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ABSTRACT 

As we move forward towards the next generation of wireless pro­

tocols, the push for a better radio physical layer is ever increasing. 

Conventional radio architectures are limited to narrow operating 

regions and fails to adapt with changing technology. This is fur­

ther strengthened with the advent of cognitive radio, which needs a 

more versatile and flexible framework that is programmable within 

the timing constraints of a protocol. In this paper we present an 

architecture for Software Defined Cognitive Radio that caters to the 

specific baseband processing requirements in a changing environ­

ment. We aim to provide more flexibility by de-constructing the 

radio pipeline into a framework of user controlled kernels that can 

be reconfigured at run-time. This architecture provides the bare­

bones of a OFDM based radio physical layer that can adapt to per­

form a varied number of tasks in different radio networks. We also 

present a novel message based real-time reconfiguration method to 

transmit and receive a wide range of waveforms used in concurrent 

wireless protocols. 

Categories and Subject Descriptors 

C.O [GENERAL): Hardware/Software Interface; C.3 [SPECIAL­

PURPOSE A ND APPLICATIO N-BASED SYSTEMS): Signal 

Processing Systems; C.4 [PER FOR MA NCE O F  SYSTEMS): 
Design Studies 

General Terms 

Design, Performance, Verification 

Keywords 

Cognitive Radio, NC-OFDM, Software Defined Radio, FPGA Im­

plementation 

1. INTRODUCTION 
Cognitive radios are an emerging wireless networking technol­

ogy that are generally characterized as "reacting to an environment" 

in order to improve network performance. Equally important, most 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
ANCS'1O, October 25-26, 2010, La Jolla, CA, USA. 
Copyright 2010 ACM 978-\-4503-0379-8/10/10 ... $10.00. 

450 
400 
350 

u 300 
� .= 250 � 200 

150 
100 
50 

-40 -30 -20 -10 0 10 
Frequency Subcarricrs 

20 30 

Figure 1: Spectrogram captured using a vector signal ana­
lyzer showing over-the-air transmission of multiple packets us­
ing non-contiguous O FDM from a SDCR transmitter. Packets 
are transmitted in a way to resemble the University of Colorado 

at Boulder logo, using non-contiguous subsets of subcarriers 
ranging between [-27 and + 27]. The maximum possible signal 
bandwidth is 16.875M H z. 

cognitive radios are envisioned to use Dynamic Spectrum Access 
(DSA) to make use of fractured available spectrum. A radio node 

employing (DSA) acts as a secondary user and could use a part 

of a licensed frequency band while causing no interference to the 

primary user of that band. Orthogonal Frequency Division Multi­

plexing (OFDM) multicarrier communication technique that allows 

for such dynamic access of the medium. We discuss the applicabil­

ity of OFDM in cognitive radio in more details in §3 and discuss 

why this is a good choice for such an application. Thus a new 

paradigm of non-contiguous spectrum access has evolved that has 

led to cause radio hardware architecture to be more adaptive and 

self aware to the ever changing radio environment. While transmis­

sion in non-contiguous spectrum, often in multiple disjoint chunks 

spread apart in frequency can be achieved with relative ease, re­

ceiving such waveforms greatly complicates the tasks facing the 

radio - for example: correlators, used to determine if a signal is in 

transmission, now must look up across multiple bands instead on 

one continuous range of frequencies [ 1 6]. 

A quick example of such a cognitive transmission is shown in 

figure 1 .  The spectrogram (x-axis represents frequency denoted 



by OFDM subcarrier index and y-axis represents packet airtime), 

shows how a cognitive transmitter adjusts it's tmnsmission band­

width based on the available spectrum. The spectrogram is com­

prised of hundreds of small packets transmitted over 450JLsec but 

each packet occupies a different part of the spectrum denoted 
.
by 

the high spectral energies in dBm (red zones). The unoccupIed 

spaces indicated by low spectral energy (green zones) coul� be 

thought of as occupied by a primary user (not shown here) In a 

licensed band and hence avoided by the cognitive mdio. This exam­

ple shows how DSA coupled with OFDM is slowly �coming �e 

choice for the next generation wireless networks. While transmIt­

ting such waveforms is relatively easy, receiver functionality needs 

to be redesigned considembly to support a non-contiguous spec­

trum access. Thus, it is important to take a new look at the mdio 

PHY and assess the requirements for next genemtion mdio archi­

tecture. This paper discusses the challenges involved in designing 

such radio PHY that is adaptable, fast and easy to reconfigure and 

backward compatible with legacy systems using OFDM. 

The evolution of processing for wireless networking, particularly 

for Software Defined Cognitive Radios (SDCRs), is approaching a 

design choice similar to Internet routers which has advanced sub­

stantially over time. Network processors used two ways to speed 

network processing. The first method, exemplified by the Intel 

IXP processors, was to develop general purpose processors with 

extensions and multiple specialized packet processing engines. Al­

though those processors are intended for network processing tasks, 

they can be used for other purposes (e.g. storage processing). An­

other approach, adopted by systems such as the SiTerra/Vite�se 

Prism processor accelerate specific steps of the network processIng 

pipeline, such as implementing a specialized route lookup mech­

anism. Recently, a generalized packet processing approach based 

on the OpenFlow model has been proposed, leading to a rethinking 

of forwarding hardware [8]. This model of forwarding uses more 

general "match logic" (e.g. TCAMs) coupled with general purp?se 

processors for populating that hardware. The same trend of USIng 

a general purpose processor, followed by specialized hardware �d 

then evolving into some general purpose processor coupled WIth 

hardware accelemtion is common in many computing domains and 

reflect both the increase in available silicon for special purpose ap­

plications with analysis to determine the "kernel" of specific do­

mains. 

Radio processing on the other hand was originally digital hard­

ware that was implemented using a combination of general purpose 

DSPs or fixed-function logic implemented as an ASIC or using an 

FPGA. Over time, specialized processor designs have evolved that 

are finely tuned for handling a set of wireless protocols [27, 40]. 

However, these processors are mainly suitable for "3G" networks, 

and it's not clear they are easily adaptable to "4G" or emerging ra­

dio standards. Alternative architectures, such as the PicoChip pro­

cessor [34] and other similar designs like SCA and XiRisc [1 0, 
29] combine general purpose processors with fixed-function logic 

designed to provide more efficient solutions to specific tasks (e.g. 
correlators for determining if a packet is being received). The most 

challenging problem in the domain of cognitive radio is supporting 

non-contiguous spectrum access while remaining backward com­

patible and these architectures do not provide enough flexibility to 

adopt this shifting pamdigm. 

In this paper, we survey some of the techniques that we believe 

cognitive radios will need to implement and highlight the impact of 

those techniques on the underlying architecture. Our current imple­

mentation is at the point of special purpose functional blocks im­

plemented using an FPGA that form the foundation of 3G and 4G 
wireless protocols and are easily reconfigumble at run-time. The 

contribution of this paper is a review of the structure of processing 

steps needed in cognitive radios rather than a final general purpose 

design for those processing steps. 

2. RELATED WORK 
In this section, we discuss current research in the field of soft­

ware defined radio for current wireless networks. Wireless protocol 

processing can be broadly grouped into four categories: (1) So�t­

ware processing only on general purpose processors, (2) On-chIp 

network based architecture, (3) Multiprocessor architecture and (4) 

Hybrid architecture - geneml purpose processors along with dedi­

cated accelemtors using reconfigurable gate arrays. 

When wireless PHY processing is done entirely in software as in 

[1]  and [3], although it aids in reprogramming using simple high 

level programming languages, they often fail to meet the protocol 

timing requirements for modern wireless protocols such as 802. 16 
and other cognitive mdio protocols like 802.22 because of a com­

bination of 110 throughput and post-processing using commercial 

CPUs. The SORA platform [40], proposes a hybrid implemen­

tation of 802.11 physical layer using general purpose CPUs and 

a radio control board. Although most of the transceiver chain is 

implemented in software, the system is currently not able to sup­

port NC-OFDM transmission and reception, which is the basic n�­

quirement for the cognitive mdio environment. SORA uses van­

ous cache optimization techniques and core dedication for specific 

functionalities, which might require redesigning for a wider band­

width cognitive mdio. 

NOC based processing [6, 22], relies heavily on the performance 

of the routing algorithm and the efficiency of the common func­

tional unit. Reprogmmming such devices can only be done at com­

pile time. Unless, the functional units are multi-mode, supporting 

multiple protocols is a challenge using this form of architecture. 

Multiprocessor architectures are particularly effective for mdio 

processing because it meets the protocol timing requirements in 

most of the cases. SODA [27] provides a multi-processor architec­

ture using optimized SIMD operations for digital processing, but 

SODA fails to address the requirements for a SDCR and it is not 

known if the processor could support non-contiguous OFDM pro­

cessing. In [34], the authors propose a multiprocessor architecture 

using several hundred processors. Implementation of mdio PHY 

using highly parallel processors is shown in [1 2]. Researchers 

have also used embedded processor to implement a simple single 

carrier radio transceiver as in [5]. 
Processor based architectures are often complemented by dedi­

cated hardware acceleration unit for particular algorithms. In [28, 
34] employ FPGA accelemtors for DSP algorithms along with 

RISC processors, where application specific functions can be 

mapped. PicoArmy [34] is a tiled-processor architecture, contain­

ing several hundred heterogeneous processors, connected through 

a compile-time scheduled interconnect. These systems often com­

bine dedicated hardware for correlations for signal detection. 

Software controlled hardware is another form of processing en­

gine that uses software to control certain "knobs" in the hardware 

to perform multiple tasks. The WARP [31 ] and KUAR [21 ] are two 

such platforms that are capable of certain cognitive mdio transmis­

sion. 

While most of the previous work focuses on architecture of the 

actual processing engine, few focus on defining the requirements 
of a true cognitive radio. Therefore, instead of architecting just 

software defined mdio, future research should be inclined towards 

the idea of a software defined cognitive mdio. It is important to 

envision how next genemtion wireless networks will behave, and 

the design of the underlying hardware needs to be such that the 



architecture is ready to embrace any adaptation required. In this 
paper, we present an architecture, which is capable of adapting in 
a cognitive radio environment and also allows for simple additions 
of newer functionality and tunable parameters. 

3. OFDM FOR COGNITIVE RADIO 
Orthogonal Frequency Division Multiplexing (OFDM) [9] is a 

special type of Multicarrier Modulation (MCM), where the data 
stream is divided into multiple bit streams and are modulated us­
ing closely spaced non-interfering frequencies called subcarriers. 
In conventional Frequency Division Multiplex (FDM) systems, a 
band-pass filter is used to filter to limit the bandwidth of the trans­
mission or reception. In OFDM, instead of using sharp cut-off fil­
ters, an Inverse Fast Fourier Transform (FFT) is used to convert 
the frequency data carrying subcarriers to a time domains signal 
which can be upconverted to the desired carrier frequency. An in­
verse operation at the receiving using Fast Fourier Transform(FFf) 
reveals the frequency domain information. Establishing the cor­
rect symbol boundary is of utmost importance in any OFDM based 
system. Apart from the simple waveform generation and recon­
struction, OFDM provides significant advantages over single car­
rier transmissions like : immunity to multipath distortion, scalabil­
ity and spectral separation, making it a superior choice for large 
family of wireless protocols [30]. 

Cognitive Radio Networking is the next generation of wireless 
networks, where each radio is expected to sense the environment 
for available spectrum and adapt quickly to it without interfering 
with the incumbent for that carrier frequency. The secondary sys­
tem should be able to avoid the primary transmission while com­
municating within its own network in a spectrum hole. This kind 
of network requires sensing capability, and fast adaptation to new 
frequency band for both transmission and reception. We believe 
that OFDM is likely to be chosen as the communication substrate 
in Cognitive Radio Networks due to its inherent capability of trans­
mission and reception in variable bandwidth and in multiple chunks 
of subcarriers called subchannels without using any kind of band­
pass filters. Any subcarrier set can be suppressed to form a Non­
Contiguous OFDM (NC-OFDM) waveform, which can be utilized 
to transmit in a spectrum hole, avoiding the primary user. The 
use of FFT for OFDM also helps in sensing the spectrum, while 
other adaptation capabilities, like changing the number of subcarri­
ers and subchannels makes OFDM the most appealing medium for 
communication in Cognitive Radio Networks. Since most of the 
newer protocols, like 802. 11, 802. 16, LTE, WRAN, WPAN, all 
use OFDM at the physical layer, we believe that OFDM is a likely 
choice for cognitive radio application. Table 1 shows some of these 
common OFDM parameters for three contemporary wireless proto­
cols. This motivates our research in new architectures for software 
defined radios which will allow innovation in future deployments 
of cognitive radio networks. 

Table 1: Common Transmission parameters 

Parameter 802.1la/g 802.16 LTE 

FFT Size 64 1 28,256, 1 024, 1 28,256,51 2, 
2048, 4096 1 024,2048 

CP size 1 /4 1 14, 1 /8, Variable 
1 11 6, 1 /32 

Bits/symbol 1 ,2,4,6 1 ,2,4,6 2,4,6 
Pilots 4 Variable Variable 

4. SDCR: REDEFINING THE RADIO PHY 
The similarity amongst different communication protocols is 

also reflected in their corresponding physical layer. There is an 
increasing demand to redesign the common processing engines to 
perform most of the functions in a fast changing environment of 
cognitive radio. A close look at the current wireless protocols re­
veals that we can define a more fundamental set of operations or 
primitives, beyond just the the parameters or functional operation 
of a particular transceiver subsystem: e.g. , instead of having cor­
relators with fixed coefficients, we should have a method to feed 
the coefficients required for a particular packet encoded using a 
particular protocol. This is typically required in a cognitive radio 
environment where the available spectrum varies over time and so 
does the number of available OFDM subcarriers which changes the 
time domain correlation coefficients [17, 33]. 

With various concurrent wireless protocols in mind we define a 
set of fundamental operations, a generic transceiver should have 
in order to operate as a SDCR. This de-construction of the radio 
physical layer beyond a multi-mode type operation is motivated by 
a substantial amount of prior research and publication in the cogni­
tive radio community. We list the barebones of the transceiver and 
highlight the research that has motivated the design of this subsys­
tem : 

• SDCR should be able to transmit and receive in any set of 
subcarriers [24, 35, 17]. Essentially it should support non­
contiguous OFDM transmission and reception. 

• Not only does it need to adapt to changing spectrum avail­
ability, the SDCR should be able to change its modulation 
(e.g: BPSK, QPSK, 16QAM, 64QAM) at a subcarrier level. 
Also, high throughput wireless PRY layer techniques require 
advanced modulations such as superposition coding and hi­
erarchical modulation, which require a high degree of pro­
grammability in the modulation levels. In [26, 38], we can 
find requirement of such systems. 

• Depending on the availability of spectrum, the SDCR needs 
to change the FFT size to control the number of subcarriers to 
be used for the transmission. Also depending on the channel 
conditions the duration of the cyclic prefix needs to change to 
combat multipath channel distortions. WIMAX 802. 16 [24] 
and LTE [19] are examples of wireless protocols that directly 
requires this capability. 

• In order to support NC-OFDM transmission, the SDCR re­
ceiver needs a programmable correlator which can support 
an arbitrary set of correlator coefficients from a pre-defined 
superset as chosen by the protocol. [42] and [7] are such 
examples that require synchronization of NC-OFDM pream­
bles which changes the correlator co-efficients from one 
packet to another. 

• Equalization is an important signal conditioning step used in 
the receivers. To accommodate with the changing environ­
ment, the transmitter selects different set of pilot subcarri­
ers [1 1 , 24] to assist in the equalization at the receiver end. 
Therefore the pilot locations and their relevant phase is an 
important information that the receiver needs to have in or­
der to equalize a NC-OFDM signal. 

• Packets modulated using NCOFDM and with variable data 
rates for every subcarrier, the demodulator has to be pro­
grammable to be able to receive this type of transmission. 
In [35], we find the need for such a system with different 
demodulators across different subcarriers. 
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• An important aspect of Cognitive Radio is Sensing [41] for 
detection of the primary user a channel, which requires post­
processing of the FFT results. No other transmitter or re­
ceiver blocks are used in this mode. Recent works on simul­
taneous transmission and reception [15], [37] show require­
ment of a simple FFf block at the receiver and a threshold 
based detection. So, a transceiver should be able to perform 
only FFT and hand over the results to the Cognitive Engine 
to make decision. 

In the above discussion we intentionally omit the bit-level pro­
cessing engines such as error correction algorithms, scrambling­
descrambling, interleave - deinterleave, because we find that these 
bit level operations could be done efficiently in software [36, 32, 
1] as a part of the packetization process in the higher layer of the 
SOCR. Another important function in an OFDM receiver is the car­
rier frequency offset correction [39]. This subsystem is considered 
to be a part of the receiver that is not dependent on any particular 
wireless protocol. Therefore, we can safely keep this system out of 
our discussion. However, depending on the algorithm used it can 
be programmable with inputs coming from other blocks like the 
signal detection and subcarrier mapping. 

In §4. 1, §4.2, §4.3 and §4.4 we examine the basic OFDM 
transceiver pipeline, shown in Figure 2 and identify the primitives 
that are fundamental to operate in a cognitive network environ­
ment. We build our system level architecture based on the basic 
Wi-Fi (802.11a/ g) transceiver [18, 13]. Once the basic subsys­
tems are in place, we go about to decide on the additional func­
tionality required for a SOCR by adding programmable interfaces 
and re-designing the subsystems for optimum use. The primitives 
also allow us to identify a suitable programming interface that can 
reconfigure the physical layer hardware to adapt to its environment 
at run-time. This is particularly important in a Cognitive Radio 
Network because with the changing environment, the transmission 
and reception parameters can change within a short period of time, 
often in order of microseconds. In this paper we limit our discus­
sion to the baseband processing elements called kernels which are 
able to perform the required functionality without any knowledge 
of the characteristics of its input samples. Once the Cognitive En­

gine sets the operation parameters for the kernels the transceiver 
pipeline processes the packets as a pipeline that appears as a black 
box to the user. It is only the configuration parameters that are re­
quired to be modified at runtime while the basic processing pipeline 
remains unchanged. This makes our proposed design specially suit­
able for SOCR architecture. 

4.1 OF DM Transceiver : The Top Level 
One of the most important things in a SOCR is programmability 

and how fast the radio PHY can adapt itself to the changing envi­
ronment. This requires: 1) barebone kernels broken down to the 
most fundamental operations, making them more programmable 
and avoid being always multimode and 2) reconfiguration of the 
PHY at run-time without going through the compilation process. 

We built our SOCR system on top of a basic 802.11a/ 9 PHY which 
has been detailed in [18, 13], and contains the operation and im­
plementation of the signal processing algorithms employed in the 
transmitter and the receiver. The system has a hybrid architecture 
employing an FPGA and software running on the host. The FPGA 
has all the signal domain processing while the host controls the 
bit-level processing. In this paper we explore the possibilities of 
extending the basic PHY to a highly programmable PHY for cog­
nitive radio. 

Although our representative system is implemented using an 
FPGA, the goal of this work is to determine an overall architec­

ture for SOCR processors. As indicated, FFf kernels are central to 
the operation of the OFDM waveform which we believe will con­
stitute the core of SOCR algorithms. FFTs can be implemented in 
software or in a hardware functional block; our initial system uses 
a dedicated hardware block. 

Figure 3 shows a hierarchical design of the control path for an 
OFDM based SOCR transceiver. The PHY Controller is the inter­
face between the MAC or the Cognitive Engine and the underlying 
hardware. For a typical cognitive radio environment the PHY Con­
troller can be in one of the following states : Transmit, Receive or 
Sense. As shown in Figure 2, the transmit and receive path elements 
are made functional based on mode selection. In Sense mode, only 
the FFT block is functional. It performs FFTs on incoming signals 
and sends the output to the Cognitive Engine. In our implementa­
tion, the PHY Controller can handle commands from the host or 
the Cognitive Engine in the form of short messages called control 

packets. Every control packet has a kernel ID followed by the num­
ber of bytes of message included for that message, followed by a set 
of parameters to program that particular kernel register. The state 
machine at the Transmitter(Tx), Receiver(Rx) or Sense Controller 
level can decode and process any combination of kernel IDs in any 
order and forwards the information to the respective controller. The 
respective controllers extract the information and update the hard­
ware registers. As described in §4.2, §4.3 and §4.4, each module 
of the transmitter, receiver or sensing mode operates using the in­
formation from these registers. In this way the the kernels can be 
easily reconfigured within a short period of time. 

We have designed four controllers, a) FFfIIFFT Controller, b) 
Mod/Demod Controller, c) Correlator Controller, and d) Equalizer 
Controller. Since FFf and IFFf have exactly opposite function­
ality in receiver/sensing and transmitter chain, but similar recon­
figuration requirements, we merged these two modules into one 
FFTIIFFT Controller. Also, the Modulator(Mod) and Demodula­
tor(Demod) components have the same reconfiguration parameters. 
We combined these together into a single Mod/Demod Controller. 
Both the FFT/IFFf and modldemod controllers can handle pack­
ets from both Tx and Rx Controllers. Additionally, the FFfIIFFT 
Controller can parse control packets from the Sense Controller as 
well. A single FFf block is used in the hardware, which is either set 
in FFf mode for receiving/sensing, or in IFFf mode for transmit­
ting. The "Mode ID" in the FFTIIFFT Controller denotes the mode: 
Transmit, Receive or Sense. The other two programmable parame­
ters of FFTIIFFT are size and guard, which has been introduced as 
tunable parameters in this level. FFTIIFFT Controller updates these 
information in FFTIlFFT Register. Mode, size and guard size are 
the three 8-bit parts of this register, making it a 3-byte register. 

The ModlDemod controller is programmed using a variable 
length list of configuration information for each subcarrier. An 8-
bit subcarrier information (Pi) is inserted, followed by 4-bit mod­
ulation type of frequencies Pi and PH1. The modulation type can 
be BPSK, QPSK, 16QAM or 64QAM. We use the fourth bit of the 
modulation type field to denote whether this subcarrier should be 
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Figure 3: PRY Controller 

modulated or demodulated. Using this information, the cognitive 
engine can suppress some of the subcarriers and transmit or receive 
in some others. This design helps to keep the size of the control 
packet smaller, and thus less time is required to parse the control 
packet and update the registers. 'ModlDemod Level ID' is followed 
by the modulation type (BPSK, QPSK, 16QAM or 64QAM), fol­
lowed by 16-bit values of the levels of that modulation. The num­
ber of preceding values depend on the number of modulation types. 
ModlDemod info is stored in ModlDemod Info Register, where 4-
bit modulation type is stored for each subcarrier. Since our repre­
sentative design currently handles 200 subcarriers, this register is 
800 bits or 100 bytes. ModlDemod Level information is stored in 
ModiDemod Level Register. The maximum number of entries for 
values depends on the modulation type, which is 1 ,  2, 4, or 6 for 
BPSK, QPSK, 16QAM and 64QAM respectively. Hence, a total of 
(1 + 2 + 4 + 6) = 13 16-bit values can be stored at any time for 
all the possible modulations, which makes the register size to be 
13 x 16 = 208 bits, or 26 bytes. 

The Correlator Controller handles packets only from the Rx Con­
troller and is used to program the Correlator block of the receiver. 
The state machine at this controller can parse 'Preamble Superset 
ID' and 'Frequency ID' messages. We allow the engine to program 
a superset of preambles of all the frequencies, and then allow only 
a few to be used at any point in time. In a cognitive radio envi­
ronment, it is likely that the superset of preambles will change less 
frequently than the actual frequencies to be used for correlation. 
This design helps the engine to send fewer bits to reprogram the 
frequency set by keeping the superset constant. We assume that 
preamble can be modulated either in BPSK or in QPSK, for which 
at most 2 bits of information is required per subcarrier. Our de­
sign supports 200 frequencies, and so 400 bits of information will 
suffice to encode the preamble. Hence, preamble superset consists 
of a 400 bit map for subcarriers [-100 : 1001. This superset con­
tains all the frequencies that can possibly be used in a transmission. 

The Correlator Controller parses these information and updates the 
Preamble Superset Register, which is a 400 bit or 50 byte regis­
ter. In a cognitive radio domain for a non-contiguous OFDM re­
ception, only a subset of these frequencies will be used, which is 
given by 'Frequency ID', followed by a 200 bit map of subcarriers 
[- 100 : 1001, where 1 denotes that subcarrier will be used in the 
preamble regeneration. This information is updated in the 200 bit 
or 25 byte Subcarrier Register. 

The Equalizer Controller parses control packets from the Rx 
Controller and generates signals to modify the Pilot Register, which 
is used by the Equalizer block of the receiver chain. The pilot lo­
cations are denoted by 'Pilot Frequency ID' and the phase of pilots 
by 'Pilot Phase ID'. 'Pilot Frequency ID' is followed by number 
of pilots(p), followed by 8-bit frequency of the p pilots. We con­
sider that phases of the pilots can be either 0 or 11', such that we 
can encode the information in 1 bit. So, 'Pilot Phase ID' is fol­
lowed by a p-bit vector of the phases of p pilots. Currently, the 
design can handle at most 32 pilots, compared to 8 pilots in a band 
of 200 subcarriers in WiMax. Often a Pseudo Random Binary Se­
quence(PRBS) is generated to modify the pilot phases in each sym­
bol. Hence, an initializer is required to program the PRBS genera­
tor. We use a 16-bit initializer for this purpose, denoted by 'Pilot­
Mod Init ID', compared to 8-bit initializer in 802.1 1 and II-bit ini­
tializer for WiMax. Pilot frequency, phase and initializer informa­
tion are stored together in the Pilot Register. This register can store 
32 8-bit pilot frequencies, 32-bit pilot phases, and a 1 6-bit initial­
izer, altogether the size of this register is (32 x (8 + 1) + 16) = 304 
bits or 38 bytes. 

4.2 Transmitter Kernels 
The transmitter kernels are Modulator and IFFT with addition 

of Cyclic Prefix as shown in figure 2. The bit-level processing en­
gines, like interleaver, scrambler, and encoder have been imple­
mented in software. 
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4.2.1 Modulator 

The modulator is one of the programmable units implemented 
in the FPGA, that uses the information in 'ModlDemod Info Reg­
ister' and 'ModIDemod Level Register'. Figure 4 shows a block 
diagram of the programmable modulator. A modulator block in­
takes coded bits and modulates them into complex samples of I 
and Q values, depending on the modulation type and modulation 
level. Advanced communication protocols such as Superposition 
Coding [26] and Hierarchical Encoding [38] techniques need dif­
ferent levels of modulation; this is implemented by having a "con­
stellation mapping" table that is programmable rather than using 
fixed values as in a convention transceiver design. The constel­
lation mapping is performed for each subcarrier. So, based on 
the Subcarrier Count, which is another input of the modulation 
block, the modulation type for that subcarrier is fetched from the 
'ModlDemod Info Register'. Based on this modulation type, the 
level for constellation mapping is fetched from 'ModlDemod Level 
Register'. Then number of coded bits to be modulated is selected 
based on the modulation type, which can be 1 ,  2, 4 or 6 for BPSK, 
QPSK, 16QAM and 64QAM respectively. Based on these informa­
tion, the I and Q values are generated by the Constellation Mapping 
block, which are fed into IFFT. If the 4th bit of modulation type is 
set to 0 for any subcarrier, it indicates that this subcarrier will not be 
transmitted, and the Constellation Mapping block outputs 0 values 
for both I and Q samples. 

4.2.2 Inverse Fourier Transform 

After the bits are modulated into complex samples, they enter a 
common programmable FFTIIFFT kernel, used as transmitter, re­
ceiver or sensing mode. Figure 5 shows a block diagram of this 
generic platform and in this section, we will discuss how this block 
can be programmed for transmitter mode. The kernel uses informa­
tion from 'FFT/IFFT Register' to get the mode. If the mode is set 
to transmitter, the Modulator output is selected as the input of the 

IFFT. Also, the FFTIIFFT block is set to IFFT mode. Based on the 
size information available in the register, the size of IFFT is chosen. 
Then, IFFT is performed on the modulator output. In transmitter, 
based on the Guard Size, the Cyclic Prefix is added to the samples. 
Finally, depending on the mode, output line is selected. For trans­
mitter, samples are sent out to Digital to Analog Converters(DACs) 
which are connected to the frontend radio. 

4.3 Receiver Kernels 
The receiver subsystems as shown in Figure 2 comprises of: Syn­

chronizer or Packet Detect, FFT and Guard Removal, Equalizer 
and Demodulator. Apart from this there are other bit-level pro­
cessing engines like de-interleaver, FEC decoder, CRC check and 
de-packetization to extract the information bits in the packet. As in 
the transmitter we exclude the bit-level processing from our design 
since they are efficiently performed in software at the host. §4.1 
describes the control bits required to program all the kernels in the 
receiver. In this section we delve into the details of how the control 
bits are used to modify the kernels with changing environment. 

4.3.1 Synchronizer and Packet Detect 

The Synchronizer or the Packet Detect kernel is the entry point 
of the baseband receiver. The primary job of the Synchronizer is 
to identify the boundary of a valid OFDM symbol. This is partic­
ularly important because it introduces phase noise into the signal 
which in turn makes the frequency domain decoding erroneous. In 
an OFDM based system, synchronization is typically done using a 
time domain correlation which searches for a pre-defined pattern 
called the preamble. Since in OFDM, the preamble is constructed 
and encoded in the frequency domain [23, 25], the time domain 
samples changes significantly with the encoding process, i.e., if 
the transmitter chooses to suppress a set of subcarriers then those 
subcarriers are not used to transmit the preamble. This makes the 
preamble quite different from the conventional preambles in wire­
less protocols that typically uses all the subcarriers supported by the 
protocol. Furthermore, the frequency domain data for the pream­
ble varies from one protocol to the other. But fortunately they all 
employ the same basic technique to acquire synchronization. 

Therefore, due to the non-contiguous modulation of the pream­
ble and the variable nature of the frequency domain encoding, it is 
required to have a programmable Synchronizer. The time-domain 
Correlator employs a running comparison with a local copy of the 
time-domain samples of the preamble being searched. Typically, 
the Correlator size is of 64 samples. But depending on the sampling 
frequency and the FFT size this may vary. The basic operation in a 
Correlator is shift-multiply-accumulate for every fixed-point com­
plex sample in the Correlator block. As the size of the Correlator 
increases in our design to 256 with increasing FFT size, the num­
ber of multipliers and adders increases significantly to make the 
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design too big for FPGA implementations. For a more efficient 
low-cost implementation we decompose the complex fixed-point 
Correlator to a simple logic operation that eliminates the require­
ment of expensive multipliers and adders. The Correlator has fom 
key components as shown in figure 6(a): 

• The sign bit of the I and Q samples is used instead of the 
actual values to eliminate large fixed-point (often as large as 
16 bit) operation. 

• The local copy of the preamble consists of the sign of the 
time domain signal being correlated with. In conventional 
designs the local copy is not programmable. To support 
cognitive radio applications, we need to program the co­
efficients. The Preamble Superset Register contains the com­
plete set of frequency domain preamble for a particular pro­
tocoL The Subcarrier Register holds the set of subcarriers 
used for a particular reception. This information is obtained 
from the subcarrier detection or the spectrum sensing unit 
which is a standard kernel in a SDCR. Once the subcarrier 
information is obtained the time domain preamble should be 
regenerated either by using a look-up table or a dedicated 
low cost IFFT core. We leave the process of subcarrier de­
tection of the preamble as futme work. Once the time domain 
preamble is generated the sign bits of the I and Q components 
are used as the coefficients of the Correlator. 

• The Correlator has two 256-bit shift registers which feed 
the coefficients to the core processing elements. Figure 
6(b) shows the inner structme of the Correlator. There are 
128 Processing Elements (P Ei), each capable of perform­
ing comparison of two samples of the preamble as shown in 

figure 6(c). Since the objective of correlation is to search for 
the exact set of samples as stored in the receiver, a simple 
XNOR operation is sufficient to compare the similarity be­
tween the incoming samples and the local copy of the pream­
ble. Whenever the sign of the input sample matches that of 
the local copy, the output is a T otherwise '0'. The output of 
the 256 comparisons is accumulated using a 2 bit adder tree 
which consists of [092(256) - 1 adder stages for a 256-bit 
correlation, 

• The last stage of the Correlator is a threshold based detec­
tion of the correlation energy. Once the Correlator finds the 
exact 256 samples the output is a high energy peak, which 
is used to trigger other subsystems of the receiver to decode 
the packet. Although the Correlator uses 1 bit instead of all 
the 16 bits of the complex sample, we still find the perfor­
mance to be satisfactory under varying SNR. We discuss the 
performance of this kernel in §5. 

4.3.2 FFT and Equalizer 

The FFT kernel in the receiver is triggered by the Synchronizer. 
Once synchronization is achieved the FFT converts the input I1Q 
samples back to frequency domain. We use the common FFTIIFFT 
block as shown in figure 5 to perform the FFT and remove the 
Cyclic Prefix. Based on the information in 'FFT/IFFT Register', 
the input line is selected, from where the samples are pushed in to 
the FFTIIFFT block, which is set in FFT mode. Then the Cyclic 
Prefix is removed based on Guard Size and samples are forwarded 
to the Equalizer in receiver mode. 

Once in frequency domain we can decode the information bits 
after some signal conditioning called Equalization. The primary 
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function of the equalizer is to compensate for any phase and ampli­
tude noise that was introduced by the wireless channel. The amount 
of equalization will vary according to the signal to noise ratio and 
also on the multi path distortion. OFDM transmission makes the 
equalization process particularly simple. Pilot subcarriers are in­
cluded at regular intervals at pre-defined subcarriers which assist 
in the equalization process. The phase and amplitude of these pe­
riodic pilots provide estimates of the channel at those subcarriers 
which are used to compute the channel estimates of the interme­
diate subcarriers by performing linear interpolation between two 
consecutive pilots. The hardware design of such an interpolation 
based equalizer is shown in [13]. 

The basic equalizer performs well for the contiguous set of sub­
carriers where the interpolation is performed for all the subcarri­
ers. A closer look at different protocols reveals that the position 
of the pilots as well as their phase and magnitude may not remain 
constant over time. This requires some of the components of the 
equalizer to be made programmable. Figure 7 shows the structure 
and programmable registers for the equalizer. The Pilot Register 

holds the information of the pilot phase and magnitude, and Sub­

carrier Register contains the subcarrier information that are used 
for this particular OFDM symbol. The pilot latch unit stores the 
channel estimates at the pilot subcarrier as defined by the contents 
of the Pilot Register. Depending on the number of subchannels 
used and the number of subcarriers in one subchannel, the number 
of pilots can vary. The channel estimates for the intermediate sub­
carriers is computed using the estimates at the pilot. But instead 
of interpolating over the entire bandwidth, only the subcarriers de­
fined by the Subcarrier Register is used for the interpolation. In 
this way we can equalize any arbitrary OFDM transmission which 
is the essence of a SDCR. We discuss the non-contiguous equaliza­
tion and its performance in §5 with noisy waveforms. 

4.3.3 Demodulator 

The demodulator uses a simple threshold test to decode the infor­
mation bits from the equalized I1Q samples [4] as shown in figure 
8. The data rate or the modulation type can vary even for every 
subcarrier; per subcarrier de-modulation information is a key pro­
gramming feature for this kernel. Apart from the data rate, the 
decision boundaries to decide on which constellation was transmit­
ted can also vary. This is required for decoding packets encoded 
with superposition coding as discussed in §4.2. Decision bound­
aries for each modulation type is obtained from the ModlDemod 

Level Register and the demodulation type (BPSK, QPSK, 16QAM 
or 64QAM) for each subcarrier is read from the ModiDemod Info 
Register. The subcarrier count is an input to the demodulator to 
selectively demodulate non-contiguous subcarriers. Based on these 
inputs, the Boundary Decision module generates the boundary in-

Figure 9: Nallatech FPGA Boards with Radios and Antennas 

Table 2: Configurations Supported by the SDCR 

Kernel Supported Configurations 

Subcarriers 256 
Guard 114, 1/8, 1116 
Correlator 256 samples wide 
Data Rate BPSK, QPSK, 16QAM, 64QAM 

and superposition coding using these 
Pilots 32 
FFT size 64, 256, 512, 1024, 2048 

formation, which is then used by the Extract Bits module to per­
form threshold test on the I1Q samples from Equalizer to generate 
demodulated bits. 

4.4 Cognitive Sensing 
The transceiver can be programmed in the sensing mode, by 

changing the mode in the 'FFfIIFFT Register'. In this mode, only 
the FFfIIFFT kernel remains functional as shown in figure 5. In 
OFDM, sensing can be more than detection of carrier power; in 
most of the cases it is actually the detection of power in each of the 
subcarriers, which requires performing an FFT on the time domain 
signal to detect which subcarriers have been transmitted. Spectrum 
sensing is used by cognitive radio to detect primary users [41]. The 
final detection mechanism depends on initial FFf results, and may 
vary significantly from one procedure to another. Hence, we as­
sume that there will be a Cognitive Engine above the PHY to de­
termine the detection based on the FFf values. So, the FFT values 
are passed on to the Cognitive Engine in sensing mode. 

Recent advances in wireless network protocols show that indi­
vidual subcarriers can be used to transmit higher layer information, 
like MAC layer acknowledgments [15], or parallel polling [37] or 
voting mechanisms. This method can be used in any kind of sig­
naling procedure. In these scenarios, simple threshold checks on 
subcarrier energy reveals whether there has been any transmission 
in any subcarrier or not. We have implemented this detection mech­
anism in our FPGA system as shown in §5. 

5. IMPLEMENTATION AND RESULTS 
In this section, we describe the details of our implementation and 

discuss how we program each of the modules in the transceiver to 
perform as required in the Cognitive Radio Network. 

5.1 Implementation 
We implemented the programmable SDCR on a Virtex-IV FPGA 

using a Nallatech ExtremeDSP kit [2] along with a custom front­
end radio capable of transmitting in 2.4G H z ISM band as shown 
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Table 3' Transceiver Hardware Utilization in Virtex - IV 
Parameter Count / Max Utilization 

Slices 14497 / 15360 94% 
Slice Flip Flops 17,644 / 30720 57% 
4 input LUTs 20,080 / 30720 65% 
FIF016lRAMB 1 6s 1 05 / 192 54% 
DCM_ADVs 3 / 8  37% 
DSP48s 55 / 192 28% 

in figure 9. The design flow consists of Xilinx System Generator: 
used for designing all the baseband processing kernels and their 
controllers and VHDL: to interface with the host Pc. The current 
version of the design supports most of the transmission parameters 
required for a cognitive radio deployment and are listed in table 2. 
Finally, we have implemented the SDCR barebone on a Virtex-IV 
FPGA and the logic consumption details is given in table 3. 

5.2 Results 
In this section, we demonstrate that our FPGA implementation 

can be programmed as required and we show the results of repro­
gramming each of the modules. 

5.2.1 Programmable FFT/IFFT 

We have tested the transmitter kernels by transmitting packets 
using non-contiguous OFDM by suppressing different set of sub­
carriers in each packet. Figure 1 ,  shows the spectrogram of the 
University of Colorado emblem captured by an Agilent Vector Sig­
nal Analyzer which is transmitted using non-contiguous OFDM. 

5.2.2 Programmable Modulator/Demodulator 

Apart from supporting multiple forms of constellations, an 
SDCR may be required to transmit arbitrary constellations as a part 
of multi-layered modulations. Figure 10 shows the flexibility of 
the SDCR by transmitting modified constellations using different 
modulation levels. Figure 1O(a) is a modified l6QAM constellation 
where as figure 1O(b) shows a modified QPSK constellation. This 
is quite common in using hierarchical modulation and superposi­
tion coding. At the receiver the kernels have been tested by trans­
mitting waveforms using our transmitter over a simulated channel 
multipath channel instantiated in the FPGA. This has been to com­
pensate for a lack of a wide band front-end, which is considered as 
future work. We captured signals at the demodulation level in the 
receiver chain to generate figures lO(a) and lO(b). 
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5.2.3 Programmable Correlator 
Figure 1 1  shows the input and output traces of the SDCR cor­

relator which computes correlation on a preamble transmitted in 
non-contiguous spectrum. Figure l 1 (a) shows that the preamble 
is tranmitted in two subchannels using subcarriers, [-68 : - 171 
and subcarriers [44 : 691 . With prior knowledge of the subcarrier 
information from the Cognitive Engine and the preamble superset, 
the correlator regenerates the preamble and then performs the time­
domain correlation. Figure 1 1  (b) shows the correlation energy for 
the preamble with two high peaks corresponding to the two pream­
ble symbols transmitted at the beginning of the each packet to aid 
synchronization, The unequal amplitude of the two subchannel is a 
result of the multi path effect and the additive noise in the received 
signal at an SNR of approximately lOdB. 
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5.2.4 Programmable Equalizer 
Figure 1 2  shows the performance of the equalizer using the same 

received signal. The red dotted line in figure 1 2(a) and 1 2(b) shows 
the interpolation for magnitude and phase respectively over non­
adjacent OFDM subcarriers. Figure 1 2(c) shows the unequalized 
constellation for the same waveform. As we can see that the noise 
in the phase causes rotation of the constellation by almost 7r /2 radi­
ans which makes the demodulation quite erroneous. The equalizer 
de-rotates the constellation after correcting the phase and magni­
tude of the OFDM subcarriers by channel estimation and pilot­
aided linear interpolation as discussed in §4.3.2. The de-rotated 
constellation is shown in figure 1 2(d) which shows a clean BPSK 
constellation that can be successfully demodulated without errors. 
We captured signal from the FPGA at the Equalizer level to gener­
ate figure 1 2. 

5.2. 5 Spectrum Sensing 
Spectrum sensing is one of the fundamental operation of a cogni­

tive radio. Using OFDM offers the advantage of spectrum sensing 
without the use of of any new hardware. The Fourier transmform 
unit required to decode OFDM signal can also be used to sense the 
spectrum for any primary user of the channel. The energy based 
sensing is a simple mechanism that use a threshold on the FFT out­
put to decide on a spectrum hole. Figure I l (a) shows an example 
of FFT output. Using a simple threshold we can clearly identify 
which part of the spectrum is occupied and whch part can be used 
for the secondary transmission. 

6. EFFICIENCY AND GENERALITY 
In this paper we aimed at addressing the implementation chal­

lenges that are faced in developing next generation wireless net­
work protocols. Using various contemporary research in the field 
of wireless data communication [35, 17, 26, 38, 7, 42, 35, 1 5, 
37], as examples we present a generalized framework for a SDCR 
node. Although this implementation is based on FPGA, the de-

sign can be easily translated to ASIC implementation and it has 
sufficient software interface to allow reconfigurability at real time 
to support a wide variety of waveforms including those employing 
OFDM based DSA. 

We do not find any current research, described in §2, on software 
defined cognitive radio architecture. However, we assume the soft­
ware based implementations, capable of processing OFDM signal 
structure, can be modified easily to perform as a cognitive radio 
platform. GNURadio and SORA are two such architectures, which 
we study in detail. GNURadio [1]  is a purely software based im­
plementation of SDR platform, and efforts [42] have been made to 
use it as a software defined cognitive radio. However, large pro­
cessing delays [20] in the processing pipeline of GNURadio plat­
form is a fundamental limitation in implementing a radio chain in 
real time. Another recent effort is SORA [40], which implements 
802. 1 1  pipeline in software, taking advantage of streamlined pro­
cessing of multi-core architecture, cache optimized lookup tables 
and core dedication for specific SDR tasks. SORA meets timing 
requirements for 802. 1 1 ,  which handles data from relatively small 
number of OFDM subcarriers (64 in case of 802. I l a/g). However, 
a wider bandwidth cognitive radio may need to process data from 
1024 or 2048 subcarriers which might require researchers to re­
design SORA, in a way to respond within the timing constraints 
of a protocol. Compared to these contemporary architectures our 
framework uses a more generic design approach that is equipped to 
support future cognitve radio PHY processing at real-time. 

The proposed architecture is built on a basic OFDM transceiver 
used in 802.11a/ g [1 8, 1 4]. In order to make the design generic we 
have included a simple programming interface using registers and 
state machines. While the state machines are responsible to gener­
ate control signals for various signal processing blocks the signal 
processing blocks themselves need to have additional resources to 
interpret those signals and adapt to a changing radio environment. 
This leads to additional hardware resource. Compared to a basic 
802. 11a/ g, OFDM based transceiver, the SDCR framework con­
sumes requires an additional 5.41 % of slices and 2. 02% of LUTs. 
This excess hardware usage can be considered negligible given the 
wide array of waveforms it can support, making it an efficient plat­
form for future wireless technologies. Since OFDM based DSA 
seems to be the choice for cognitive radio deployments, the archi­
tecture presented in this paper is considered suitable for the signal 
processing requirements of such networks. 
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8. CONCLUSION 
In this paper we propose an architecture of a software defined 

cognitive radio by defining the specific requirements for every 
transceiver subsystem to be able to operate in a true cognitive radio 
network. We aim to deconstruct the conventional OFDM based ra­
dio pipeline to include specific programmable features that changes 
with available spectral resources. Rather than making the radio 
pipeline multi mode, we aim to treat it as a skeleton or barebone 



which supports a family of transmission protocols in a cognitive 
environment. We also propose a programming interface that recon­
figures the underlying barebones with minimal overhead and with 
fine-grained control over different operating parameters. It is our 
belief that this architecture along with a cognitive controller will 
allow innovations towards future cognitive radio deployments. 
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