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Abstract— For a single user Gaussian channel, the minimum
power required to meet a specified BER at the receiver is well–
known. For multiple transmitters sending independent data to
a single receiver (which uses separate linear filters for decoding
each transmitter’s symbols), the problem of optimizing transmit-
ter codewords to maximize capacity has been addressed in [8][9].
For the above problem, it has been found that the codeword set
which maximizes capacity also minimizes TMSE (Total Mean
Square Error) at the receiver. Now consider transmitters which
are sending correlated information to a single receiver under
a total power constraint. Such a scenario can typically arise
in sensor networks and is usually addressed using distributed
source coding [4]. In this paper, we derive optimal codeword
configurations which minimize the TMSE at the receiver under
a total power constraint. We also show that minimizing the TMSE
is equivalent to maximizing the sum capacity.

I. INTRODUCTION

Sensor networks are being increasingly deployed in various
environments. In a typical scenario, a group of sensors observe
a common phenomenon and report these observations to a
central repository for processing. Since sensor nodes usually
have a non–replenishable source of energy, it is highly desir-
able to keep individual transmission powers at their minimum
levels so as to maximize the network lifetime. We consider a
sensor network model where sensors use signature waveforms
(codewords) to send data to the receiver and optimize the
choice of signature waveforms such that TMSE is minimized
under a total power constraint.

Related work [8][9] derives the optimal codewords for the
case of uncorrelated symbols. Correlation among symbols
however might change the structure of optimal codewords
dramatically. For instance, for two transmitters sending inde-
pendent symbols, the optimal codeword configuration would
be along mutually orthogonal directions with equal power
distribution among the codewords. However, in the extreme
case when both transmitters always send the same symbols, a
lower TMSE can be achieved by using equal–power identical
codewords at the transmitters.

We note one can also reduce power usage in sensor networks
by minimizing the number of symbols transmitted by applying
distributed source coding to sensor observations [4]. However,
we will show that proper choice of codewords results in an
equivalent result.

The rest of this paper is arranged as follows. We present
the system model in Section II and derive the relevant TMSE

expression. In Section III we introduce the notion of majoriza-
tion and some related results that are required for our analysis.
In Section IV we derive the optimal transmitter codewords,
power levels and receiver filters by minimizing the TMSE and
in Section V we establish an equivalence between between
TMSE minimization and sum capacity maximization. Finally,
we conclude with a summary and discussion of possible future
research in Section VII.

II. PROBLEM STATEMENT

Assuming � users transmitting symbols using unit–norm
codewords of length � in an additive white Gaussian channel,
the signal at the receiver is given by:

�����
	�������� (1)

where,

	������ : diag ���������! " # $� �&%��' : transmit power of ( th transmitter�
) ��� : * + � + �  " # ,+ �.-+ ' : unit norm signature of ( th transmitter� : symbol vector� : zero–mean Gaussian noise with variance / �#0 )
We also define 1 ����� � E 2 �3�54!6 as the symbol correlation
matrix.

Assuming a linear receiver filter, 7 ' , corresponding to the(�8:9 transmitter, the filter output is given by:

; ' �<� 4 7 ' (2)

The mean square error (MSE) corresponding to the (=8:9
transmitter is given by,

MSE ' � E 2?> � 4 7@'
ACBD'FE � 6 (3)



which allows us to define total MSE as
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The optimization problem can then be stated as follows:������� ��� � TMSE subject to tr � 	�% ���
tot (5)

III. MAJORIZATION: DEFINITIONS AND SOME KEY
RESULTS

We will need certain mathematical relationships as outlined
in this section. A detailed survey of these inequalities and
their properties may be found in [2].

Definition 1: Let � � ����� ����� � � �!���  " # � �"� # � % and ; �
� ; � ���$� ; � �%�$�  " # � ; � # � % be non–decreasing sequences of real num-
bers. Then, � is majorized by ; (denoted by �'& ; ) if(�
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and,
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Thus, majorization of � by ; suggests that the components
of � are “less spread out” or “more nearly equal” than the
components of ; .

An important example of majorization between two vectors
is the following:

Example 1: For every 132'4 # such that 5 #'�� � 1 ' �6- ,
�71�� � 1 � �  " # � 1 # %98;: -/ � -/ �=<><=< � -/@?

Definition 2: A real–valued function A , defined on a setBDC�E # , is Schur–convex on
B

if�F& ; on
B.G A3�H� % * A3� ;�%

The function A is strictly Schur–convex if �I& ; and �KJ� ;
implies that A �H� %ML A3� ;�% . Also, the function A is Schur–
concave if A�A is Schur–convex.

An important class of Schur–convex functions is the follow-
ing:

Example 2: If NIO�4QPR4 is convex and increasing, thenA �H� % � 5 #'S� � N �H� ' % is increasing and Schur–convex.

IV. OPTIMAL TRANSMITTER CODEWORDS, POWER
LEVELS AND RECEIVER STRUCTURE

It is well–known [7] that the structure of the optimum linear
receiver that minimizes the MSE is the MMSE receiver. For
this problem, the expression for the optimum receiver was
obtained as:	UT � � � 	 � 1 	�� � 4 � / � 0 )V��W � � �
	�� 1 � (6)

Substituting (6) in (4), the TMSE expression reduces to:

TMSE � � A tr X 1 	 � � 4 � / � 0 ) � � 	 � 1 	 � � 4 ��W � �
	 � 1ZY
� � A tr [ 1 	�� � 4/ � \ 0 ) A � 	�� 1 	�� � 4/ �
�^] �
	 � 1 	�� � 4/ � _ � A <=<><a` bc � 	 � 1Zde

� � A tr �Hf % � / � tr X � / � 1 W � � 	 � � 4 �
	 � � W � Y
(7)

Note that �
	 � 1 	 � � 4 is positive definite, which implies
that � � 	�� 1 	�� � 4 � / � 0 ) � is invertible. Also, it has been
assumed in the above analysis that 1 W � exists. However, it
will be argued at the end of this section that invertibility of1 is not necessary since it does not affect the structure of the
optimum codewords.

Let 1 �hg �=i � g 4 � and j � �
	 � ��g �ki �>l 4�
where i � � diag �$m � � m � �  " " � m � %
such that, m �on m �pn  " " n m �
and i � �;q diag �Hr � � r � �  " # � r ) % �ts ) �vu � W )xw7y

Note that � and 	 � can be obtained from j as the
normalized columns and norms of columns of j respectively.

Then, the optimization problem can be rewritten as:�z��{@|~} tr 2?> / � 1 W � � j 4 j E W � 6 (8)

where,
B

is the set of all �K��� matrices such that

tr �Hj 4 j % � )�� � � r �� ���
tot

Lemma 1: ��j 2 B �����j 2 B
such that TMSE � �j % *

TMSE �7j % and �j 4 �j commutes with 1  
Proof : Marshall and Olkin [2, Lemma 9.G.4] states the

following:

det �$� ��� % * #�
'�� � > m � ')� �$� % � m � #~� � W '�� � � % E (9)

Define a function � �7j % � det > / � 1 W � � j 4 j E .
Choose � � / � 1 W � and � � j 4 j . Define �j � j3� ,

where � is an orthogonal matrix chosen so that / � 1 W �
and � 4 j 4 j3� commute and the eigenvector corresponding
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to the ( th largest eigenvalue of / � 1 W � is the same as that
corresponding to the � / � - A.( % th largest eigenvalue of �j 4 �j .

Note that �j;2 B since tr � �j 4 �j % � tr > � 4 j 4 j3� E ���
tot

Using (9), � � �j %�� � �Hj % . Since � �7j % is Schur–concave and
TMSE is Schur–convex in eigenvalues of > / � 1 W � � j 4 j E ,
it follows that TMSE � �j % * TMSE �Hj % . �

Lemma 1, combined with the fact that two matrices com-
mute if and only if they share the same eigenvectors [6],
restricts the optimization space to that subset of

B
for which

the condition l � � g � holds. Note that this condition is
sufficient but not necessary.

Substituting l � ��g � in (7), the following two cases arise.
1) � � L:

TMSE � � A tr q g � i � g 4 � �
/ � tr � > / � g � i W �� g 4 � � g � i 4� i � g 4 � E W ��� 6

� � A
��
'�� � m ' � / �

)�
'�� � -� �	� � r �' �

��
'�� ) � � m '/ �

(10)

The Lagrangian corresponding to the optimization prob-
lem at hand can be written as follows:


 >7r � � �  " # � r �) ��� E � TMSE � � ] )�
'S� � r �' A �

tot _
It is required that 



 r ' ��� and 



 �

���  
Using Kuhn-Tucker conditions [1], this leads to the
following optimal solution:

r ' � ���� ����� ] � � � tot� � / ��
)�
'�� � -m ' A / �m ' _ (11)

Note that the optimal solution depends only on the first� eigenvalues of f , i.e., �km '�� )'�� � . Also, the optimal
solution has the property that if m ' � m � , then r ' * r �
as described in the proof for Lemma 1. It will now be
shown that the ordering ��� O9m�� n m � n  " # n m �
achieves the optimal solution.
For ordering � � , the eigenvalues ��� ' � �'�� � of / � 1 W � �j 4 j are given by:

� ' ��� � % � \ � ) 5 )� � � ���� �! tot) � ( * � � * �� � � � ( n � �
It can be verified that for any other ordering � � ,

��� ' � �'S�3� �"� � % 8 ��� ' � �'S�3� �"� � % (12)

Now consider the function #5��� % �%$& . It can be shown
that #5�H� % is convex if 1 � �D2D4 � . Using Example 2,
it follows that TMSE is a Schur–convex function in
the eigenvalues ��� ' � �'�� � of / � 1 W � � j 4 j , which in
conjunction with (12) implies that � � achieves the
optimal solution.

Fig. 1. Waterfilling is achieved by distributing the sum of the eigenvalues
of ' over the eigenvalues of (*),+ .

2) M L L:
It can be verified that only the first � r ' s need to be
optimized, and the remaining � � A � % eigenvalues may
be set to zero for obtaining the optimal solution.

In other words, for any � � � , the optimal solution corre-
sponds to waterfilling (Fig. IV) the smallest - � ����S� �:� � � % %
eigenvalues of 1 W � with those of j 4 j , and aligning the
eigenvectors of j 4 j and 1 as described in the proof of
Lemma 1.

The above analysis assumed that 1 is invertible. However,
the result holds even for a non–invertible 1 since it can be
made invertible by adding an infinitesimally small perturbation
matrix (while ensuring that 1 is still a correlation matrix). As
a result, previously non–zero eigenvalues of 1 W � will suffer
very little change, while the other eigenvalues (previously
zero) will now attain large finite values, but the corresponding
dimensions will be avoided by the waterfilling solution [3].

V. RELATIONSHIP BETWEEN TMSE AND SUM CAPACITY

Verdu [8] derives the information theoretic capacity region
for a white Gaussian synchronous CDMA system. Proceeding
in a similar manner, the sum capacity for the system under
consideration can be expressed as:
.

sum
� -�0/2143 2 det � / � 0 ) � �
	�� 1 	�� � 4 � 6 A � �5/61�3 / �

(13)

when we assume that the symbols B"' are jointly Gaussian
known covariance 1 .

We will now show that TMSE minimization and sum
capacity maximization are equivalent problems. Using the
notation defined previously,

.
sum

� -�7/2143 2 det � / � 0 ) � j 1 j 4 � 6 A � �8/2143 / � (14)

Lemma 2: ��j 2 B �����j 2 B
such that

.
sum � �j %9�.

sum �Hj % and �j 4 �j commutes with 1  
Proof : Similar to Lemma 1. �
As in the case of TMSE, Lemma 2 when combined with the

fact that two matrices commute if and only if they share the
same eigenvectors [6], restricts the optimization space to that
subset of

B
for which the condition l � � g � holds. Again,

this condition is sufficient but not necessary.
A similar analysis reveals that sum capacity is Schur–

concave under the total power constraint, and hence minimiz-
ing TMSE is equivalent to maximizing

.
sum.

VI. SIMULATION

WHAT IS YOUR CONCLUSION FROM
THIS FIGURE
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Fig. 2. Plot of TMSE and sum capacity for 10000 independent trials (random
choices of � and � � ). The results (TMSE and sum capacity) of the trials were
sorted before plotting for convenience. The number of users was ����� and
the number of available dimensions was ���
	 . ( was a randomly chosen
symbol correlation matrix. The dotted lines indicate the values of TMSE and
sum capacity corresponding to the optimally chosen � and � � .

VII. CONCLUSION AND FUTURE WORK

We have considered a sensor network model where sensors
transmit correlated information to a receiver using a set of
signature waveforms. We found the optimal signature set co-
variance for minimizing total mean square correlation (TMSE)
at the receiver under a total power constraint. Then, any of a
number of methods could be used to find actual codewords.
IS THIS TRUE?????? You did nto actually
find codewords, you just showed waterfilling is
the answer The expressions for optimal receiver filter and
transmit power levels were also formulated.

There remain several open issues such as when the number
of users exceeds the number of available dimensions � n � .
Show why this is not considered here – it’ll be
missed by the casual reader since it’s embedded
in the assumptions in section IV Another important
area of work is to more carefully compare the efficiency
of correlated data transmission using the scheme presented
in the paper to that using Distributed Source Coding and
define suitable metrics for comparing and contrasting the
two. I would think they would be EXACTLY
equivalent. The only thing you need to do is
compare power budgets and the capacity. Of
course, that’s probably not right since since the
coding method implies short range links to do the
combining and you’re transmitting everything
back to the receiver, right? Also, throughout the paper
we have considered that the different transmitters operate
under a total power constraint. In a sensor network scenario,
it might be more reasonable to expect each sensor to operate
under an individual power constraint. Search for optimal
codewords under individual power constraints is therefore
another problem, and we expect ideas from [9], [5] to prove
especially useful.
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