
Cognitive Radio Kit Framework : Experimental Platform for
Dynamic Spectrum Research

Khanh Le†, Prasanthi Maddala†, Craig Gutterman†, Kyle Soska†, Aveek Dutta‡,
Dola Saha‡, Peter Wolniansky∗, Dirk Grunwald‡, and Ivan Seskar†

† WINLAB, Rutgers University, NJ
‡ Department of Computer Science, University of Colorado, Boulder

∗ Radio Technology Systems, NJ

test

ABSTRACT
This paper presents an overview of a Cognitive Radio Kit, an
open software defined radio framework developed specifically
to enable experimental research in cognitive radio and dy-
namic spectrum techniques. Currently available open soft-
ware defined platforms are limited by performance and band-
width constraints, and inadequate frequency tuning range at
the RF front-end.

The proposed platform addressed those limitations by pro-
viding the ability to dynamically add hardware based accel-
eration for baseband processing, coupled with up to four
wide-tuning range RF front-ends. The challenge resides in
defining the architecture and programming model for the
platform. All those considerations along with an applica-
tion example are discussed and presented in this paper.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design - Wireless Communication

General Terms
Design, experimentation.

Keywords
Wireless, Software-Defined Radio, Cognitive Radio, Dynamic
Spectrum Access, Architecture, Platform.

1. INTRODUCTION
The presented Cognitive Radio Kit (CRKIT) platform is

intended to overcome performance and usability limitations
of existing software defined radio devices to enable real-
world dynamic spectrum access and cognitive radio network-
ing experiments. Dynamic spectrum technologies are strate-
gically important to the wireless community because of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiNTECH’12, August 22, 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1527-2/12/08 ...$15.00.

need to alleviate spectrum congestion resulting from ongo-
ing exponential growth in mobile data usage. A range of so-
called dynamic spectrum access or cognitive radio techniques
such as frequency agility, spectrum sensing, non-contiguous
channels, etiquette protocols, Internet-based spectrum co-
ordination and spectrum subleasing have been proposed as
potential solutions, and taken together have the potential of
providing order-of-magnitude improvements in overall spec-
trum efficiency.

While a great deal of theoretical work has already been
done on dynamic spectrum techniques, larger scale experi-
mental evaluations have yet to be conducted. The lack of
experimental evidence of potential gains suggests that cur-
rently available open platforms are constrained with respect
to some of following requirements for dynamic spectrum and
cognitive radio applications :

1. Low latency processing,

2. Wide-band radio,

3. Wide-tuning range radio,

4. Fast frequency switching time.

The current open platforms have different strategies in
providing programmable radio solutions. GNURadio[1] and
SORA[2] platforms provides complete flexibility through soft-
ware programmability. Those platforms are nevertheless
somewhat constrained due to limited hardware acceleration
capabilities. GNURadio bandwidth is typically in the order
of 10MHz. While the Python scripting language provides
for an easy programming environment, it also sets a limit
on how much performance one can extract from the system.
SORA, on the other hand, operates at higher bandwidth by
distributing baseband functions on multiple General Pur-
pose processor cores. The programming model of SORA
as such is more elaborated as users need to have a good
understanding of the underlying processor architecture and
feature sets. For example, certain baseband functions are
written such that they minimize cache misses. This trans-
lates to non-trivial optimization work from the user side to
achieve the best performance.

To avoid these limitations, the WARP[3] and AirBlue[4]
platforms trade off some flexibility with low latency pro-
cessing in hardware. As for programming model, WARP
platform uses MATLAB Simulink tool for baseband designs,
whereas AirBlue relies on Bluespec[5]. However, both WARP
and AirBlue frameworks are rather monolithic in the sense

3

that all baseband functions are centered around the proces-
sor which also provides the interconnect subsystem, and all
traffic whether control or data must therefore request ac-
cess to the bus. Scalability may become an issue as more
PHYs are added onto the bus, hence the bus bandwidth will
become a bottleneck.

CRKIT was designed specifically for Dynamic Spectrum
and Cognitive Radio applications in mind, and similar to
the WARP and AirBlue approaches, the CRKIT baseband
processing is FPGA-based to address the low latency re-
quirement. Furthermore, CRKIT incorporates additional
features at the architecture level which allowed for ease of
programming and modularity. Obviously, the radio part
is an essential component of the overall framework. The
CRKIT radio permits for a wide-tuning range and relatively
wideband e.g. 36MHz. The CRKIT baseband architecture
permits for multiple PHYs and other Cognitive Radio func-
tions such as spectrum sensing, in addition to the support
of up to four simultaneous full duplex wide-tuning range RF
front ends. All these capabilities are integrated into a single
environment. This platform serves as a proof-of-concept for
further development of more advanced functions, as will be
presented in subsequent sections.

In section 2, the wide-tuning range radio (WDR) trans-
ceiver and FPGA-based baseband processing hardware are
described. Section 3 talks about the FPGA-based System-
on-Chip (FSoC) framework with pluggable application (APP)
modules. The CRKIT transport layers will be detailed along
with the concept of static FSoC and dynamic APPs . Section
4 talks about the system programming model with empha-
sis on design methodology and user interfaces. In section
5, a CRKIT APP example is used to demonstrate how two
uncoordinated cognitive radios can be synchronized using a
Rendezvous algorithm. Finally, the paper is concluded in
section 6, followed by a discussion on future work, including
a platform development road map.

2. CRKIT HARDWARE PLATFORM
The CRKIT platform consists of WDR transceiver daugh-

ter cards mounted on an FPGA-based baseband processor
board. The baseband motherboard is a commodity off-the-
shelf board, whereas the WDR transceiver card was custom
designed and manufactured according to our specifications.
Up to 4 full-duplex WDR modules can be stacked on the
baseband processor motherboard, where they can be op-
erated independently using FSoC framework. The actual
CRKIT hardware platform is shown in Figure 1 with two
WDRs. Two more radios can be stacked on top, adding to
a total of four independently tuned radios.

2.1 Radio Module
The radio provides a wide RF tuning range from 100

to 7500 MHz using heterodyne downconversion and sharp
IF filtering for excellent adjacent channel rejection, allow-
ing operation as close as 5-10MHz from strong interferers.
The frequency tunable step-size is 0.5Hz using Direct Dig-
ital Synthesizer, and nominal frequency switching time is
50µs with some provisions for very fast switching e.g. in the
order of 1µs. The radio can be configured to operate in ei-
ther half or full duplex mode over entire tuning range allow-
ing any combination of uplink and downlink frequency sets.
The transmitter baseband bandwidth is rated for 48MHz,
whereas the receiver baseband bandwidth is 36MHz. The

Figure 1: CRKIT hardware platform with enclosure,
dual WDRs mounted on baseband processor.

receive path also includes dual 12-bit, 50MSPS ADC, and
the transmit path includes dual 12-bit, 200MSPS DAC. The
sampling rate reference clocks can be provided either by the
baseband or generated locally on the radio module itself.

2.2 Baseband Processor
An off-the-shelf FPGA board is used for signal and base-

band processing. The board includes a Xilinx Virtex5 SX95T
FPGA and multitude of high-speed interfacing options such
as GigE, USB2.0, and PCIe. The WDR modules are mounted
on EXP connectors, where the radio Serial Peripheral Inter-
face (SPI) control busses, ADC and DAC I/Q channels and
corresponding reference clocks are routed to and from the
baseband FPGA.

Moore’s law states that the transistor counts and densities
are to double approximately every two year, therefore the
CRKIT hardware platform can benefit from this technology
advancement. More importantly, new generations of FPGA
baseband boards can be used with little additional engineer-
ing cost. An ”upgrade path” is in place to allow the radio
transceiver design to be used on increasingly capable (or
cheaper) signal processing boards, including emerging SoC-
FPGA [6]. The baseband FSoC framework design should
therefore be easily upgradeable to newer and more power-
ful hardware platforms, or in terms of FPGA higher speed
and density. To support this future upgradability option,
the FSoC framework must be modularized and be FPGA
technology independent to the greatest extent.

3. SYSTEM-ON-CHIP FRAMEWORK
Designing and building a real-time, large and complex

baseband FSoC from the ground up is not a trivial endeav-
our, especially for our targeted audience consisting of wire-
less communication researchers and students. It requires
extensive hardware design skills, usually only afforded by a
relatively large engineering design team. Chances are the
targeted user base does not have access to such resources.
Even if present, it is unlikely that serious engineering design
resources will be readily available for ad-hoc experimenta-
tion purposes.

Innovation requires prototyping and ad-hoc experimen-
tations to complete the full innovation cycle as illustrated
in Figure 2. The first two phases of the innovation cir-
cle are considered as the creative processes (Idea and Algo-
rithms/Models), whereas the last two are mostly engineering
driven processes (Build Radio and Live Experiments).

The Build Radio step constitutes a substantial barrier to
entry for many users. Building a complete working radio re-

4

Figure 2: Innovation Cycle

quires cross-disciplinary expertise in areas such as RF, hard-
ware, software, networking, communication and so forth.
Therefore, with CRKIT, users should concentrate more on
the creative aspects of the wireless problem, less on the com-
plex engineering problems associated with building a radio.
In other words, focus on creativity rather than engineering
complexity. This can be achieved by dividing the baseband
framework into two domain spaces - Static and Dynamic, as
shown in Figure 3.

Figure 3: Downloadable Dynamic Application.

The dynamic APP modules are associated with the cre-
ative processes, whereas the static FSoC framework refers
to the complex engineering problems. Intuitively, CRKIT
users would become APP developers, while the static FSoC
framework is maintained by framework developers. Depend-
ing on the experiments, different APPs can be linked onto
the static framework. The FSoC framework contains a com-
plete system with a 32-bit processor core, along with Eth-
ernet, Packet Processing and RF interfacing modules. This
framework is fully open sourced, it should therefore be fea-
sible for experienced users to modify and experiment with
lower level FSoC framework design as well. However, in
most cases it is anticipated that users will confine them-
selves inside the APP domain.

3.1 Framework Architecture
The top level framework architecture is shown in Figure 4.

The block functionality is summarized as follows :

• Ethernet Port (static) - provides interfacing to Gigabit
Ethernet port. Inbound Ethernet frames synchroniza-
tion. Outbound ethernet frames formatting.

• Packet Processor (static) - simple packet classifica-
tion/forwarding scheme based on IP/UDP. Control pack-
ets get routed to Processor Core, whereas Data packets

Figure 4: CRKIT FPGA Framework - static SoC
and Dynamic APPs.

are forwarded to corresponding APP for further wire-
less layer processing. Support a subset of VITA Radio
Transport protocol [7]. APP data buffer management.

• APP (dynamic) - user specific application, could be
simple QPSK/QAM, OFDM and so forth. Support up
to 4 APPs simultaneously (one APP per RF), APPs
can be swapped as needed by users depending on the
application.

• RF Port (static) - interfacing to ADC/DAC.

• RMAP Processor (static) - general sub-system inter-
facing and control, provides processor interfacing, ad-
dress decoding and RF SPI control functions.

• Processor Core (static) - 32-bit RISC-based embedded
processor, and bus interconnect with interfaces to ex-
ternal 32MBytes DRAM and 16MBytes FLASH.

The baseband data path does not require access to the sys-
tem bus, eliminating potential bottlenecks imposed by the
interconnect subsystem. All static domain modules were
designed using VHDL hardware description language, and
validated according to the rules of good chip design prac-
tices. The APPs can be designed using either VHDL/Verilog
or Mathworks Simulink tool, and verified using the CRKIT
APP development environment available for Simulink. In
principle, any other design methodologies, such as Blue-
spec[5], are applicable for APP designs. The key point is
users should remain creative in developing APPs, and not
be weighed down by complex engineering considerations at
the FSoC level.

The framework design is modularized such that individual
modules can be upgraded or replaced without major disrup-
tions to the overall system architecture. In particular, the
processor core is considered as a ”black-box”, in the sense
that it may be swapped out in future revision of the frame-
work. The current processor core (PCORE) is based on Xil-
inx 32-bit Microblaze softcore processor and CoreConnect
PLB bus, this processor subsystem was selected primarily
for conveniency, as it is well integrated into the Xilinx tool
chain environment. An Open Source 32-bit RISC-based pro-
cessor from the OpenCores community, OpenRISC [8], could

5

have been used instead, or a hard macro ARM-based pro-
cessor and AMBA bus [6].

3.2 Transport Layers
Three distinct data paths are defined for traffic flows through

the system :

1. APP/PCORE to outbound ethernet port

2. Inbound ethernet port to APP

3. Inbound ethernet port to PCORE

The inbound traffic flow, i.e., from network to CRKIT, is
as shown in Figure 5. The left-hand side protocol stack re-
sides within the static framework domain, whereas the User
Specific Layers are within the dynamic APP domain. The
framework protocol stack is only defined up until the VITA
Radio Transport (VRT) layer [7]. VRT is an emerging stan-
dard for SDR applications, it provides interoperability be-
tween diverse SDR components by defining a common trans-
port protocol to convey signal data and radio parameter set-
tings.

Figure 5: CRKIT Transport Layers

Each protocol layer has specific processing requirements
as summarized below.

• ETH - Ethernet Physical layer only, no MAC. Only
Ethernet frames with Broadcast MAC or matching
destination MAC addresses are forwarded to IP layer.

• IP (Fast Path) - Hardware based implementation, only
a subset of IP and UDP functions. This fast track
is reserved for data related traffic requiring fast and
direct access to APP domain. Data IP packets are
routed to the fast track based on specific UDP port
numbers.

• IP Layer (Slow Path) - Software based implementa-
tion, does support TCP as this is done in software.
This slow track is reserved mostly for control related
traffic such as CRKIT hardware configuration (regis-
ter map access) and RF control. Any IP packets not
destined for the fast track will by default be routed to
the slow track.

• VRT - VRT layer is optional, it can be bypassed if not
used. VRT is particularly useful to mux multiple radio
streams to a single pipe, and demux at the other end.
Two types of packets are defined by VRT protocol : 1)
Data for signal data transmission, could be digitized
I/Q samples. 2) Context for control information such
as frequency, power, bandwidth settings and so forth.

Once in the User Specific Layers, users have unrestricted
freedom to implement any additional protocol layers as re-
quired. Typical inbound packet processing flow is illustrated
in Figure 6. Inbound IP packets are parsed by the Packet
Classifier which consists of a simple IP filtering block. If IP
traffic is of type UDP with port numbers 1000-1004 (config-
urable), then data gets routed to the VITA Receiver, oth-
erwise the IP packet is forwarded to PCORE for further
parsing. The IP-to-VITA path is defined as the fast track,
whereas the IP-to-PCORE path is the slow track. Further-
more, UDP port number 1000 is reserved for VITA based
traffic, whereas UDP ports 1001-1004 are reserved for non-
VITA traffic. The four non-VITA UDP ports are avail-
able for tunneling data to potentially four different transmit
APPs. The association between UDP ports and correspond-
ing APPs are made using a programmable look-up table.
Each APP is given a specific Port Identifier (PID), hence
a virtual link between UDP port number and specific APP
(i.e. PID) can be generated. This UDP-to-APP mapping
look-up table is available within the VITA Processor block,
and PCORE software configures this look-up table as part
of the initial configuration settings. Once the UDP-to-APP
mapping sequence is completed, the ”raw” data is temporar-
ily stored in the Buffer Management Unit (BMU), APP then
pulls the data for further processing.

Figure 6: Inbound Packet Processing Flow

The typical outbound traffic has a similar data flow but
in reverse order as illustrated in Figure 7. Here, the traf-
fic flows from either APP or PCORE to the ethernet net-
work port. APP/PCORE data are temporarily stored in the
BMU, and multiplexed into a single stream for processing
further down the pipeline i.e. VITA Emitter, IP Processor
and Ethernet Port. Data from APPs or PCORE is selected
in a round-robin fashion. The traffic encapsulation scheme
is user programmable on a per flow basis, the following three
encapsulation options are available :

1. Ethernet, IP and VITA - ”raw” data is encapsulated
with VITA headers, followed by IP and then Ethernet
frame formatting.

2. Ethernet and IP - IP encapsulation, followed by Eth-
ernet frame formatting.

3. Ethernet only - Ethernet frame formatting only.

Similar to the inbound traffic, each outbound flow is as-
sociated with a PID. For traffic originating from PCORE,

6

Figure 7: Outbound Packet Processing Flow

different encapsulation schemes based on the traffic type can
be configured. For example, DHCP and ARP traffic would
be configured as Ethernet Only mode i.e. no hardware based
VITA and IP encapsulations are required since the lower
level data formatting is being done by software. Hardware
only adds the Ethernet header and tail.

The encapsulation scheme is computed dynamically as
traffic flows down the pipeline using the associated PID.
The PIDs are essentially pointers to the two lookup-tables,
StreamID and MAC/IP. At the VITA Emitter block, using
the PID for current data flow, the V-flag bit is fetched from
the StreamID look-up table, and if set then VITA formatting
is enabled. VITA header is appended to current data stream
using information from StreamID table. Similarly, the IP
Processor block checks the IP-flag bit, if set then IP packet
encapsulation scheme is enabled. For each PID, there is an
associated data tuple i.e. IP destination/source addresses,
UDP port number, destination MAC address, and Ethernet
Ethertype field. Using this information, the IP and Ether-
net headers can be added dynamically to the data stream.
The look-up tables are configured by software during initial
system configuration or when a new flow is being setup.

The described inbound and outbound data flow provide
a highly pipelined and flexible architecture. Since process-
ing is configurable on a per flow basis, a flow can easily be
added or torn down, thus creating a virtual processing link
from source to destination. APP developers can just link the
designed dynamic APPs to the framework, configure the vir-
tual processing path, and traffic should start flowing from
APP to ethernet port, and then to a networked Host ma-
chine. All these functions are available as part of the FSoC
static framework.

4. SYSTEM PROGRAMMING MODEL
The CRKIT programming model consists of the following

three processes :

• CRKIT APP development

• CRKIT embedded software development

• Host software development

A Host machine could be any machine on the network
which transmits and receives data to and from the CRKIT
hardware platform. The Host machine and CRKIT platform

combo essentially forms a client-server computing model. In
such model, the Host provides the higher level supervisory
algorithmic functions, whereas lower level hardware-based
acceleration are available at the CRKIT platforms. In this
respect, the CRKIT static framework forms a virtual link
between client (APP) and server (Host).

4.1 APP Development
The individual steps necessary for APP development and

eventual integration into the overall framework are as shown
in Figure 8. The APP can be designed using either VHDL/
Verilog or Mathworks Simulink combined with Xilinx Sys-
tem Generator tools. For novice APP developers, it is rec-
ommended to use the graphical Simulink environment as
this reduces the complexity and learning curve associated
with the APP development process. The Simulink graphi-
cal environment is more intuitive to use, and a plethora of
Simulink tools are available such as filter design, state flow
charts, waveform viewers, channel modeling and so forth.

The dynamic APP is verified using the CRKIT Simulink
testbench environment in which the static framework data
flows are emulated, including PCORE read/write accesses.
This design environment allows for the development of com-
munication APPs independently from the overall FSoC. This
reduces the users focus area to APP domain only, hence min-
imizing both design and verification time.

Following the APP Validation phase, the APP is compiled
to produce a binary file which is then linked to the overall
framework binary file. The complete framework is then built
to generate a downloadable FPGA bit file. Finally, the bit
file is loaded onto baseband FPGA, and the system boots
up. At this point, PCORE proceeds with the execution of
the CRKIT embedded software.

Figure 8: APP Development and Integration

4.2 Software Development
The current embedded software is relatively rudimentary

and written entirely in C-language. This basic software is
mostly used to bring up the system and configure the RF
and virtual connections between APPs and Host. There are
plans to port Linux i.e. uClinux to the current platform to
take advantage of the networking stack available for Linux.
The embedded software functions are as shown in Figure 9.

Upon system boot, the CRKIT hardware is initialized to
some default settings. The PCORE-to-EthernetPort virtual
processing path is configured to permit transmission of net-

7

Figure 9: CRKIT Embedded Software Functions

work related traffic such as DHCP and ARP packets. This
processing flow is set to Ethernet Only mode of operation
via the StreamID and MAC/IP look-up tables. The Ether-
net payload content is generated by the embedded software
according to the network protocol. As part of the initial
hardware configuration, any RF default settings pertaining
to the operation of the WDR are also programmed through
the RF Control SPI bus interface. For example, duplex-
ing mode, sampling rates, center frequency, power level and
so forth. Once the default hardware configuration is done,
software initiates DHCP to retrieve an IP address from the
network, followed by a link up with the Host machine.

Dynamic APPs require their own set of configuration op-
tions, and the initialization of those APP settings is per-
formed by Host application software. Host may query CRKIT
for currently installed APPs, and send dedicated Ether-
net/IP commands (CMD) to configure those APPs. Host
has full access to all register maps available on the CRKIT
i.e. control, status, and interrupt registers, similar to what
is available to PCORE. Host can configure the RF, APPs,
and static framework dynamically while the system is run-
ning live, just as if Host software is executed locally on
CRKIT. This configuration scheme requires atomic level reg-
ister read/write ethernet-based CMDs being sent from Host.
Another option is to use VITA transport protocol format to
package multiple CMDs into a single IP packet. The VITA
context message is parsed and processed at CRKIT, this re-
duces the amount of configuration related traffic between
Host and CRKIT. Furthermore, VITA can be used as inter-
facing protocol between CRKIT and GNU Radio software
platform, thus leveraging a substantial amount of available
signal processing blocks from GNU Radio. In this respect,
CRKIT provides hardware acceleration functionality.

Host application software can be developed using any avail-
able programming language of choice. The current Host soft-
ware was developed using Java and C# to create GUI-based
application for system debugging and testing purposes, while
C-language was used for algorithmic efficiency.

5. APPLICATION EXAMPLE
The capabilities of CRKIT platform are best illustrated by

a system design example. It is outside the scope of this pa-
per to provide a thorough theoretical foundation, but a dy-
namic spectrum access technique is demonstrated using two
CRKITs, each with a dual RF front-ends. The two radios
are initially uncoordinated but need to establish a wireless
communication link in the presence of interference by op-
portunistically utilizing available spectrum. For this partic-
ular example, a blind rendezvous [9] algorithm was chosen
to synchronize the two radios on a RF channel. No com-
mon control channel is used to exchange information. The

only available information to the radios is respective spec-
trum sensing data. Using this information combined with
the rendezvous algorithm, the radios should attempt to syn-
chronize as described in [10]. Both radios operate in half-
duplex mode, and once rendezvous is successfully achieved,
they take turn to communicate. If the communication chan-
nel becomes inefficient i.e. high bit error rate, the radios
initiate a new rendezvous search to select a better commu-
nication channel.

5.1 Rendezvous Algorithm
The number of possible RF channels is limited to 16 for

this initial experimental validation of the rendezvous algo-
rithm. The algorithm ranks each of the 16 channels based
on spectrum information provided by the CRKIT Spectrum
Sensing APP. Each channel is ranked based on energy level
e.g. the higher the energy level, the lower rank it gets.
Therefore, ranking is based on quantized energy level, and
using threshold settings a channel can be flagged as either
free or occupied. This channel occupancy map is used by
the rendezvous process to hop through the free channels in
search of the other radio. Both radios perform the same
operation independently, they each have their own channel
occupancy map and chances are that some of the free chan-
nels are overlapped between the two radio occupancy maps.
Theoretical work have shown that the jump-stay based hop-
ping sequence guarantees rendezvous in finite time [10]. This
finite rendezvous time is one of the interesting results to be
obtained through this experiment.

At each free channel, the rendezvous algorithm sends a
Beacon, waits for some time for a response, and if none
is received within the time-out period, the algorithm hops
to the next free channel and repeats the process again. The
radios are always in listening mode, except for Beacon trans-
missions. A successful rendezvous is assumed when an ACK
is received within the time-out period after Beacon trans-
mission. This completes the rendezvous search process, and
the communication process takes over for traffic transmis-
sion between the radios. The radio communications are en-
abled using a simple slotted ALOHA multiple access proto-
col, where MAC level processing is done by Host, whereas
PHY layer processing is performed by CRKIT.

5.2 Rendezvous Application Modules
To support the rendezvous and communication processes,

the following CRKIT functions are necessary : 1) Spec-
trum Sensing for channel ranking purpose and 2) half-duplex
Quadrature Phase Shift Keying (QPSK) Modulation trans-
ceiver for communication. These functions were developed
using three dynamic APP modules, as shown in Figure 10.
The outbound data flows are generated by the Spectrum
Sensing and QPSK Receiver APPs, whereas the inbound
traffic flow is absorbed by the QPSK Transmitter APP.
Spectrum Sensing and QPSK transceiver APPs are con-
nected to RF module 1 and 2, respectively.

The Spectrum Sensing APP performs a 64-point FFT on
the IQ samples coming in at a rate of 25MSPS, and gen-
erates the power spectral density over the 16 channels, i.e.,
4-point per channel. The power levels are then averaged
over multiple FFT computations and sent to Host for fur-
ther post-processing by the rendezvous algorithm.

The QPSK transmitter APP functional block diagram is
illustrated in Figure 11. Here, digital bits from Host are

8

Figure 10: Application Modules for Rendezvous
Process

mapped to QPSK symbols. These symbols are upsampled
by 32 resulting in a 25MSPS sampling rate, and pulse shaped
using a Root Raised Cosine (RRC) filter. This is followed
by Frequency Translation and Digital-to-Analog conversion.
The Frequency Translation converts baseband signal to IF,
equivalent to one of the 16 possible communication channels
as required for the rendezvous process.

Figure 11: QPSK Transmitter APP diagram

As shown in Figure 12, the received IF signal is con-
verted back to baseband by the Frequency Translation block.
The signal is passed through a RRC matched filter, down-
sampled by 32, and the symbols demapped to digital bits.
Furthermore, carrier frequency/phase offset errors are com-
pensated using Costas Loop, whereas symbol synchroniza-
tion is achieved using Maximum-Likelihood timing estima-
tion. Frame Detector determines the start-of-frame based
on Barker sequence preamble. The detected frame is then
passed further down the outbound data processing pipeline.

Figure 12: QPSK Receiver APP diagram

All APPs were designed using Mathworks Simulink envi-
ronment, and ported to the external framework design. A
Simulink based implementation example of QPSK Receiver
is shown in Figure 13. From the left, the ADC I/Q data
are pulled from the ADC Elastic Buffer (refer to Figure 4)
and fed into the Frequency Translation and Automatic Gain
Control (AGC) modules. The subsequent processing steps

are as explained previously for Figure 12. On the right hand
side, the Packet Processor Interface provides the interfacing
to the BMU, whereas the Clock Domain Transfer module
enables clock domain crossing between APP and framework
domain spaces. Finally, the Register Map module provides
PCORE interfacing ability, allowing software to configure
and monitor the APP functions.

The FPGA resource utilization level for this rendezvous
experiment is shown in Table 1. From APP domain perspec-
tive, the Spectrum Sensing function use the least amount
of Flip-Flops (FF), but the most number of block RAMs
(BRAM). The 64-point FFT operation requires more stor-
age and arithmetic than logic operations i.e. multiplication
and addition. These arithmetic operations use more of Xil-
inx DSP48E slices, and less of Logic slices. The QPSK Re-
ceiver has a larger FF count than Transmitter due to the
additional Carrier and Timing recovery blocks. The static
framework contains the highest amount of FF i.e. ∼17%
and BRAMs (for PCORE instruction/data caches and boot
code, and BMU storage). Ideally, the remaining 83% of the
FPGA FF resources can be used for APP development, ob-
viously this will be reduced due to limited routing resources.

The complete FSoC FF utilization for this particular ex-
periment is 30.37% which can easily be placed and routed on
the physical FPGA. The fraction of static framework utiliza-
tion level can dramatically be reduced if migrating to newer
FPGA technologies, hence leaving substantial resources for
APP development.

Table 1: Xilinx Virtex-5 SX95T FPGA Resource
Utilization

Module FF Util. BRAM Util.

Spec. Sen. APP 338 0.57% 7 2.87%

QPSK Tx APP 2,798 4.75% 2 0.82%

QPSK Rx APP 4,834 8.21% 3 1.23%

Static Framework 9,912 16.83% 35 14.34%

Complete FSoC 17,882 30.37% 47 19.26%

5.3 ORBIT Integration
The rendezvous experiments are facilitated by CRKIT

platform integration into the ORBIT [11] wireless network
emulator. The CRKIT platform acts a physical layer exten-
sion to the current radio nodes, allowing ORBIT users to
experiment with lower wireless physical layers as well as the
higher protocol and application layers. In particular, the
wide RF tuning range and real-time aspects of the platform
will prove to be fundamental to experimental research in
Cognitive Radio and Dynamic Spectrum Access techniques.
The current rendezvous experiments are performed on OR-
BIT Sandbox 6 (SB6). SB6 consists of two nodes, each hav-
ing a single CRKIT hardware platform. Each node acts as
Host machine for a CRKIT platform, where the rendezvous
application software is executed. This rendezvous experi-
mentation platform is currently open to ORBIT users, the
eventual goal is to create a library containing a variety of
APPs for research and development purpose in Cognitive
Radio and Dynamic Spectrum Access techniques.

9

Figure 13: Simulink QPSK Receiver APP

6. CONCLUSION
In this paper, the CRKIT platform was presented as an

advanced radio system enabling experimental research in
Cognitive Radio and Dynamic Spectrum Access techniques.
The powerful combination of wide-tuning range radio and
flexible baseband processing was discussed, including the
FSoC framework architecture. Here, the concept of Static
and Dynamic domain spaces was elaborated, and empha-
sis was made on APP development for creativity and pro-
ductivity, whereas framework development for engineering
complexity. A system design example based on rendezvous
algorithm was presented to illustrate the CRKIT develop-
ment concepts and integration into ORBIT wireless network
emulator.

7. FUTURE WORK
A multi-pronged effort is planned for further development

of CRKIT platform. First, the APP library will be ex-
tended to include OFDM-based waveforms, this can be used
for sub-carrier bandwidth allocation research work. Second,
the static framework architecture will be upgraded to sup-
port sampling rates and APPs run-time reconfigurability.
The goal is to enable network programmable APPs, allow-
ing users to select and upload APPs from library to ”live”
CRKIT. Futhermore, compute intensive blocks can dynam-
ically be pushed to CRKIT. On the software side, plans to
port linux to PCORE at the CRKIT side, as well as fully in-
tegrating CRKIT into the ORBIT Management Framework
(OMF). This should facilitate CRKIT user friendliness ex-
perience and experimentation scalability.

Finally on the hardware side, the radio will be upgraded to
being truly wideband capable of 800MHz bandwidth, and up
to 1GSPS, 8-bit ADC (per rail) and 1.25GSPS, 16-bit DAC
(per rail). In principle, the spectrum sensing function should
be able to capture an instantaneous 800MHz band, and with
four such radios the platform can capture a 3.2GHz instan-
taneous band. To support such extreme capabilities, the
baseband processing board needs to be upgraded to newer
and higher performance FPGA technologies. The current
FSoC framework design should be portable to this newer
platform.

8. REFERENCES
[1] GNU Radio. http://gnuradio.org.

[2] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang,
Y. Zhang, H. Wu, W. Wang, and G. M. Voelker. Sora:
high performance software radio using general purpose
multi-core processors. In Proceedings of the 6th
USENIX symposium on Networked systems design and
implementation, pages 75–90. USENIX Association,
2009.

[3] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R.
Cavallaro, and A. Sabharwal. Warp, A Unified
Wireless Network Testbed for Education and
Research. In Proceedings of IEEE MSE, 2007.

[4] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross,
Arvin, and H. Balakrishnan. Airblue: a system for
cross-layer wireless protocol development. In
Proceedings of the 6th ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, 2010.

[5] Bluespec Inc. http://www.bluespec.com.

[6] Xilinx. Zynq. http://www.xilinx.com/products/
silicon-devices/epp/zynq-7000/index.htm.

[7] The VITA Radio Transport (VRT).
http://www.pentek.com/tutorials/17_2/VITA.cfm.

[8] OpenCores. OpenRisc 1200.
http://www.opencores.org/openrisc,or1200.

[9] L. A. DaSilva and I. Guerreiro. Sequence-based
Rendezvous for Dynamic Spectrum Access. In
Proceedings of IEEE DySPAN, pages 1–7, 2008.

[10] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung. Jump-Stay
Based Channel-Hopping Algorithm with Guaranteed
Rendezvous for Cognitive Radio Networks. In
Proceedings of IEEE INFOCOM, 2011.

[11] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa, H. Liu,
and M. Singh. Overview of the orbit radio grid testbed
for evaluation of next-generation wireless network
protocols. Wireless Communications and Networking
Conference, pages 1664–1669, 2005.

10

