 % of slices and 2. 02% of LUTs.
This excess hardware usage can be considered negligible given the
wide array of waveforms it can support, making it an efficient plat­
form for future wireless technologies. Since OFDM based DSA
seems to be the choice for cognitive radio deployments, the archi­
tecture presented in this paper is considered suitable for the signal
processing requirements of such networks.

7. ACKNOWLEDGMENT
This work is being funded by NSF/GENI Project 1803, "CR­

GENI - Cognitive Radios for Geni". Portions of the work were also
funded by the NSF award 0627172 "NeTS-FIND: Radio Worm­
holes for Wireless Label Switched Mesh Networks" and equip­
ment support from award 0454404 "CR!: Wireless Internet Build­
ing Blocks for Research, Policy, and Education". We would also
like to thank all the reviewers for their insightful comments and
Prof. John Chapin for helping us improve the paper during the
shepherding process.

8. CONCLUSION
In this paper we propose an architecture of a software defined

cognitive radio by defining the specific requirements for every
transceiver subsystem to be able to operate in a true cognitive radio
network. We aim to deconstruct the conventional OFDM based ra­
dio pipeline to include specific programmable features that changes
with available spectral resources. Rather than making the radio
pipeline multi mode, we aim to treat it as a skeleton or barebone

which supports a family of transmission protocols in a cognitive
environment. We also propose a programming interface that recon­
figures the underlying barebones with minimal overhead and with
fine-grained control over different operating parameters. It is our
belief that this architecture along with a cognitive controller will
allow innovations towards future cognitive radio deployments.

9. REFERENCES

[1] GnuRadio : http://www.gnu.orglsoftware/gnuradio/.
[2] Nallatech Extreme DSP Kit- IV :

http://www.xilinx.com/products/devkits/do-di-dsp-dk4-uni­
g.htm.

[3] Vanu Inc : http://www.vanu.org.

[4] I. S. 802. 1 1 - 1999. Part 1 1 : Wireless Ian medium access
control (mac) and physical layer (phy) specifications.

[5] c. R. Anderson and E. G. Schaertl. A low-cost embedded sdr
solution for prototyping and experimentation. In SDR '09:

Proceedings of the Software Defined Radio Technical and
Product Exposition, 2009.

[6] M. I. Anwar, S. Virtanen, and J. Isoaho. A software defined
approach for common baseband processing. volume 54,
pages 769-786, New York, NY, USA, 2008. Elsevier
North-Holland, Inc.

[7] P. Bah!, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh.
White space networking with wi-fi like connectivity.

[8] M. Casado, T. Koponen, D. Moon, and S. Shenker.
Rethinking packet forwarding hardware. HotNets, 2008.

[9] R. Chang. Orthogonal frequency division multiplexing. U.S.
Patent, Jan 1970.

[1 0] A. Chun, E. Tsui, I. Chen, H. Honary, and J. Lin. Application
of the Intel reconfigurable communications architecture to
802. 1 1 a, 3G and 4G standards. volume 2, pages 659-662
Vo1.2, May-2 June 2004.

[1 1] S. Coleri, M. Ergen, A. Puri, and A. Bahai. Channel
estimation techniques based on pilot arrangement in ofdm
systems. In Broadcasting, IEEE Transactions on, volume 48,
pages 223-229, Sep 2002.

[1 2] B. A. Dalio and K. A. Shelby. The implementation of ofdm
waveforms on an sdr development platfor supporting a
massively parallel processor. In SDR '09: Proceedings of the

Software Defined Radio Technical and Product Exposition,
2009.

[1 3] A. Outta, J. Fifield, G. Schelle, D. Grunwald, and D. Sicker.
An intelligent physical layer for cognitive radio networks. In
WICON 2008: Proceedings of the Fourth International
Wireless Internet Conference (WICON 2008), New York,
NY, USA, 2008. ACM.

[1 4] A. Dutta, J. Fifield, G. Schelle, D. Grunwald, and D. Sicker.
An intelligent physical layer for cognitive radio networks. In
WICON '08: Proceedings of the 4th international conference
on Wireless internet, 2008.

[15] A. Dutta, D. Saha, D. Grunwald, and D. Sicker. Smack: a
smart acknowledgment scheme for broadcast messages in
wireless networks. SIGCOMM Comput. Commun. Rev.,
39(4) : 15-26, 2009.

[1 6] A. Dutta, D. Saha, D. Grunwald, and D. Sicker. Practical
implementation of blind synchronization in nc-ofdm based
cognitive radio networks. In CORONET, New York, NY,
USA, 201 0. ACM.

[1 7] S. Feng, H. Zheng, H. Wang, J. Liu, and P. Zhang. Preamble
design for non-contiguous spectrum usage in cognitive radio

networks. In WCNC '09: Proceedings of the 2009 IEEE

conference on Wireless Communications & Networking
Conference, pages 705-71 0, Piscataway, NJ, USA, 2009.
IEEE Press.

[18] J. Fifield, P. Kasemir, D. Grunwald, and D. Sicker.
Experiences with a Platform for Frequency-Agile
Techniques. In DYSPAN 2007, 2007.

[19] Freescale Semiconductors. Overview of the 3GPP Long Term
Evolution Physical Layer.

[20] F. Ge, A. Young, T. Brisebois, Q. Chen, and C. W. Bostian.
Software defined radio execution latency. In in Proc. of
Software Defined Radio Technical Conference, 2008.

[21] J. D. Guffey, A. M. Wyglinski, and G. J. Minden. Agile radio
implementation of ofdm physical layer for dynamic
spectrum access research. In Proceedings of the IEEE Global
Telecommunications Conference, November 2007.

[22] J. Hoffman, D. Ilitzky, A. Chun, and A. Chapyzhenka.
Architecture of the scalable communications core. pages
40-52, May 2007.

[23] IEEE Computer Society : LANIMAN Standards Committee.
Part 11 : Wireless IAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications.

[24] IEEE Computer Society : LANIMAN Standards Committee.
Part 16: Air Interfacefor Fixed and Mobile Broadband
Wireless Access Systems.

[25] IEEE Computer Society : LANIMAN Standards Committee.
Part 16: Air Interfacefor Fixed and Mobile Broadband
Wireless Access Systems.

[26] L. E. Li, R. Alimi, R. Ramjee, J. Shi, Y. Sun,
H. Viswanathan, and Y. R. Yang. Superposition coding for
wireless mesh networks. In MobiCom '07: Proceedings of
the 13th annual ACM international conference on Mobile

computing and networking, pages 330-333, New York, NY,
USA, 2007. ACM.

[27] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner. Soda: A low-power
architecture for software radio. In ISCA '06: Proceedings of
the 33rd annual international symposium on Computer
Architecture, pages 89-101 , Washington, DC, USA, 2006.
IEEE Computer Society.

[28] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti,
C. De Bartolomeis, L. Ciccarelli, R. Giansante, A. Deledda,
F. Campi, M. Toma, and R. Guerrieri. XiSystem: a XiRisc
based SoC with reconfigurable io module. volume 41 , pages
85-96, Jan. 2006.

[29] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and
R. Guerrieri. A VLIW processor with reconfigurable
instruction set for embedded applications. Solid-State
Circuits, IEEE Journal of, 38(1 1) : 1876-1886, Nov. 2003.

[30] H. Mahmoud, T. Yucek, and H. Arslan. Ofdm for cognitive
radio: merits and challenges. Wireless Communications,
IEEE, 1 6(2) :6 -15 , april 2009.

[31] P. Murphy, A. Sabharwal, and B. Aazhang. Design of warp:
A flexible wireless open-access research platform. In
Proceedings of EUSIPCO, 2006.

[32] A. Niktash, H. Parlzi, A. H. Kamalizad, and N. Bagherzadeh.
Recfec: A reconfigurable fec processor for viterbi, turbo,
reed-solomon and ldpc coding. In WCNC, pages 605-61 0,
2008.

[33] K. E. Nolan, T. W. Rondeau, P. Sutton, and L. E. Doyle.
Tests and trials of software-defined and cognitive radio in

ireland. In SDR Forum Technical Conference and Product

Exposition, 2007.
[34] G. Panesar, D. Towner, A. Duller, A. Gray, and W. Robbins.

Deterministic parallel processing. Int. J. Parallel Program.,
34(4):323-341 , 2006.

[35] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat.
Learning to Share: Narrowband-Friendly Wideband
Networks. In SIGCOMM '08: Proceedings of the ACM
SIGCOMM 2008 conference on Data communication, pages
1 47-1 58, New York, NY, USA, 2008. ACM.

[36] L. Rizzo. On the feasibility of software fec. Technical report,
1 997.

[37] D. Saha, A. Dutta, D. Grunwald, and D. Sicker. Phy aided
mac: A new paradigm. INFOCOM 2009. The 27th
Conference on Computer Communications. IEEE, April
2009.

[38] N. Shacham. Multipoint communication by hierarchically
encoded data. In INFOCOM '92. Eleventh Annual Joint
Conference of the IEEE Computer and Communications
Societies, IEEE, pages 21 07-21 1 4 vol.3, May 1992.

[39] M. Speth, S. Fechtel, G. Fock, and H. Meyr. Optimum
receiver design for wireless broad-band systems using
OFDM - I. In Communications, IEEE Transactions on,
volume 47, pages 1 668-1677, Nov 1999.

[40] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang,
H. Wu, W. Wang, and G. M. Voelker. Sora: high performance
software radio using general purpose multi-core processors.
In NSDI'09: Proceedings of the 6th USENIX symposium on
Networked systems design and implementation, pages 75-90,
Berkeley, CA, USA, 2009. USENIX Association.

[41] R. Tandra and A. Sahai. Snr walls for feature detectors. In
New Frontiers in Dynamic Spectrum Access Networks, 2007.
DySPAN 2007. 2nd IEEE International Symposium on, pages
559 -570, 17-20 2007.

[42] L. Yang, W. Hou, L. Cao, B. Y. Zhao, and H. Zheng.
Supporting demanding wireless applications with
frequency-agile radios. In Proc. of ACMIUSENIX NSDI, San
Jose, CA, April 201 0.

