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Abstract—In this short paper we describe an approach
and preliminary results for obtaining bounds on mutual
information between release times and capture times for
a set of M identical quanta traveling from a source to a
target. The first-passage times are assumed independent
and identically distributed and the launch times are con-
strained. One major application of area is intercellular
molecular signaling in biological systems whereby a cell
(or group of cells) must deliver some message (such as
developmental instructions) over distance with reasonable
certainty to another cell (or group of cells). Another
application area is communication between components
of nano/molecular computers. However, the model can
also be applied to any communication systems wherein
indistinguishable signals have random transit latencies.

Index Terms—nanocommunication, diffusion channel,
biological signaling

I. INTRODUCTION

Biological systems are networks of intercommunicat-
ing elements at whatever level one cares to consider –
(macro)molecules, cells, tissues, organisms, populations,
microbiomes, ecosystems, and so on. It is therefore no
wonder that communication theorists have plied their
trade heavily in this scientific domain (for a recent
review, see [1]). Biological systems offer a dizzying
array of processes and phenomena through which the
same and/or different tasks, communication or otherwise,
might be accomplished (see, for example, [2]–[7]). Iden-
tifying the underlying mechanisms (signaling modality,
signaling agent, signal transport) as well as the molecules
and structures implementing the mechanisms is no small
undertaking. Consequently, experimental biologists use
a combination of prior knowledge and what can only
be called instinct to choose those systems on which
to expend effort. Guidance may be sought from evo-
lutionary developmental biology – a field that compares
the developmental processes of different organisms to
determine their ancestral relationship and to discover
how developmental processes evolved. Insights may be
gained by using statistical machine learning techniques
to analyze heterogeneous data such as the biomedical
literature and the output of so-called “omics” tech-
nologies – genomics (genes, regulatory, and non-coding
sequences), transcriptomics (RNA and gene expression),
proteomics (protein expression), metabolomics (metabo-
lites and metabolic networks), pharmacogenomics (how
genetics affects hosts’ responses to drugs), and phys-
iomics (physiological dynamics and functions of whole
organisms).

Typically, the application of communication theory to

biology starts by selecting a candidate system whose
components and operations have already been at least
partially elucidated using methods in the experimen-
tal and/or computational biology toolkit [8], [9] and
then applying communication theoretic methods [1],
[7], [10]–[12]. However, we believe that communication
theory in general and information theory in particular
are not merely system analysis tools for biology. That
is, given energy constraints and some general physics
of the problem, an information-theoretic treatment can
be used to provide outer bounds on information transfer
in a mechanism-blind manner. Thus, rather than simply
elucidating and quantifying known biology, communica-
tion theory can winnow the plethora of possibilies (or
even suggest new ones) amenable to experimental and
computational pursuit. Likewise, general application of
communication-theoretic principles to biology affords a
new set of application areas for communication theorists.
Some aspects of the potential for communication theory
as a new lens on biological systems are explored in [13].

Numerous scenarios in biology that involve the trans-
mission of information can be synthesized and sum-
marized by inscribed matter being sent by an emitter,
moving through a medium, and arriving eventually at
its destination receptor where it is interpreted [14].
Scenarios illustrating the complexity and diversity that
our abstraction attempts to capture include the following:

• messenger RNA molecules (mRNAs) that are tran-
scribed from the genome migrate from the nucleus
to the cytoplasm where they are translated by the
ribosome into proteins.

• Molecules of the neurotransmitter acetylcholine
(Ach) that are released by the presynaptic neuron
terminal diffuse through the synaptic cleft and bind
to nicotinic Ach receptors on the motor end plate.

• Ions, molecules, organelles, bacteria and viruses
that are present in one cell are shipped through
a thin membrane channel (tunneling nanotube) to
the connected cell where they elicit a physiological
response.

• Membrane-bound vesicles that contain a variety of
materials and substances translocate through the
cytoplasm to the cell membrane where release their
contents into the extracellular environment.

• Malignant cells that have escaped the confines of
a tissue circulate through the bloodstream to other
sites where they re-penetrate the vessel walls and
can seed a new tumor.



• Chemicals factors that are secreted or excreted by
an individual travel outside the body where they are
sensed by a member of the same species triggering
a social or behavioral response.

Our emitter-receptor system is also motivated by fun-
damental “systems” problems in biology such as devel-
opment, wherein undifferentiated cells are “told” what to
become by a combination of internal programming and
extracellular milieu signals – and in turn tell other cells
what to become [15]. Thus, communication within and
between cells plays a vital role in the development (em-
bryogenesis), maintenance (tissue homeostasis), subver-
sion (disorders such as cancer, inflammation, infections)
and decline (aging) of multicellular forms and systems.

Finally, though we have concentrated on biological
systems here, the same ideas apply to emerging molec-
ular computing systems wherein “normal” methods of
communication (i.e., wires) are either ineffecient or
inappropriate. Thus, we here explore an abstraction that
encompasses wireless communication systems which use
some type of quanta for message passing. Owing to
space limitations only results are provided. Proofs will
appear in [16].

II. PROBLEM DEFINITION

Typically, information is thought to be conveyed via
numbers of signaling quanta (concentration). Thus, what
amount to dose-response curves are the norm for a
variety of experimental biology studies [7] as well as
clever theoretical workups (e.g., [17]). However, as was
shown in an entirely different domain and unrelated
work [18], timing of emissions could in principle also
convey information. Clearly, this possibility cannot be
ignored if our aim is to attempt to provide bounds
on what “a cell can tell the world.” Under certain
conditions, perhaps timing is a useful complement to
concentration. Alternatively, timing might sometimes be
energetically unfavorable and its use unlikely. In either
case, information-theoretic bounds would help guide
biological inquiry.

To begin, consider M quanta launched at times {Tm},
m = 1, 2, ...,M . The launch time ensemble probability
density fT(t) is assumed causal, but otherwise arbitrary.
The duration of quantum m’s first-passage between
source and destination is Dm. We assume only that the
Dm are i.i.d. with fDm

(d) = g(d) = G′(d) where g()
is some causal probability density with mean 1

λ and
Cumulative Distribution Function (CDF) G(). We also
assume that g() contains no singularities.

Thus, the first portion of the channel is modeled as a
sum of random M -vectors

S = T + D (1)
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Fig. 1: Quanta release channel with reordering.

for which we have

fS(s) =
∫∞
0

fT(t)fS|T(s|t)dt
=

∫ s

0
fT(t)

∏M
m=1 g(sm − tm)dt

=
∫ s

0
fT(t)g(s− t)dt

(2)

where

g(s− t) =
M∏
m=1

g(sm − tm)

With mean constraints on the Tm , the channel be-
tween T and S is exactly the parallel version of the
model introduced in Bits Through Queues [18]. However,
since the molecules are identical, we cannot necessarily
determine which arrival corresponds to which launch
time. Thus, the final output of the channel is a reordering
of the {sm} to obtain a set {~sm} where ~sm ≤ ~sm+1,
m = 1, 2, ...,M − 1. (See FIGURE 1.) We write this
relationship as

~S = PΩ(S) (3)

where Pk() is a permutation operator and Ω is that
permutation index which produces an ordered ~S from the
argument S. Incidentally, we define P1() as the identity
permutation operator, P1(s) = s ∀s. We note that the
event Si = Sj (i 6= j) is of zero measure owing to
the no-singularity assumption on g(). Thus, for analytic
convenience we will assume that fS(s) = 0 whenever
two or more of the sm are equal and therefore that
the {~sm} are strictly ordered wherever f~S() 6= 0 (i.e.,
~sm < ~sm+1).

Thus, the density f~S(s) can be found by “folding” the
density fS(s) about the hyperplanes described by one
or more of the sm equal until the resulting probability
density is nonzero only on the region where sm < sm+1.
Analytically we have

f~S(s) =


M !∑
n=1

fS(Pn(s)) s ∈ S1

0 otherwise

(4)



where we have defined S1 as the region in s-space for
which s1 < s2 < · · · < sm.

We can likewise describe f~S|T(s|t) as

f~S|T(s|t) =


M !∑
n=1

fS|T(Pn(s)|t) s ∈ S1

0 otherwise

(5)

which to emphasize the assumed causality of g() we
rewrite as

f~S|T(s|t) =
M !∑
n=1

g(Pn(s)− t)u(Pn(s)− t) (6)

where

u(Pn(s)− t) =
M∏
m=1

u([Pn(s)]m − tm)

u() is the usual unit step function, and we of course
assume s ∈ S1.

When g(d) = λe−λdu(d), the conditional distribution
on the ordered output ~S takes the particularly simple
form

f~S|T(s|t) = λMe

−λ

M∑
i=1

(si − ti)(M !∑
n=1

u(Pn(s)− t)

)
(7)

for s ∈ S1. It is worth mentioning explicitly that equation
(7) does not assume si ≥ ti as might be implicit in
equation (2).

Finally, the following property of expectations of
hyper-symmetric functions over hyper-symmetric ran-
dom variables will later prove useful. The term hyper-
symmetry is used to emphasize that the function is
constant over any permutation of variables. Suppose
Q(x) is a hyper-symmetric function and X is a hyper-
symmetric random vector. Then, when ~X is the ordered
version of random vector X we have

E~X

[
Q(~X)

]
= EX [Q(X)] (8)

With these preliminaries done, we can now begin to
examine the mutual information between T, S and ~S.

III. MUTUAL INFORMATION BETWEEN T AND ~S

The mutual information between T and S is

I(S; T) = h(S)− h(S|T) (9)

Since the Si given the Ti are mutually independent,
h(S|T) does not depend on fT(t). Thus, maximization
of equation (9) is simply a maximization of the marginal
h(S) over the marginal fT (t), a problem explicitly
considered and solved for a mean Tm constraint in [18]
and for a peak constraint in [19].

The corresponding expression for the mutual informa-
tion between T and ~S is

I(~S; T) = h(~S)− h(~S|T) (10)

Unfortunately, h(~S|T) now does depend on the input
distribution and the optimal form of h(~S) is non-obvious.
So, rather than attempting a brute force optimization of
equation (10) by deriving order distributions [20], we
first invoke simplifying symmetries.

Consider that a launch vector t and any of its per-
mutations Pn(t) produce statistically identical outputs ~S
owing to the reordering operation as depicted FIGURE 1.
Thus, any fT() which optimizes equation (10) can
be “balanced” to form an optimizing input distribution
which obeys

fT(t) = fT(Pn(t)) n = 1, 2, · · · ,M ! (11)

with Pn() the previously defined permutation opera-
tor. We will therefore restrict our search to “hyper-
symmetric” densities fT(t) as defined by equation (11).

If we assume fT() is hyper-symmetric, then it is easy
to show that fS() must also be hyper-symmetric. From
equation (2) we have

fS(Pn(s)) =
∫ Pn(s)

0

fT(t)g(Pn(s)− t)dt

If we define t′ = P−1
n (t) then we can write

fS(Pn(s)) =
∫ s

0
fT(P−1

n (t′))g(s− t′)dt′

=
∫ s

0
fT(t′)g(s− t′)dt′

= fS(s)

The hyper-symmetry of fS(s) leads to a simple ex-
pression for f~S(s). As before we define S1 as the region
in s-space for which s1 < s2 < · · · < sm. Similarly
define disjoint regions Sn as those for which if s ∈ Sn
then Pn(s) ∈ S1. That is, Sn is the region in s-space in
which application of permutation operator Pn() orders
the components from smallest to largest.

Following equation (4) we have

f~S(s) = M !fS(s)

for s ∈ S1. We can then write

h(~S) = −
∫
S1 M !fS(s) log (M !fS(s)) ds

= −M !
∫
S1 fS(s) log fS(s)ds− logM !

But since fS(s) is hyper-symmetric, we also have

h(~S) = −
M !∑
n=1

∫
Sn

fS(Pn(s)) log fS(Pn(s))ds− logM !

which since fS() is hyper-symmetric becomes

h(~S) = h(S)− logM ! (12)

We state this result as a theorem.



Theorem 1: If fT() is a hyper-symmetric probability
density function on launch times {Tm}, m = 1, 2, ..,M ,
and fD() is a singularity-free first passage density, then
the entropy of the size-ordered outputs ~S is

h(~S) = h(S)− logM !

Next we turn to h(~S|T). As before we define Ω as
the permutation index number that produces an ordered
output from S. That is, PΩ(S) = ~S ∈ S1. Specification
of the random tuple (Ω, ~S) is equivalent to specifying S
and vice versa. Therefore, we have

h(S|T) = h(Ω, ~S|T) = h(~S|T) +H(Ω|~S,T)

which we rearrange as

h(~S|T) = h(S|T)−H(Ω|~S,T) (13)

H(Ω|~S,T) is the uncertainty about which Sm corre-
sponds to which ~Sm given both T and ~S, and we note
that

0 ≤ H(Ω|~S,T) ≤ logM ! (14)

We can then write the ordered mutual information as

I(~S; T) = h(S)− h(S|T)−
(

logM !−H(Ω|~S,T)
)

(15)
after assuming that fT() is hyper-symmetric.

Since h(S|T) is a constant with respect to fT(t),
maximization of mutual information in equation (15)
requires we maximize the expression

h(S) +H(Ω|~S,T) (16)

with respect to fT(t).
Mutual information is convex in fT(t) and the space

FT of feasible hyper-symmetric fT(t) is convex. Thus,
we can in principle apply variational [21] techniques to
find that hyper-symmetric fT() which attains the unique
maximum of equation (10). However, in practice, direct
application of this method can lead to grossly infeasible
fT(), implying that the optimizing fT() lies in some
corner of the convex search space.

Regardless, we must first understand the component
parts of the optimization, in particular H(Ω|~S,T) for
which we derive expressions and bounds in the next two
sections.

IV. H(Ω|~S, t)

The optimization stated in equation (16) hinges
on specification of H(Ω|~S,T) and we first consider
H(Ω|~s, t), the admissible-permutation entropy given ~s
and t. Given t, the probability that S produced ~S is

Prob(Ω = k|~s, t) =
fS|T(~s|t)

M !∑
n=1

fS|T(Pn(~s)|t)

(17)

where ~s = PΩ(s). Owing to the causality of g(), some
permutations will have zero probability since the specific
~s and t may render them impossible via causality.

Using equation (6), the definition of entropy and
equation (17) we have

H(Ω|~s, t) = −
M !∑
n=1

Pn(~s, t) logPn(~s, t) (18)

where
Pn(~s, t) =

g(Pn(~s)− t)
M !∑
j=1

g(Pj(~s)− t)

(19)

and as might be imagined, equation (18) is difficult to
work with in general.

However, for exponential g(), we can use equation (7)
to simplify equation (17) as

Prob(Ω = k|~s, t) =
u(~s− t)

M !∑
n=1

u(Pn(~s)− t)

(20)

which is a uniform probability mass function with∑M !
n=1 u(Pn(~s)− t) elements. Thus, we can write

He(Ω|~s, t) = log
M !∑
n=1

u(Pn(~s)− t) (21)

The summation is the number of admissible permutations
given ~s and t, and constitutes an upper bound for
all possible causal first-passage time densities, g(). In
addition, the exponential first passage time density is the
only density which maximizes He(Ω|~s, t). We state the
result as a theorem:

Theorem 2: If we define

|Ω|~s,t =
M !∑
n=1

u(Pn(~s)− t)

then
H(Ω|~s, t) ≤ log |Ω|~s,t = He(Ω|~s, t)

with equality iff g() is exponential.
Then, defining

H↑(t) ≡ E~s|t [He(Ω|~s, t)]

we have via Theorem 2:
Theorem 3: Let

H↑(T) ≡ E~T
[
H↑(~T)

]
then since

H(Ω|~S, t) ≤ H↑(t)

we have
H(Ω|~S,T) ≤ H↑(T)

with equality iff g() is exponential.



V. BOUNDS ON I(~S; T) FOR EXPONENTIAL g()

For exponential first passage, H(Ω|~S,T) = H↑(T)
via Theorem 3. However, the fT() which maximizes
h(s) + H(Ω|T, ~S) has proved elusive. We therefore
calculated H(Ω|T, ~S) for i.i.d. launch time densities
which maximize h(S) alone under mean launch time
and launch deadline constraints as derived in [19]. The
result was the following two bounds for I(~S; T).

Theorem 4: If E[Tm] ≤ τ , m = 1, 2, ...,M , then

M log(1 + λτ) ≥ I(~S; T)
≥ M log(1 + λτ)− logM !

+
M∑
k=0

log(k!)
(
M
k

)
pM−k(1− p)k−1

where
p =

λτ

λτ + 1

Theorem 5: If Tm ∈ [0, τ ], m = 1, 2, ...,M , then

M log(1 + λτ
e ) ≥ I(~S; T)

≥ M log(1 + λτ
e )− logM !

+
M−1∑
`=1

∆ΓM` log(`+ 1)!

where

∆ΓM,` = λτ

(
M

`+ 1

)(
1

e+λτ

)M
×

 e`+1(λτ)M−`−2

+
(e+ λτ − 1)M−`−2((`+ 1)(e+ λτ)−M)


In both theorems, the first inequality follows from the
data processing inequality [22].

VI. DISCUSSION AND CONCLUSION

We have derived bounds on mutual information be-
tween launch times T and reception times ~S for M
identical signaling quanta. While previous work focused
on models derived from brownian motion and required
numerical calculation [20], here we assumed arbitrary
causal densities and side-stepped output order distribu-
tion derivations on ~S by; (a) using hyper-symmetric input
densities which result in a simple expression for output
entropy h(~S), (b) decomposition of I(~S; T) into a sum
of I(~S; T) and H(Ω|~S,T), the output order permutation
entropy given the input and output, and (c) deriving
an upper bound H↑(T) ≥ H(Ω|~S,T) valid for any
causal first passage density. Tight upper bounds I(~S; T)
via maxmization of equation (15) eluded us, so the
data processing theorem was employed. Lower bounds
were obtained by using entropy-maximizing fT() [19]
and evaluating H↑(T). The methods described here
undergird upcoming work on the bounds of diffusive
molecular communication in biological systems [16].

REFERENCES

[1] O. Milenkovic, G. Alterovitz, G. Battail, T. P. Coleman, J. Ha-
genauer, S. P. Meyn, N. Price, M. F. Ramoni, I. Shmulevich, and
W. Szpankowski. Introduction to the special issue on information
theory in molecular biology and neuroscience. Trans. Information
Theory, 56(2):649–652, 2010.

[2] C. de Joussineau, J. Soule, M. Martin, C Anguille, P. Mont-
courrier, and D. Alexandre. Delta-Promoted Filopodia Mediate
Long-Range Lateral Inhibition in Drosophila. Nature, 426:555–
559, December 4 2003.

[3] Y.A. Gorby, S. Yanina, JS.. McLean, K.M. Rosso, D. Moyles,
A. Dohnalkova, T.J. Beveridge, I.S. Chang, B.H. Kim, K.S. Kim,
D.E. Culley, S.B. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill,
L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe,
S. Ishii, B. Logan, K.H. Nealson, and J.K. Fredrickson. Elec-
trically conductive bacterial nanowires produced by Shewanella
oneidensis strain MR-1 and other microorganisms. Proc Natl
Acad Sci U.S.A., 103:11358–11363, 2006.

[4] S. Gurke, J.F.V. Barroso, and H.-H. Gerdes. The art of cellular
communication: tunneling nanotubes bridge the divide. His-
tochem Cell Biol, 129:539–550, 2008.

[5] X. Wang, M.L. Veruki, N.V. Bukoreshtliev, E. Hartveit, and H.-H.
Gerdes. Animal cells connected by nanotubes can be electrically
coupled through interposed gap-junction channels. Proc Natl
Acad Sci USA, 107:17194–17199, 2010.

[6] H.C. Berg and E.W. Purcell. Physics of Chemoreception. Bio-
physical Journal, 20:193–219, 1977.

[7] Pankaj Mehta et al. Information processing and signal integration
in bacterial quorum sensing. Molecular systems biology, 2009.

[8] A.L. Hodgkin and A.F. Huxley. A quantitative description of
membrane current and its application to conduction and excita-
tion in nerve. J. Physiol., 117(4):500–544, 1952.

[9] Tao Long et al. Quantifying the integration of quorum-sensing
signals with single-cell resolution. Molecular systems biology,
2009.

[10] Elek Wajnryb Jose M. Amigo, Janusz Szczepanski and Maria V.
Sanchez-Vives. Estimating the entropy rate of spike trains via
lempel-ziv complexity. Neural Computation, 16:717–736, 2004.

[11] D.H. Johnson. Information Theory and Neural Information
Processing. Trans. Information Theory, 56(2):653–666, Feb
2010.

[12] Riccardo Barbieri, Loren M. Frank, David P. Nguyen, Michael C.
Quirk, Victor Solo, Matthew A. Wilson, and Emery N. Brown.
Dynamic analyses of information encoding in neural ensembles.
Neural Computation, 16:277–307, 2004.

[13] I.S. Mian and C. Rose. Communication theory and multicellular
biology. Integrative Biology, 3(4):350–367, April 2011.

[14] C. Rose and G. Wright. Inscribed Matter As An Energy-Efficient
Means Of Communication With An Extraterrestrial Civilization.
Nature, 431:47–49, 2004.

[15] C. Nusslein-Volhard. Coming to Life: how genes drive develop-
ment. Kales Press, 2006.

[16] Y-L Tsai, C. Rose, R. Song, and S. Mian. Channels with Multiple
Identical Quanta: mutual information bounds. IEEE Trans. on
Info. Th., October 2011. (in preparation).

[17] A. Einolghozati, M. Sardari, A. Beirami, and F. Fekri. Capacity
of Discrete Molecular Diffusion Channels. In IEEE International
Symposium on Information Theory (ISIT) 2011, pages 603–607,
July 2011. ISBN: 978-1-4577-0594-6.

[18] V. Anantharam and S. Verdu. Bits Through Queues. IEEE
Transactions on Information Theory, 42(1):4–18, January 1996.

[19] Y-L Tsai, C. Rose, R. Song, and S. Mian. An Additive
Exponential Noise Channel with a Transmission Deadline. In
IEEE International Symposium on Information Theory (ISIT)
2011, pages 598–602, July 2011. ISBN: 978-1-4577-0594-6.

[20] A.W. Eckford. Nanoscale communication with Brownian motion.
In CISS’07, pages 160–165, 2007. Baltimore.

[21] F.B. Hildebrand. Advanced Calculus for Applications. Prentice
Hall, Englewood Cliffs, NJ, 1976.

[22] T.M. Cover and J.A. Thomas. Elements of Information Theory.
Wiley-Interscience, 1991.


