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ABSTRACT

In this paper we present CODIPHY or Composing On-Demand In-
telligent Physical Layers that aims to solve two fundamental prob-
lems in practical cognitive radio networks: Collaboration between
two radio physical layers (PHY) with varying capabilities to agree
on a common communication protocol and provide a method to
compose a functioning software defined radio (SDR) from a set of
pre-compiled libraries. Both solutions use an ontology based de-
scription of the internal structure of the radio subsystems and use
the high-level dataflow represented by the ontology to target het-
erogeneous platforms. CODIPHY isolates the various domains of
radio engineering but still allows them to share domain knowledge
to achieve a common goal of radio adaptation. Automating this
process through declarative specification and collaborative learn-
ing is the goal of this paper. We present a generic methodology to
facilitate the concept of CODIPHY and present examples from the
radio PHY domain.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-

mance measures

General Terms

Theory

Keywords

Software Defined Radio, Architecture, Design Automation, Cogni-
tive Radio, Physical Layer

1. INTRODUCTION
Modern Cognitive Radios (CR) are based on “tuning knobs” that

can implement many different radio waveforms, but they are fun-
damentally limited and cannot radically change the physical layer.
Crosslayer techniques in recent research [16, 5, 17] require adapta-
tion of the PHY for the changing requirements of the protocol. If all
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the radio nodes in a network have the same radio architecture, hard-
ware and processing power, any low level PHY adaptation can be
achieved by using a common firmware upgrade, usually in the form
of a hardware image (FPGA bitfile) or as a software executable.

However, modern radio systems have heterogeneous comput-
ing platforms often combining specialized processor and hybrid
FPGAs [10, 15, 13, 21]. This plethora of platform choices
point towards a more radical form ofdynamic software radio re-
configuration where a system not previously designed for a par-
ticular waveform can be modified for new waveforms. That re-
configuration can occur either when designing a particular wave-
form (e.g. by a researcher) or during operation. Therefore we need
a method to specify what is needed, but not over-specify the solu-
tion to the point where the features or benefits of a specific plat-
form can not be exploited. We believe that this requires a method
for hierarchical description. For example, at a high level, a radio
PHY design may want to specify a particular common correlator
for packet detection. However, if a system involved in the cognitive
network does not “know” that specific design, the design specifica-
tion can be “lowered” or refined to a more concrete form.

We propose to use an ontology specification, a tool of the seman-
tic web, to capture these hierarchical specifications. The goal is two
fold: a structured way of representing a hierarchy of components,
their properties and the relationships between them and secondly,
to be able to extract information about the domain using queries,
such that a radio agent can learn about other agents and collaborate
if needed. The use of ontologies in cognitive radio has been studied
by Kokar et al. [7, 11] and research [9] has shown that ontology can
be used by multiple radios to decide on a particular access policy.
However, the use of ontology to define the internal structure of a
radio PHY hasn’t been studied before.

For example, radio A can query radio B if it supports a partic-
ular modulation format. In the absence of such a modulation in
Radio B, it can obtain the description for that particular modulator
and compose the internal structure for the new modulation. Part of
this problem can be solved by parameterizing the modulator. How-
ever, this approach is infeasible once the complexity of the system
increases, such as in Orthogonal Frequency Division Multiplexing
(OFDM) based protocols. Also, this leads to over-provisioning of
resources as it is very hard to predict what new functions will be re-
quired in the future for harmonious co-existence of heterogeneous
CRs. Using an ontology the radios can understand each other and
compose newer subsystems using components from their own li-
brary or download from a server without involving the designer or
the user. As the subsystems get complex and more application spe-
cific, this process can be elevated to a kernel level reconfiguration
because at that point it gets too complex to formally express and
reason on those complex internal structures. Therefore, to support
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modern protocols, we need to be able to compose the radio PHY,

rather than build fixed function pipelines that are brittle when ex-

posed to such novel crosslayer implementations. Hence the term

CODIPHY - Composing On-Demand Intelligent Physical Layers.

Using suitable back-end compilation, the ontology and the

dataflow it represents, is translated to the preferred implementa-

tion language required by the target platform, thus allowing spe-

cific optimization to be targeted during the implementation phase.

Automating this process of expressing the PHY and code gener-

ation for onward implementation is the goal of CODIPHY. Now

machines can process the radio dataflow and use a rich library of

building blocks to compose the radio when it is required to modify

the physical structure or the dataflow between various components.

2. HIERARCHICAL KNOWLEDGE REPRE-

SENTATION
In this section we design a knowledge representation system for

a radio PHY that is able to provide information about the specifica-

tions of the radio at various levels of granularity. Depending upon

the specific requirement of a radio agent, the components can be

chosen either as a high level aggregate with proper parameters or

as a low level dataflow graph. The system will allow a non-expert to

query the knowledge base and decide on which level of granularity

to use for a particular implementation. The levels in the knowledge

representation system are as follows:

• System level: At this level, we specify a very broad descrip-

tion of radio from a system perspective. For example, is it

a CDMA or an OFDM radio? We also specify the various

capabilities of the radio like bandwidth, sampling frequency,

tuning range etc. These are required to initiate a collaborative

adaptation of PHY using CODIPHY.

• Subsystem level: This is still at a high level but now delves

deeper into a particular family of radios. For example, what

are the subsystems of the radio? Does it have a specific type

of correlator?

• Specification level: Specifies the parameters of a particular

subsystem. What are the inputs and output variables and

what are the programmable parameters of a subsystem? This

information is typically derived from the mathematical equa-

tions that define that subsystem.

• Representation level: This level defines how the subsystem

is represented to the outer world. It can be represented as a

mathematical equation, a state machine, as a mapping func-

tion etc. Knowing the representation helps the radio agent to

make incremental changes to an existing radio pipeline and

build subsystems by minor modifications.

• Dataflow level: Dataflow level is the lowest level of express-

ing a subsystem. At this level, the entire subsystem is a graph

of interconnected components that are provided as rich set of

pre-compiled design files tied together to form the subsys-

tem.

Each of these levels provide enough information to build a func-

tioning radio. One of the goals of CODIPHY is to compose the

radio pipeline from a set of pre-compiled components that require

a component based design approach [12]. These components are

tied together either by electrical wires in the hardware or form se-

quential statements to be executed on a processor architecture. The

(a) Components of c(n) (b) Components of p(n)

(c) Components of the
detection metric

Figure 1: Components derived from packet detection unit

components range from basic arithmetic and logic units to aggre-

gates are required for specialized task like Fourier transform, for-

ward error correction and filtering.

In this paper, we focus on the dataflow level and present an on-

tology based description of an OFDM transceiver. We also provide

the necessary compilation tools required to clone the subsystems

between two heterogeneous radio platforms.

2.1 Dataflow Level
The dataflow level contains the knowledge of each component

within a subsystem and all the connections between the compo-

nents and their data types. As an example, we show how a packet

detection unit can be decomposed into components and aggregates,

and represent it in an ontology such that radio agents can under-

stand each others internal structures and compose a new subsystem.

Equations 1 and 2 compute the autocorrelation energy between in-

put signal, r(n) and its delayed version r(n + L), and the sig-

nal energy during that autocorrelation window respectively, where

L = 16 for 802.11a/g.

c(n) =

L−1∑

i=0

(r∗n+i.rn+i+L) (1)

p(n) =

L−1∑

i=0

|rn+i+L|
2

(2)

If c(n) > K∗p(n) is satisfied, then the system detects an OFDM

packet. The threshold K is a design parameter that is user-defined.

Analyzing eq.1 and eq.2 reveal distinct components that com-

pute the metric c(n) and p(n). Figure 1(a) shows the components

for c(n). It suggests that the input signal r(n) is multiplied with the

complex conjugate of r(n) that is delayed by L samples. The sum-

mation in eq.1 is indexed over the variable L and is independent of

the input sample index n. Hence it is a ‘sliding window average’

component that computes a moving average of L values. The flow

of the results are designated by variables, a, b and d. Similarly, fig-

ure 1(b) shows the components used to compute p(n). The metric

computation requires a comparator that compares the product of K

and p(n) with c(n) to produce the binary result f , which is shown

in figure 1(c).

It is to be noted that all the components have been identified at

a high level and we do not focus on how these components are

implemented. For example, the moving average unit can be imple-

mented as a single stage comb filter or as a FIR filter with constant

coefficients. From a functional point we assume that these imple-
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Figure 2: Classes in the Packet Detector ontology

mentation specific structures will be provided for composing the

radio.

Using this example we show that any DSP system can be com-

pletely represented using a set of components and aggregates,

which is a direct reflection of the variables and constants provided

in the mathematical function. We also generate an implementation

from this high level functional description and target different hard-

ware platforms and automating this process is the ultimate goal of

CODIPHY.

3. ONTOLOGY OF THE RADIO PHY
In this section, we describe the implementation of the ontology

of the dataflow level of the knowledge base. We have used the

OWL language [20] and the Protégé [3] open source tool to build

the ontology. In the domain of CRs, classes describe the various

components and aggregates required for processing radio samples

like adders, multipliers, FFT etc. In building DSP subsystems, in-

stances of these classes are used to form a hierarchy of components

that are connected by object properties, which define the dataflow.

It is also possible to specify certain qualitative attributes in the data

properties like data type, precision, latency and resource consump-

tion (for FPGA), that are useful in optimizing the implementation.

Therefore, an ontology for CR PHY focuses on the dataflow be-

tween various instances of the defined classes and their taxonomic

hierarchy (subclass-superclass).

3.1 Taxonomy of the Ontology
The ontology specifies a hierarchy of subsystems. A module

may be a sub-module of a bigger module and also that module can

have multiple instances within the radio with different parameters.

For example, an FIR filter can be used multiple times in the radio

pipeline but with different weights.

To make the ontology inter-operable between different radios,

we define the taxonomy of classes used to represent a PHY. The

top level classes in the taxonomy are Component and Port. Com-

ponents have sub-classes 1) BasicComponent: superclass for all

fundamental computation units, defined by the domain experts, re-

quired to implement various DSP functions, and 2) Module: repre-

sents the subsystems, which are a collection of instances of various

basic components. Equations 1 and 2 represents the mathemati-

cal structure of the OFDM packet detector, and figure 1 represents

the components and their interconnects of the same unit. Figure

2 shows the hierarchy of the different classes created for repre-

senting the partial Packet Detector specified by eq.1. The ‘is-a’

relationship denotes the hierarchy of the classes. In this exam-

ple the PacketDetector is a Module that contains instances of the

classes Delay, ComplexConjugateMultiplier and MovingAverage,

which are in turn subclasses of BasicComponent. The class hier-

archy in CODIPHY is constant for all ontologies that define a ra-

dio PHY. However, the specific naming of the instances is left to

the designer of the ontology. This is also useful in a component

based radio implementation, where the instances of the basic com-

ponents are mapped to pre-defined design files or functions that can

be stitched together to implement a radio. Therefore, the ontology

specifies what is required to build a radio rather than specifying

how to build it.

3.2 Specifying the Dataflow
The instances of the classes are related to each other using certain

properties. These properties are part of the taxonomy and remain

constant for all implementations of the ontology. The selection of

properties and how they relate the instances will depend on how

a reasoning engine would classify the ontology to answer queries

from the user and other radio nodes. In CODIPHY, we deal with

those queries only that will allow an external agent to understand

what components are present in a module, e.g., Packet Detector,

and how they are connected to each other, so that if required the

querying agent can re-create the packet detector without human in-

tervention. Figure 3 shows a partial ontology of the OFDM packet

detector and the relationship among various instances of the classes

defined in the ontology.

The main properties that are used to relate the components are:

• hasBlock and isABlockOf : These two properties relate an in-

stance of a module with instances of basic components that

are contained within that module.

• hasIndividual: This property relates instances to their respec-

tive classes.

• hasInputPort and isInputPortOf : Relates the instances of

components with instances of their input ports.

• hasOutputPort and isOutputPortOf : Relates the instances of

components with instances of their output ports.

• isConnectedTo: Relates various instances of the Port class,

e.g., relates the output port to that of an input of another com-

ponent.
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Figure 3: Dataflow of the Packet Detector subsystem

Query Class Instance Knowledge Acquired

Module PacketDetector c_n Subsystem

isInputPortOf value c_n InputPort InputPX Input Port of the Module.

isOutputPortOf value c_n OutputPort OutputPC Output Port of the Module.

isABlockOf value c_n Delay delay1 Components of the Module.

ComplexConjugateMultiplier ccMul1

MovingAverage movAvg1

isInputPortOf value delay1 InputPort delay1In Input Port of each Component.

Repeat this query for

each component in Module.

isOutputPortOf value delay1 OutputPort delay1Out Output Port of each Component.

Repeat this query for

each component in Module.

isConnectedTo value ccMul1In1 OutputPort delay1Out Connections between ports.

Repeat this query for

all ports in Module.

Table 1: Querying the dataflow of the Packet Detector subsystem

3.3 Learning through Queries
The usefulness of representing the physical layer using ontology

is in its ability to allow learning about the PHY by a machine, e.g.,

a CR is willing to communicate with the other but is unsure about

the capabilities of the other radio. Ontology provides the common

language that all CR nodes can use to understand and learn about

its own structure and when required, it can let other nodes know

about its own capabilities. Understanding the radio PHY indepen-

dent of the platform, operational knowledge or specific implemen-

tation is very beneficial in a heterogeneous environment. With this

knowledge distribution mechanism, radios can adapt to form ho-

mogeneous communication environment.

If a radio node needs to collaborate at the dataflow level, to im-

plement a common subsystem, it will learn the dataflow of this

subsystem from the ontology of the other radio. This is done by

a structured querying mechanism. Algorithm 1 shows the auto-

mated querying process at the dataflow level. First, the subsys-

tem is searched and if it matches the intended subsystem required

for collaboration, then the queries are processed for that. At this

point, we are interested in knowing the instances of various classes

of components in the dataflow ontology. Once the instance of the

subsystem (or Module in Taxonomy) is found, we query the in-

put ports, output ports and the basic components of the subsystem,

and update the data structures PortIns, PortOuts and Comps. This

gives us the knowledge of the input and output ports of the sub-

system, as well as the components or aggregates contained within

the subsystem. Then, for each of the component within the subsys-

tem, we query the input ports and the output ports and update the

PortIns and PortOuts data structures. Once the list of all the ports

have been generated, we query the connections of each input port

and each output port. This gives us the knowledge of how the data

flows from one port to another. Through this process of querying,

we also get the information of the data type of each port and the

programmable variables of each component, which are required in

the code generation phase.

Continuing with the example of the OFDM packet detector sub-

system, we design a set of queries that will reveal the components

present in it and their interconnections. We used DL-Query and

OWL APIs [14] to query the ontology. Table 1 shows the queries

and the corresponding knowledge obtained about the dataflow be-

tween various components. Once the knowledge about all the com-

ponents and their interconnections are obtained, CODIPHY pro-

ceeds to the code generation phase that generates an implementa-

tion of the design learned through querying.

4. COMPOSING THE RADIO PHY
In §3, we have shown a method to construct an ontology to rep-

resent a physical layer and to learn the relationship between various

components and their instances by simple queries. However, com-

posing an operational radio requires many stages of design and op-

timization and tight coordination of multiple devices and circuits,

like the ADC/DAC, RF front-end, I/O interface etc. We believe that

the engineering problem of implementing a fully functional radio

can be broken down into smaller systems and the baseband is the

most important part of it. Ontological description of a system of

systems can be constructed to solve the system level problem. So
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Algorithm 1: Algorithm to Automate the Query Process at

Dataflow Level

Input: subSys

/* Module Level Query */
Query: Module;
Result: mods[];
for m in mods[] do

if subSys == m then

/* Input Ports of the Subsystem */
Query: isInputPortOf value subSys;
Result: all input ports of subSys;
Update: PortIns[subSys].name;
Update: PortIns[subSys].dataType;

/* Output Ports of the Subsystem */
Query: isOutputPortOf value subSys;
Result: all output ports of subSys;
Update: PortOuts[subSys].name;
Update: PortOuts[subSys].dataType;

/* Components of the Subsystem */
Query: isABlockOf value subSys;
Result: all components of subSys;
Update: Comps.funcName;
Update: Comps.vars;
for c in Comps[] do

/* Input Ports of each Component

*/
Query: isInputPortOf value c;
Result: all input ports of component c;
Update: PortIns[c].name;
Update: PortIns[c].dataType;

/* Output Ports of each Component

*/
Query: isOutputPortOf value c;
Result: all output ports of component c;
Update: PortOuts[c].name;
Update: PortOuts[c].dataType;

end
for inP in PortIns[] do

/* Connections from all Input
Ports */

Query: isConnectedTo value inP.name;
Result: all connections from inP;
Update: Connects.From = inP;
Update: Connects.To;

end
for outP in PortOuts[] do

/* Connections from all Output
Ports */

Query: isConnectedTo value outP.name;
Result: all connections from outP;
Update: Connects.From = outP;
Update: Connects.To;

end
end

end

far we have focused on the dataflow level description of the radio

that can be used to construct a functioning baseband radio.

Radio processing can be done on any platform but often require

domain specific optimizations, e.g., implementing an FFT engine

on a stream processor is completely different from that in a FPGA.

Our vision of the methodology of CODIPHY is that the device spe-

cific implementation and optimization is not possible to solve from

a high level description like an ontology. Instead, it is safe to as-

sume that there will be some abstraction between the domain ex-

void c n(int* inputPX, int* outputPC)
{

int delay1Out;
Delay(inputPX, 64, &delay1Out);
int ccMul1Out;
ComplexConjugateMult(delay1Out, InputPX, &ccMul1Out);
int movAvg1Out;
MovingAverage(movAvg1In, 64, &movAvg1Out);
*OutputPC = movAvg1Out;

}

Figure 4: Generated C Code for Packet Detector subsystem

perts and the composing agent. Domain specific languages allow

radio agents to reap the operational benefit of the products created

by the language while hiding the functional or implementation de-

tails. This is typically done by employing function calls, APIs or

pre-compiled quasi-static libraries. In composing the PHY from

the ontology we use such an approach.

4.1 Composing software executable
From the list of components and their connections, we are able

to generate a software code, where the components denote function

calls to pre-defined functions in the library. Algorithm 2 shows how

a C code is generated from the information of components, input

ports, output ports and its connections. These information are di-

rect output of the querying process described in algorithm 1. The

function declaration requires the input ports of the subsystem, and

their data type as input arguments of the function call. All the in-

put ports and output ports are variables in the function, which will

be assigned values later. The sequential processing required in the

processor architecture, requires tracking of where the data is avail-

able when the code is generated. Initially, the data is available only

at the input ports of the subsystem. Then, from the Connects list,

connections are made to the ports from the input port of the subsys-

tem. Next, if all input ports of a component has data available, then

the code for that component is generated, which is a function call

from the library provided by the domain experts. After the code is

generated, the data is now available at the output port of that com-

ponent. This process of assigning connections and then generating

the code for the component is repeated until the code for all the

components have been generated.

Figure 4 shows the code generated for the packet detect unit from

the dataflow given in the ontology as shown in figure 3, by using the

automated querying mechanism described in algorithm 1, and the

code generation process described in algorithm 2. It is evident that

the generated code is not an optimized version, and requires domain

expertise to optimize this implementation. However, the objective

of CODIPHY is not to generate optimized code, instead it describes

a backbone to represent the domain knowledge in a hierarchical

fashion, such that a radio agent can learn and reconfigure its radio

with varied parameters. The optimization engine for each hardware

type can reside on top of CODIPHY to generate optimized code

base for the target platform. We show the code generation process

to verify that we can implement the dataflow in correct format in

the ontology.

4.2 Composing hardware descriptions
The high level description of radio subsystems using a collection

of components and their interconnections facilitates the generation

of structural HDLs. The set of basic components and aggregates,

as defined in the ontology are mapped onto HDL entities while the
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Algorithm 2: Algorithm to Generate C Code from Queries

Input: Comps, PortIns, PortOuts, Connects, MotherComp

/* Function Declaration */
Print PortOuts[MotherComp].dataType;
Print PortOuts[MotherComp].name;
for pin in PortIns[MotherComp] do

Print pin.dataType; Print pin.name;
end

/* Variable Declaration */
for c in Comps do

if c not equal to MotherComp then
for pin in PortIns[c] do

Print pin.dataType; Print pin.name;
end

end
for pout in PortOuts[c] do

Print pout.dataType; Print pout.name;
end

end

/* Initialize Data Ready Port & List of
Code Generated Components */

for pin in PortIns[MotherComp] do
dReady.append(pin);

end
cgen=[];

/* Body of the Code */
while len(cgen) < len(Comps) do

/* Make connection if data ready */
for cons in Connects do

if cons.From in dReady and cons.To not in dReady
then

dReady.append(cons.To);
Print cons.To, " = ", cons.From , ";" ;

end
end
/* Generate code for a component if

data is ready */
for c in Comps do

if c not in cgen then
if (∀ pin ∈ PortIns[c]) in dReady then

Print PortOuts[c].name, "=", c.funcName, "(",
PortIns[c].name, c.vars, ");" ;

end
cgen.append(c);
dReady.append(PortOuts[c]);
break;

end
end

end

/* Return Statement */
Print "return", PortOuts[MotherComp].name;

ports and their interconnections are translated to physical wires. In

this implementation, we have used the Xilinx System Generator

(SysGen) API [22] to generate synthesizable designs using Matlab

function scripts. The APIs use the xBlock, xSignal, xInport, and

xOutport objects to construct System Generator models. The var-

ious Individuals of basic components in the ontology are mapped

onto the library blocks of System Generator. The code example be-

low, shows the programmatic synthesis of an adder with two inputs

‘a’ and ‘b’ and one output ‘s’ with a latency of ‘1’ clock cycle. The

library component used in this case is ‘AddSub’.

[a, b] = xInport(‘a’, ‘b’);
s = xOutport(‘s’);
adder = xBlock(‘AddSub’, struct(...

‘latency’, 1), {a, b}, {s});

Subsystem Modules Compo- Input Output Conne-

-nents Ports Ports -ctions

TxController1 1 29 53 53 55

IFFT2 0 7 16 18 12

Modulator 6 63 119 71 102

InsertGuard 3 16 66 32 60
1FSM to parse control and data frames[6]
2IFFT treated as atomic unit

Table 2: Ontology of the Transmitter

New library elements have been created for aggregates that are

not a part of a standard installation which shows the that this tech-

nique can be generalized for composing any subsystem of a radio.

A Matlab M-function is generated automatically from the query

results using a Python script that contains the instantiation of the

various blocks and the signals that connect them. This M-function

is used to generate a System Generator model using APIs. The

algorithms to synthesize the Matlab script is the same as for syn-

thesizing C-code as shown in algorithm 2, except for hardware syn-

thesis the order of execution is not necessary as all the components

run in parallel and simultaneously for every system clock pulse.

The HDL is generated using the compile option in System Gen-

erator to produce synthesizable VHDL code that can be imple-

mented using standard tools. We use this method to ensure the

correctness of the generated HDL and also provide a platform for

users to test the subsystem for functional correctness as well.

5. RESULTS
In this section, we present results from an example radio im-

plementation using the high level knowledge representation system

discussed in §3. We have chosen 802.11a/g as the physical layer

to be composed from an ontology specification and generate exe-

cutable code to target a general purpose processor as well as FP-

GAs. Although radio is typically a combination of many systems,

in this example, we focus on the baseband signal processing sys-

tems only. As a design choice, we omit the binary computation

systems as they are relatively low in complexity and are beneficial

to run in software form. While the receiver subsystems are more

complex and require hardware acceleration, fast software imple-

mentations are slowly becoming more practical [19].

Composing physical layers from an ontology specification in-

volves three important steps: 1) Creating the ontology to reflect the

components and their interconnections for various subsystems, 2)

An interface to retrieve the knowledge in a meaningful way using

structured queries, and 3) Automatically generate code for multiple

platforms. We report the design complexity and salient features of

each of these three categories.

5.1 Knowledge Representation System
Building the ontology is fundamental to making CODIPHY

practical. Using domain expertise in hardware design and DSP

algorithms, we have identified a set of components and aggre-

gates that are considered atomic from a system perspective and are

available to the radio design agent as pre-compiled libraries. The

dataflow of a subsystem is obtained by analyzing the mathematical

equation that specifies a computational flow, transforming the input

samples to meaningful output. Table 2 and Table 3 show the com-

plexity of the ontology for various transmitter and receiver systems

respectively.

5.2 Querying the ontology
The dataflow of a subsystem of the radio can be obtained by

querying the knowledge base or the ontology. The number of
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Subsystem Modules Compo- Input Output Conne-

-nents Ports Ports -ctions

Packet Detect 6 30 65 39 68

Correlator 1024 5152 8252 6178 8240

FFT1 1 20 49 34 44

Equalizer 14 137 289 180 299

Demodulator 0 32 67 34 55

Decoder 7 82 179 116 177

CRC Check 6 45 93 57 91
1FFT treated as atomic unit

Table 3: Ontology of the Receiver

Module Lines of Code

TxController 78

IFFT 21

Modulator 163

InsertGuard 43

Table 4: Lines of C Code Generated

queries required to get all the information in dataflow level depend

on the size of the subsystem.

Total number of queries = (1+Blocks+Components+
InputPorts+OutputPorts)

Hence, the number of queries required for each module can be

computed from tables 2 and 3. The output of the queries is the

intermediate form, from which target-specific code is generated. It

is stored in the file system which is used by the code generation

process.

5.3 Composing radio subsystems
The current toolflow of CODIPHY supports automatic code gen-

eration in C and VHDL. To generate an executable C code, each of

the components in the ontology are mapped onto pre-defined func-

tions with inPorts and outPorts as the input and output variables re-

spectively. Each function is assigned to a new variable thus making

them explicitly independent. It is our belief that further optimiza-

tion will make this code more efficient by performing static and dy-

namic analysis. We do not address these optimization and leave that

to domain experts. As of now, CODIPHY supports all the compo-

nents and aggregates required to generate C code for the 802.11a/g

transmitter and the library to compose the receiver is under con-

struction. We report the code sizes for various transmitter blocks in

Table 4. Although this implementation focuses on the sample do-

main subsystems, CODIPHY is generic enough to include libraries

for binary domain systems as well and the methodology is same for

that.

The hardware utilization for 802.11a/g largely depends on how

the subsystems are designed. Various architectures are available to

implement particular DSP subsystems. It is not our goal to build

the most optimized system, but rather provide the toolflow to gen-

erate synthesizable design from a set of pre-compiled components.

The interconnection of these components or the architecture is left

to domain experts. We choose the dataflow represented in prior im-

plementations of 802.11a/g in [6, 4]. Table 5 and Table 6 shows the

hardware utilization for transmitter and receiver respectively on a

Virtex V (LX110) FPGA.

6. APPLICATIONS OF CODIPHY
In this paper, we present CODIPHY as a methodology to com-

pose complex radio physical layers from a high level specification.

The key concept is to introduce clear abstractions in a multidisci-

Module Slices LUTs BRAM DSP48s

TxController 120(0.69) 280(0.41) 5(3.91) 0(0.00)
Mod 57(0.33) 97(0.14) 0(0.00) 0(0.00)
IFFT 1349(7.81) 2794(4.04) 4(3.13) 9(14.06)

InsertGuard 245(1.42) 616(0.89) 6(4.69) 0(0.00)
Numbers in parenthesis indicate percentage utilization

Table 5: Hardware Utilization of the Transmitter

Module Slices LUTs BRAM DSP48s

Packet Detect 536(3.10) 1805(2.61) 0(0.00) 12(18.75)
Correlator 1816(10.51) 2884(4.17) 0(0.00) 2(3.13)

FFT 875(5.06) 1745(2.52) 5(3.91) 30(46.88)
Equalizer1 1197(6.93) 3356(4.86) 0(0.00) 4(6.25)

Demodulator 36(0.21) 100(0.14) 0(0.00) 0(0.00)
Decoder2 1319(7.63) 2644(3.83) 3(2.34) 0(0.00)

CRC check 114(0.66) 129(0.19) 0(0.00) 0(0.00)
Numbers in parenthesis indicate percentage utilization
1 Includes channel estimation, 2 Includes De-interleaver and Viterbi decoder

Table 6: Hardware Utilization of the Receiver

plinary environment, which facilitates knowledge sharing. CODI-

PHY also helps in re-targeting radio design to multiple platforms

and architectures. This ensures longevity of the design and re-

duces time to prototype a radio PHY. The benefit of CODIPHY

goes beyond code generation for heterogeneous platforms to en-

able a larger realm of research. We discuss some of those in this

section.

Case 1: Hierarchical inference – CODIPHY assists in design

and implementation of radio PHY for users with varied expertise.

The various levels of the knowledge representation system dis-

cussed in §3 provide design information at various levels of granu-

larity. Each level provides a clear path that leads to implementation

using either pre-compiled subsystems or by generating code from

atomic components.

Case 2: Collaborative adaptation of radio PHY – Using the

querying mechanism, radio agents learn the internal structures of

another radio. This collaboration at the physical layer happens in

real-time and radio systems can reconfigure themselves by build-

ing subsystems that was not originally built for that radio. Thus,

cloning of radio PHY facilitates MAC-PHY crosslayer implemen-

tations in a large scale network because radios can learn, adapt and

automatically reconfigure to agree on a particular PHY design.

Case 3: HW/SW Co-design – Platforms like Zynq [21] present

great opportunity for efficient radio implementation by employing a

hardware, software co-design approach. Hybrid architectures pro-

vide the flexibility of software programs while utilizing the fast par-

allel computation model of FPGAs. Fast interconnects between the

two domains make it more practical. The multi-target code genera-

tion infrastructure of CODIPHY allows radio designers to partition

the design based on high level constraints like speed, power and

area. By including these design trade-offs in the ontology specifica-

tion, each subsystem is constrained accordingly, leading to efficient

hybrid architectures.

Case 4: Partial Reconfiguration – The underlying architecture

that accepts CODIPHY as the methodology for implementing ra-

dio PHY, employs a modular approach. Instead of subsystems be-

ing connected by hard synchronization logic, making them brittle, a

producer-consumer paradigm of data transfer will make the design

more practical. Now, radio designers use partial reconfiguration

techniques [1] to swap components in real-time that reduces the

reconfiguration time. Also, by making the architecture, latency in-

sensitive, independent development of DSP algorithms is possible.
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We believe that adopting CODIPHY for future heterogeneous

cognitive networks will be beneficial in realizing the greater vision

of dynamic radio adaptation. Through CODIPHY, cognitive radios

can not only agree on high level policies, but enforce them using

proper waveforms at the physical layer through dynamic reconfig-

uration.

7. RELATED WORK

In order to make radios self aware and adapt to the changing

environment, researchers have used ontology to represent the re-

lationship between various radio processes [7]. Authors layout

some practical requirement for the language to represent this cog-

nitive engine. In [9], a simple implementation of this has been

shown by representing the programmable components of the ra-

dios as knobs and using a reasoning machine to decide on which

parameters to change based on the knowledge obtained from the

environment. However, as radios and waveforms become more

complex, the number of tunable parameters increase to the extent

that parametrizing the variables become nearly impossible. Fixed

hardware pipeline and dataflow is no longer optimum and a way to

compose radio structures on-demand is provided by CODIPHY. An

important aspect of cognition is understanding your neighbors and

facilitate coexistence in a network topology. An example of radios

of different capabilities can collaborate to achieve a better commu-

nication link has been shown in [8, 18]. The Wireless Innovation

Forum has developed the first Ontology based cognitive radio that

is capable of transmitting audio waveform using CDMA technol-

ogy [2]. The pre-cast radio suffers from similar brittleness as an

partially programmable ASIC as it requires re-designing the entire

pipeline to ensure proper synchrony between components. There-

fore, abstractions at different design stages is the key to develop

cognitive radio for the longer run.

8. CONCLUSION

In this paper, we propose a method to use knowledge representa-

tion techniques to represent the physical layer of a cognitive radio.

By using ontology as the framework we are able to realize collab-

orative learning between heterogeneous radio nodes to adapt to a

common protocol. Not only radios can agree on new access poli-

cies but also compose the subsystems required to implement those.

We also present a code generation technique that uses the ontology

to generate implementation code for multiple targets.
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