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ABSTRACT
In this paper, we consider the transport capacity of ad hoc networks
with a random flat topology under the present support of an infinite
capacity infrastructure network. Such a network architecture al-
lows ad hoc nodes to communicate with each other by purely using
the remaining ad hoc nodes as their relays. In addition, ad hoc
nodes can also utilize the existing infrastructure fully or partially
by reaching any access point (or gateway) of the infrastructure net-
work in a single or multi-hop fashion. Using the same tools as in
[1], we show that the per source node capacity of Θ(W/ log(N))
can be achieved in a random network scenario with the following
assumptions: (i) The number of ad hoc nodes per access point is
bounded above, (ii) each wireless node, including the access points,
is able to transmit at W bits/sec using a fixed transmission range,
and (iii) N ad hoc nodes, excluding the access points, constitute a
connected topology graph. This is a significant improvement over
the capacity of random ad hoc networks with no infrastructure sup-
port which is found as Θ(W/

p
N log(N)) in [1]. Although bet-

ter capacity figures may be obtained by complex network coding
or exploiting mobility in the network, infrastructure approach pro-
vides a simpler mechanism that has more practical aspects. We
also show that even when less stringent requirements are imposed
on topology connectivity, a per source node capacity figure that is
arbitrarily close to Θ(1) cannot be obtained. Nevertheless, under
these weak conditions, we can further improve per node throughput
significantly.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication

General Terms
Theory, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’03,September 14–19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-753-2/03/0009 ...$5.00.

Keywords
Transport capacity, random ad hoc networks, hybrid wireless net-
works.

1. INTRODUCTION
Future network applications for commercial, scientific, or mili-

tary use will necessitate utilization of different wireless technolo-
gies together for addressing the requirements of the specific scenar-
ios [2]. Multi-hop wireless ad hoc networks with their paramount
importance in establishing easily deployable, self-configurable, and
highly flexible communication environment will probably be an in-
dispensable component of these multiple technology and multiple
layer network architectures. In a typical scenario, ad hoc networks
can be visualized as an extension to the existing infrastructure net-
works such as cellular and wireless local area networks for further
improvement in performance (e.g. higher system throughput/user
capacity, reduced power consumption, etc.) [3, 4, 5, 6]. In another
very likely and counter scenario, we may have an ad hoc network,
which is fully capable of carrying out the communication tasks con-
fined within the ad hoc domain by itself but at a limited level1, and
the infrastructure network with relatively abundant resources can
assist in enhancing the networking performance of the ad hoc tier.
This latter scenario will be the subject of our paper. More specif-
ically, we will explore the theoretical gains of introducing an in-
frastructure overlay on the top of an ad hoc network in terms of the
transport capacity per source node, i.e. the maximum end-to-end
data rate that can be uniformly obtained between pairs of the ad
hoc nodes.2

We will define our problem on a disk domain as it is widely
accepted in the literature [1, 7, 8]. Both the ad hoc nodes and
the access points of the infrastructure network are assumed to be
randomly distributed on this disk domain. The choice of random
location for ad hoc nodes is a natural one, but it is legitimate to
ask how proper it is to impose the same assumption on the access
points. The answer depends on the specific scenario as usual. As a
counter example, if we have the cellular networks as the infrastruc-
ture, where access points are simply the base stations located at the
center of hexagonal cells and they are connected to each other by a

1Ad hoc nodes would probably have limited energy supplies while
wireless channel impairments, multi-hop operations, and/or mobil-
ity could effectively reduce the available bandwidth significantly.
2As it will be clear in our network model, we assume that each
source node will generate an equal amount of data for a random
destination in a given time duration. Hence, we use the term uni-
formly here.
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wireline network, then the locations of the access points are deter-
ministic by the construction. On the other hand, if we have wireless
local area networks (WLANs) as the infrastructure, then the shape
of the serving area and hence the location of each access point are
not well-determined [9]. Furthermore, when we consider the access
points to be mobile/wireless routers with broadband connection to
the infrastructure network, our assumption becomes more sound.
Although we do not have a control over the location of the access
points, we will have the control over their population: We require
the number of ad hoc nodes per access point to be bounded from
above.

The paper can be divided into two parts. In the first part, we
obtain the throughput capacity under a notion of strong connec-
tivity condition, which mandates that the ad hoc nodes using the
same fixed transmission range form a connected topology graph
with high probability. In other words, we want to have a stand-
alone ad hoc network that can provide connection between any pair
of ad hoc nodes with probability close to one and without the sup-
port of any existing infrastructure. This certainly is a very cautious
constraint and does not take advantage of the existing infrastruc-
ture in its full extent. For instance, there can be partitions in the
ad hoc tier, but when the overall topology construct is visualized,
any pair of ad hoc nodes can still be connected. Therefore, at the
expense of partitions, ad hoc nodes can reduce their transmission
range below the value enforced by the strong connectivity. This
eliminates excessive interference of ad hoc nodes on each other
and increases the number of simultaneous transmissions in the ad
hoc tier while improving the upper bound of the transport capac-
ity. Hence, in the second part of the paper, we introduce the sec-
ond notion of connectivity, the weak connectivity, that requires the
overall network topology graph to be connected. We derive the
necessary and sufficient conditions on the transmission range to
satisfy the weak connectivity condition and show that any upper
bound resulting from the weak connectivity condition can indeed
be achieved. As a corollary, our results indicate that the transport
capacity per node eventually converges to 0 as the ad hoc network
size increases indefinitely. This is contrary to the recent studies that
claim to achieve constant throughput rate per node under different
networking constraints [10, 11, 8].

For a complete treatment of the subject, we organize the paper as
follows. In section-2, we supply a comprehensive overview of the
most recent works on the transport capacity of multi-hop wireless
networks. Section-3 outlines the system model that is considered
throughout the paper. Section-4 presents the capacity result under
the strong connectivity condition. Section-5 derives the necessary
and sufficient conditions on the transmission power to satisfy the
weak connectivity condition and shows that Θ(1) bits/sec cannot
be achieved even under loose constraints. Section-6 demonstrates
that any upper bound based on the weak connectivity condition can
indeed be achieved. Finally, in section-7, we conclude the paper.

2. RELATED WORKS
Transport capacity of wireless ad hoc networks have been a ma-

jor research interest since the landmark paper of Gupta and Kumar
[1]. In that paper, authors prove that per node throughput values
of Ω(1/

√
N) and Ω(1/

√
N logN) bits/sec are attainable for arbi-

trary and random networks respectively both on a planar disk do-
main and on the surface of a sphere. Achieving the throughput fig-
ure for arbitrary networks involves the freedom of placing the nodes
and choosing the traffic patterns. On the other hand, random net-
work scenarios encompass a uniform distribution of the nodes on
the topology area as well as a random destination for each ad hoc
node. Therefore, authors show the achievability results for random

networks in the asymptotic sense by designing proper routing and
transmission scheduling mechanisms. In [1], two different models
are considered for determining the successful transmissions in the
same channel; the protocol model and the physical model. In the
protocol model, a given transmitter-receiver pair has an acceptable
level of communication, only if no other node transmits within a
disk area centered at the intended receiver. The radius of the disk
depends both on the distance between the transmitter and the re-
ceiver as well as on a protocol dependent constant. The physical
model on the other hand demands a certain signal to interference
and noise (SINR) ratio threshold for successful transmissions in
the multiple access channel. The upper bounds that are derived
for both transmission models in arbitrary network and for protocol
model in random networks are found to be in the same order of
the constructed lower bounds, hence capacity of ad hoc networks
as modeled becomes Θ(1/

√
N) and Θ(1/

√
N logN) correspond-

ingly.
Although Gupta and Kumar consider only the case of station-

ary nodes, with the rationale that mobility can only deteriorate
the capacity, Grossglauer and Tse [10] demonstrate that mobility
can achieve higher rates asymptotically as the number of nodes
increases. They assume a stationary and ergodic distribution for
the node positions, where the location of a node is uniformly dis-
tributed on a disk, and the SINR based physical model for deter-
mining the successful transmissions. The key point in their analy-
sis is that, when each source or relay node transmits to the closest
receiver, SINR requirement for each transmission pair is asymp-
totically satisfied with a positive probability value. Hence, given
that θN nodes are randomly selected as transmitters (where 0 <
θ < 1), transmitters always choose the closest receiver to send.
Since all transmitter-receiver pairs are equally likely to be sched-
uled, each link is activated with the probability at the order of
Θ(1/N). Authors define a two-phase scheduling policy, where the
phases alternate as follows. In the first phase, source nodes trans-
mit the pending packets to their closest receiver (which can be a
relay or the destination node) and in the second phase transmitters
(which can be source or relay node) forward the packets that has
the same destination as their closest receiver. Thus, for any source-
destination pair, (N − 2) relay nodes receive and transmit packets
at rate Θ(1/N) while source nodes also transmit directly to the
destination with Θ(1/N). Summing over all paths, each flow iden-
tified by the source-destination pair acquires a fixed rate, i.e. Θ(1),
that constitutes a significant improvement over the results of Gupta
and Kumar. Nevertheless, this result is achieved at the expense of
possibly excessive delays.

Extending their work on the capacity of large wireless networks,
Gupta and Kumar also follow an information theoretical perspec-
tive to find the sufficient conditions for achieving a rate region by
allowing arbitrarily complex network coding [11]. Authors group
relay nodes in disjoint sets for each source-destination pair and or-
der them such that lower order sets can only forward data to higher
order sets, hence defining a forwarding graph. All possible for-
warding graphs are considered to determine the achievable rates.
Although their approach is not proved to yield a capacity result,
they nevertheless demonstrate that a specific wireless network of N
nodes located in a region of unit area can indeed achieve a network
throughput of Θ(N) bit-meters/sec or Θ(1) bits/sec data rate per
node, which is again a remarkable gain over their original capac-
ity results that is inherently limited by the assumed point-to-point
communication.

Gastpar and Vetterli also consider the information theoretical ca-
pacity for a simple relay case [7]. Different from previous works,
they consider only one source-destination pair in their problem set-
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ting and remaining (N − 2) nodes purely act as relays helping the
source node to convey as much information as possible to the des-
tination by repeating the received signal. To make things analyt-
ically tractable, authors introduce a slotted scheme, where source
node transmits in the even slots and relays repeat the received sig-
nal with proper amplification in the odd slots. Unlike [11], the total
transmit power in the relays are constrained to be in the same order
of the number of ad hoc nodes and no individual relay is allowed to
transmit at an unbounded power level as N goes to infinity. Thus,
the transmit powers of the relay nodes must be coordinated. The
slotted scheme allows to use the separation principle for the source
and channel coding despite of the fact that this principle does not
hold in general for multi-user communication systems. It is proved
that channel capacity behaves at best as log(N) after imposing an
additional constraint of an arbitrarily small but positive separation
between the ad hoc nodes.

In a recent technical report, Duarte-Melo and Liu address a many-
to-one communication paradigm in multi hop sensor networks [12].
They first consider a flat network architecture, in which sensor
nodes are assumed to be uniformly distributed on a planar disk do-
main with a single base station located at the center of the disk.
All sensors generate data traffic at the same rate towards this sin-
gle base station. They adopt the protocol model for packet trans-
missions and find out the conditions, under which the trivial upper
bound O(W/N) cannot be achieved for a given channel bandwidth
of W bits/sec. Under the same conditions, they demonstrate that
O(W/2N) is asymptotically feasible. Authors then introduce clus-
tering where the base stations are now placed on equally separated
grid points. Each sensor directs its traffic towards the closest base
station. Base stations forward the sensory data again to a central
node using a wireless channel non-interfering with the transmis-
sions within the clusters. Furthermore, by assuming that there is no
interference between the clusters, authors illustrate that the trivial
upper bound can be asymptotically achieved.

As it is clear from our overview, network capacity can be dras-
tically improved, when mobility, network coding, redundant relay
nodes and/or clustering are effectively exploited. In this paper, we
instead work on a new perspective that searches for the achievable
wireless network capacity when an infrastructure network support
is available at random ingress and egress points to the ad hoc users.
Such provisioning reduces the burden on the ad hoc tier in terms
of the coordination overhead, in comparison to its alternatives such
as complex network coding, adding redundant ad hoc nodes, and
clustering.

In a very recent work [8], which we found out after the bulk
of our work was completed, authors investigate the throughput ca-
pacity of a similar network architecture. In that architecture, in-
frastructure network is depicted as a cellular network, where the
access points are located at the center of hexagonal cells and inter-
connected via a broadband wireline network. Authors are mainly
interested in how the number of access points (hence the hexag-
onal cells) should scale with the number of ad hoc nodes to gain
substantial network capacity improvement over the pure ad hoc op-
erations. They impose different routing strategies that segments the
randomly distributed ad hoc nodes into two groups depending on
whether they use the cellular network to reach the destination or
not. The decision criteria in forming the groups rely on heuristic
arguments and are not necessarily the optimum routing strategies.
Under such circumstances, they show that the number of access
points should grow faster than

√
N to have a noticeable gain. Their

results also reveal that if all the bandwidth resources are allocated
to the communication through the infrastructure network and the
number of access points is in the same order of ad hoc network size,

AP1

R1

AP2

S1

S2

S3

S4

Figure 1: Overlaid network architecture.

then Θ(NW ) bits/sec can be achieved as the total transport capac-
ity. Note that such an allocation does not support all the source
nodes and this capacity is mainly shared among the nodes that are
routed through the infrastructure as determined by the routing layer.

Although there is a significant overlap between our network model
and that of [8], there are also major differences that underline the
contribution of our work: (1) First of all, the type of the infrastruc-
ture network may not allow a hexagonal cell structure as we have
already mentioned in the introduction. Assuming random locations
for access points can give us a better capacity budget estimate of
the scenarios, where the access point locations are not on regular
grid points. In fact, we will demonstrate in the following sections
that the network capacity of Θ(NW ) bits/sec is not attainable in
our random network model. (2) We specify the upper bound of
throughput capacity over all routing and transmission strategies.
After then, we design a specific routing and transmission scheme
to achieve this upper bound. (3) Our constraints in terms of the
connectivity requirements on the ad hoc network pose a different
problem as it will be clear later on. (4) We show that the network
throughput capacity can be achieved by a fair allocation of band-
width among all users regardless of their destinations.

Having finished the overview of the related works and identified
the distinguishing features of our problem as such, we may now
proceed with the details of our system model.

3. SYSTEM MODEL
We consider a two-tier architecture, where an ad hoc network is

overlaid with an infrastructure network. Ad hoc nodes can commu-
nicate with each other along the paths that may reside entirely in the
ad hoc tier, i.e. they cross only the ad hoc nodes. But, ad hoc nodes
are also allowed to utilize the infrastructure network such that the
flow paths can be partially overlapped with the infrastructure nodes
and links. The infrastructure network is assumed to have relatively
abundant bandwidth and the transmissions within any tier do not
interfere with the other one. The access between the two tiers is
achieved through special nodes, which we refer to as access points
or gateway nodes. Without loss of generality and for clarity, access
points are assumed only to relay the packets between each tier and
they do not generate any data traffic themselves.

A typical scenario is depicted in Fig.1, which includes four ad
hoc nodes (S1-S4), two access points (AP1-AP2), and a infras-
tructure router (R1). The infrastructure network can be a wire-
line network with exclusive links from R1 to AP1 and to AP2, and
vice versa. Suppose that we identify the amount of bandwidth re-
sources used in the ad hoc network with the number of wireless
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hops involved for transmitting each packet from source to destina-
tion. Thus, when S2 has a packet for S4, it can be sent through
S3, which consumes two hop resourcesin the ad hoc network. The
same packet could be sent through the path S2-S1-AP1-R1-AP2-S4
where three hop resources would be used instead, hence wasting an
extra hop resources in the ad hoc tier compared to the previous
path selection. Clearly, using the infrastructure do not really im-
prove the efficient use of the ad hoc bandwidth resources for this
case. However, when all possible source-destination pairs are con-
sidered, we can save bandwidth resources of the ad hoc tier. Con-
sider the case, where S1 have packets to transmit for S4. Then,
choosing the path S1-AP1-R1-AP2-S4 spends two-hop resources
whereas the alternative path S1-S2-S3-S4 wastes one extra hop of
wireless bandwidth resources.

We limit our attention to a random network scenario, in which
ad hoc nodes and access points are uniformly distributed on a disk
of area AR = πR2, where R is the disk radius3. Each ad hoc
node generates data traffic of rate λ(N,K) bits/sec for a random
destination in the ad hoc tier. Here, N and K refer to the num-
ber of ad hoc nodes and access points respectively. We assume
that the number of ad hoc nodes per access point is bounded and
limN→∞(N/K) = α where α ∈ (0,∞). Although, the trans-
mission radius of ad hoc nodes is assumed to be fixed, it can be
arbitrarily small as N goes to infinity as long as the connectivity of
the ad hoc network is guaranteed. At that point, we can directly
use the result from [13], which states that on a unit area disk the
transmission radius rT must at least satisfy the following bound
for having a connected graph with the probability of one:

rT ≥
r

log(N)

πN
. (1)

We assume a total available bandwidth ofW bits/sec, which can
be carried over multiple orthogonal channels (i.e. frequency band
and/or code). The contention over the same channel is resolved in
time and space. As a simple interference scheme, we adopt the pro-
tocol model. Due to this model, transmission from node i to node j
in a specific combination of ad hoc channel and time slot is called
interference-freeif the following two conditions are satisfied: (i)
Euclidean distance between i and j is smaller than or equal to rT ,
i.e. |Xi − Xj | ≤ rT , where Xl represents the position vector of
node l. (ii) There are no other transmitters around j at a distance
of rI = (1 + ∆) × rT in the same channel and time slot, where
∆ ≥ 0. These two conditions along with the triangle inequality
imply that disks of radius ∆rT /2 centered at the receivers must be
disjoint in order to be able to schedule them simultaneously in the
same channel and time slot [1].

The throughput capacity is computed over all possible time-space
scheduling of transmissions and flow paths. A per node through-
put of λ(N,K) is called feasible if there exist satisfying time-
space scheduling and routing paths with unlimited buffering ca-
pabilities in the intermediate nodes. We call the per node through-
put capacity of the random network as described to be in the or-
der of Θ(f(N,K)) bits/sec if there are deterministic constants
0 < c < c′ <∞, such that;

lim
N→∞

Prob(λ(N,K) = cf(N,K) is feasible) = 1 ,

lim inf
N→∞

Prob(λ(N,K) = c′f(N,K) is feasible) < 1 .

In the next section, we provide the asymptotic results that cap-
3Although the access points are also physically a part of the ad
hoc tier, we functionally treat them different. Unless otherwise is
explicitly specified, when we call ad hoc nodes, we exclude the
access points.

ture the benefits of using an infrastructure network even in random
scenarios.

4. CAPACITY IMPROVEMENT WITH IN-
FRASTRUCTURE LAYER

The tools to derive the capacity result for our network model
will not be very different from the ones already engaged in [1].
Using the interference-free transmission model, we can bound the
number of simultaneously successful transmissions by the number
of disks with radius ∆rT /2 that can be packed inside the disk of
area AR. However, the boundary effects require modification in
our argument: If a receiver is located close to the boundary of the
disk domain such that the interference disk around the receiver is
not completely inside the domain, then the region occupied by the
transmissions to that receiver is smaller than the interference disk
area. When the receiver is exactly on the boundary, this occupied
region has the smallest area. The occupied region is further mini-
mized as a ratio of the interference disk area when the interference
radius becomes 2R -i.e. diameter of the domain- and one quar-
ter of the interference disk area effectively occupies the domain.
Hence, the number of simultaneous transmissions must be smaller
than 16AR/(π∆

2r2T ). In this respect, given the average number of
hops h̄(N,K) within the ad hoc tier, total bandwidth W , and per
node throughput λ(N,K), the following inequality holds:

Nλ(N,K)h̄(N,K) ≤ 16ARW

π∆2r2T
. (2)

The dependence of h̄ on N is a natural consequence of letting
transmission range to be smaller as N gets larger, while its depen-
dence on K is the result of routing decisions which may be based
on the location and number of the gateway nodes. Because of the
inequality (1) and the fact that h̄(N,K) ≥ 1, with probability of
one (as N goes to ∞), the following upper bound is valid under
any routing and scheduling decision:

λ(N,K) ≤ 16ARW

∆2 log(N)
. (3)

Next, we will show that Θ[W/ log(N)] is the actual per node
throughput capacity by finding the appropriate time-space schedul-
ing and routing schemes that asymptotically achieve the upper bound
in (3) with the probability of one. The following steps are involved
in the construction of this optimal joint scheduling and routing
scheme: (1) We create a Voronoi tessellation4 on a disk with the
area AR, where each Voronoi cell completely covers an area of
100AR log(N +K)/(N+K). We also set the transmission range
such that any node can directly reach to the other nodes in the same
Voronoi cell. (2) We show that the number of Voronoi cells that
interfere with the transmissions of a specific cell is bounded above
by a constant C. (3) We prove that the number of ad hoc nodes
including gateway nodes in each Voronoi cell is indeed less than
O(log(N + K)). (4) We demonstrate that each Voronoi cell in-
cludes at least one access point. (5) Finally, we show that the num-
ber of destination nodes per access point within a Voronoi cell is
Θ(1).

Before explaining each of these steps in detail, let us jump ahead
and first examine their implications in our construction. Suppose

4Voronoi tessellation on a region is formed by a set of construction
points on this region. Each construction point identifies a unique
Voronoi cell and all the remaining points on the region are par-
titioned into disjoint Voronoi cells by assigning each point to the
Voronoi cell that has the closest construction point to its own posi-
tion [14].
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Figure 2: Formation of a Voronoi tessellation on a disk domain
with radius R. Each Voronoi cell can be sandwiched between
disks of radius ε and 3ε.

that time is divided into slots with fine granularity and that each
node utilizes the whole bandwidth W in the time slot it transmits.
When steps 2 and 3 are considered together, we can schedule each
node in a Voronoi cell, including the access points, without any
conflict by assigning W/[(C + 1) log(N +K)] amount of band-
width to that node. On the other hand, steps 1 and 4 provide us the
routing algorithm we search for: (i) If both the source and the des-
tination nodes are in the same Voronoi cell, the source node trans-
mits to the destination node in single hop by using its own share
of bandwidth. (ii) Otherwise, the source node can use its share of
bandwidth to reach any access point in its own cell. Once the data
packets reach to the selected access point, they can be relayed up to
one of the access points that share the same Voronoi cell as the des-
tination node without any packet loss. Step 5 ensures that we can
assign bounded number of destination nodes to each access point.
Hence, each access point divides its bandwidth share further by a
constant value. The access points before the destination nodes be-
come the throughput bottleneck; nevertheless, an end-to-end rate of
W/[C1(log(N) + log(1 +K/N))] per source node is supported.
Since this result is asymptotic and limN→∞K/N = 1/α, we
have constructed the following lower bound which implies that per
node throughput capacity for random network with infrastructure
becomes Θ(W/ log(N)):

λ(N,K) ≥ W

C1

ˆ
log(N) + log(1 + 1

α
)
˜ . (4)

Now, we are ready to proceed with the individual steps to under-
fill the result as found in (4).

STEP 1:
We repeat various procedures that are already established in [1]

for the sake of completeness. Recall that the Voronoi tessellation of
a closed region on R2 is defined by a set of points p on the region.
Each Voronoi cell is identified by a point pi ∈ p and consists of
the set of all nodes that are closer to pi than any other point in p.
Here on, the distance is measured simply in Euclidean distance.
We provide a modified version of the lemma from [1] to make it
directly applicable to disks in R2.

LEMMA 1. For everyR ≥ ε > 0, there is a Voronoi tessella-
tion of a disk of radiusR in R2 with the property that each Voronoi
cell contains a disk of radiusε and is contained in a disk of radius
3ε.

PROOF. Let D(x, ε) denotes the disk centered at point x with
radius ε. We form the tessellation in two rounds. We start the first
round with a construction point p1, which is exactly at a distance
of ε from the disk domain boundary (see fig.2). Given the first
(i − 1) points, the next construction point pi is selected such that
the distance between pi and the disk domain boundary is exactly ε
while the distance between pi and any previously selected point is
at least 2ε. Since these points lie on the finite perimeter of a circle
that is concentric with domain disk and has a radius (R − ε), the
first round terminates eventually. In the second round, we add a
new construction point pj only on the inner disk of radius (R −
ε) and only if D(pj , ε) does not intersect D(pi, ε) for the already
selected pis. Since we have a bounded area and each addition of
a point removes a finite portion of the available area, from which
we can select another point, second round eventually halts. The
Voronoi tessellation generated by points pi satisfies the properties
of the lemma. To be precise, suppose that point x is closer to the
construction point pi than to any other construction point. If x lies
on the inner disk of radius (R − ε), it is at most 2ε away from
pi. Otherwise, it would be at a distance larger than 2ε from all
construction points and the disk D(x, ε) would not intersect with
the disks D(pj , ε) contradicting to our construction. On the other
hand, if x lies outside the disk of radius (R − ε), from triangular
inequality, it must be at most 3ε away from pi. It is also clear from
our construction that each Voronoi cell covers a disk of radius ε;
otherwise, at least two disksD(pi, ε) andD(pj , ε) for i 
= j would
intersect by again violating our construction.

Thus, when we choose ε and the transmission range rT such that
πε2 = 100AR log(N + K)/(N + K) and rT = 6ε, lemma-1
guarantees us a tessellation, where each Voronoi cell covers at least
an area of 100AR log(N +K)/(N +K) and each node can reach
to other nodes in the same cell in a single hop. The following steps
will provide the basis of designing a joint routing and scheduling
scheme built upon this particular tessellation.

STEP 2:
Any Voronoi cell V ′ interferes with another Voronoi cell V , if

V ′ and V include points that are at most (rT + rI) = (2 + ∆)rT
apart. In the worst case condition, these points can be just on the
boundaries of each cell and since the Voronoi cells have a diameter
less than or equal to 6ε, any interfering cell for V must be located
in a region with a radius of 9ε + (2 + ∆)rT . Using the facts that
each cell area is lower bounded by πε2 and that we have already set
rT = 6ε, there can be at most

C =

—
π(9ε+ (2 +∆)rT )2

πε2

�
− 1 =

¨
(21 + 6∆)2

˝− 1

interfering cells in the neighborhood of V . Notice that C is a con-
stant that depends only on the medium access protocol specific pa-
rameter ∆. Now, it is a straight-forward application of the graph
theory to demonstrate that (C+1) slots are enough to schedule one
transmission for each cell in a conflict-free manner. When each
Voronoi cell is represented by a vertex and an edge between any
two vertices represents the mutually interfering cells, we encounter
a graph coloring problem, where each color corresponds to a differ-
ent time slot. Since this graph has a maximum degree of C, we can
color it with (C + 1) colors at most. The corollary of this result is
that we have a scheduling of length (C + 1) slots that can allocate
an exclusive slot for each Voronoi cell in a round robin fashion. In
each slot, the corresponding cell utilizes the entire bandwidth. We
can then introduce sub-slots within each time slot to further allo-
cate an equal amount of bandwidth among the ad hoc nodes and
the access points over the ad hoc channels in the same cell. The

59



order of the number of these sub-slots will be the same as the order
of the number of users in the same cell, which is obtained in the
next step.

STEP 3:
We use the Vapnik-Chervonenkis Theoremand a lemma from [1]

to prove that each Voronoi cell includes less than O(log(N +K))
nodes.

THEOREM 1 (THE VAPNIK-CHERVONENKIS THEOREM). If
F is a set of finite VC-dimension VC-d(F), and{Xi} is a sequence
of i.i.d. random variables with common probability distribution P,
then for everyε, δ > 0,

Prob

 
sup
F∈F

| 1
L

LX
i=1

I(Xi ∈ F )− P (F )| ≤ ε
!
> 1− δ ,

whenever

L > max

„
8V C − d(F)

ε
log

16e

ε
,
4

ε
log

2

δ

«
.

LEMMA 2. The Vapnik-Chervonenkis dimension (VC-d) of the
set of disks inR2 is 3.

Then, by letting the sequence {Xi} be the random positions of
ad hoc nodes and access points, L equal to N +K, and F be the
set of disks in R2 with area 900AR log(N +K)/(N +K) so that
the disk area entirely covers a Voronoi cell, we obtain:

Prob

„
sup
D∈F

|Number of nodes in D
N +K

− P (D)| ≤ ε
«

> 1− δ , (5)

whenever

N +K > max

„
24

ε
log

16e

ε
,
4

ε
log

2

δ

«
. (6)

Equation (5) implies that;

Prob

„
Number of nodes in D

N +K
≤ sup

D∈F
[P (D)] + ε

«
> 1− δ . (7)

Evidently, supD∈F [P (D)] = 900 log(N +K)]/(N +K) and
setting ε and δ equal to 100 log(N +K)/(N +K) satisfy (6) at
least for largeN +K. Hence, we have

Prob {Number of nodes in any V oronoi cell
≤ 1000 log(N +K)} > 1− δ(N +K) .

We have basically proved that, with the probability of one, total
number of access points and ad hoc nodes within each Voronoi cell
in the constructed tessellation is O(log(N +K)) as (N +K) →
∞. At this point, we also need to prove that there are enough num-
ber of access points in each Voronoi cell to be able to route the
packets from source nodes to the infrastructure5 and from access
points to the destination nodes without effecting the order of band-
width allocated to each transmitter.

STEP 4 & 5:
Steps 4 and 5 are again straightforward applications of the Vapnik-

Chervonenkis Theorem and lemma 2. But, this time, we let the se-
quence {Xi} be the random positions of access points, F be the
5Actually, one access point per cell is enough for the uplink trans-
missions, i.e. from source nodes to the access points.

set of disks in R2 with area 100AR log(N + K)/(N +K), and
we set ε = δ = 50 log(N +K)/(N +K) to obtain the following
result as N → ∞.

Prob


Number of access points in any V oronoi cell

≥ 50 log(N +K)

(1 + α)

ff
> 1− δ .

Asymptotic lower bound as given in equation 8 is also valid for
number of ad hoc nodes if we substitute α with 1/α. These lower
bounds and step 2 together imply that both number of ad hoc nodes
and access points belonging to the same Voronoi cell are asymptot-
ically in the same order, i.e. Θ(log(N +K)). Hence, the number
of distinct destination points per access point is bounded by Θ(1)
for large (N+K). However, since the source-destination pairs are se-
lected randomly, different source nodes can generate packets for the
same destination with a finite probability. This reserve in fact turns
out to be a small technicality in the asymptotic results. Suppose
that Yi denotes the position vector of the destination node corre-
sponding to the source node i in our disk domain. Then, {Yi} is a
sequence of uniformly distributed i.i.d. random variables. This al-
lows us to use the same F and ε = δ = 100 log(N+K)/(N+K)
as in step 3, except for now we have upper-bounded the number of
destination points with O(log(N +K)).

Thus, we have completed all the steps required for deriving the
lower bound as given in inequality (4). Upper and lower bounds in
(3) and (4) state that the throughput capacity for each ad hoc node
is Θ(W/ log(N)). This also becomes the first main result of our
paper. In the next section, we modify our connectivity assumption
to investigate the full benefits of having the infrastructure network
in terms of the throughput capacity.

5. LOOSER CONNECTIVITY CONDITIONS
AND ACHIEVABILITY OF Θ(1)

So far, we have assumed a strong connectivity condition in our
network model, i.e. the network graph consisting of only the ad
hoc nodes, excluding the access points, is required to be connected.
The underlying logic is simple: It is often desirable to have an ad
hoc network which can function without any infrastructure. Nev-
ertheless, this constraint does not fully capture the benefits of ex-
ploiting the infrastructure either. Accordingly, we should relax our
connectivity condition as follows: Each ad hoc node should be con-
nected to at least one access point with high probability, and this
probability must be approaching to one as the number of nodes in-
creases. This is equivalent to considering the ad hoc network and
the infrastructure as a single topology graph and defining the con-
nectivity in accordance with this broader topology. We refer to this
specific definition of connectivity as connectivity in the weak sense
or weak connectivity. This section is dedicated for first obtaining
the necessary and sufficient conditions on the transmission range to
achieve the weak connectivity, and second for showing that, even
under weaker connectivity condition, we cannot have a per node
transport capacity of Θ(1) as it is widely witnessed under different
network scenarios [11, 10, 8].

In the simplest form of weak connectivity, there exists at least
one access point within the transmission range of any ad hoc node.
Hence, given that there are K gateway nodes; Xi denotes the lo-
cation of node i, which is uniformly distributed on disk domain;
each node i has a capture area Ai

c(Xi), where its neighbors can
be located; and Aε denotes the disk area with radius ε = rT ; the
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following relations hold:

Prob[Node i connected to any access point |Xi = x]

≥ Prob[Node i has an adjacent access point |Xi = x]

(a)
= 1−

„
1− Ai

c(x)

AR

«K

(b)

≥ 1−
„
1− Aε

4AR

«K

. (8)

Here, step (a) follows directly from the case, where no access
point is located in the capture area of node i and step (b) follows
from the boundary effect of the disk domain, i.e. at least quarter of
a disk centered at the ad hoc node with radius equal to transmission
range must be totally covered by the capture area. Integrating both
sides of (8) over the disk domain and taking the limit, we find the
asymptotic lower bound as:

Prob[Node i connected to any access point]

≥ 1− lim
K→∞

„
1− Aε

4AR

«K

. (9)

We can also obtain an upper bound similar to the right hand side
of the expression in (9) for the probability of connectivity. Let N
denote the number of ad hoc nodes. The event that node i is not
connected to an access point includes the event that i is isolated.
Hence, the upper bound can be derived as follows.

Prob[Node i disconnected from access points |Xi = x]

≥ Prob[Node i is isolated |Xi = x]

(a)
=

„
1− Ai

c(x)

AR

«N+K−1

(b)

≥
„
1− Aε

AR

«c2K

. (10)

Step (a) is again the result of having no other nodes, including the
access points, within the capture area that is uniquely defined by the
position of node i on the disk domain and the transmission radius.
And step (b) comes from the observation thatAε/4 ≤ Ai

c(x) ≤ Aε

in addition to the initial assumptionK = Θ(N). Again integrating
both sides of inequality (10) over the disk domain, we get rid of the
conditional probability;

Prob[Node i disconnected from access points]

≥
„
1− Aε

AR

«c2K

. (11)

By simple manipulations and taking the limit, we obtain an asymp-
totic upper bound for weak connectivity.

Prob[Node i connected to any access point]

≤ 1− lim
K→∞

„
1− Aε

AR

«c2K

. (12)

Next, we introduce a lemma that will assist us to compute the
limits in the lower and upper bound expressions given in (9) and
(12) respectively.

LEMMA 3. Let a(x) and b(x) be differentiable functions such
that following properties are satisfied: (i) There existsx1 such that
1/b(x) 
= 0 for all x ∈ (x1,∞), (ii) limx→∞ a(x) = ±∞ and
limx→∞b(x) = ±∞. Then

lim
x→∞

„
1 +

1

a(x)

«b(x)

= exp

»
lim

x→∞

„
b(x)2

a(x)2
ȧ(x)

ḃ(x)

«–
,

provided that the limit on the right hand side exists inR+ = R ∪
{∞,−∞}. Above,ȧ(x) andḃ(x) represent the derivatives ofa(x)
andb(x) with respect to x.

PROOF. See appendix.

To apply lemma-3, we need to overcome an obvious technical-
ity. Our upper and lower bound expressions are sequences with
non-negative integer indices, but the lemma considers continuous
functions. For that reason, we will consider the sequence Aε(K)
as a sampling from a continuous function that captures the desired
features of transmission range rT as a function of number of nodes
in the network.

DEFINITION 1. Aε(K) =
R∞
0
Aε(x)δ(x−K)dxwhereδ(x−

K) is the Dirac-Delta function,Aε(x) is a non-increasing differen-
tiable function ofx and has a lower bound 0. Hencelimx→∞Aε =
0.

From the definition, it is clear that Aε(K) and rT (K) are as-
sumed to be monotonically non-increasing sequences with limits 0.
The underlying rationale of this assumption is as follows: We are
looking for the necessary and sufficient conditions on the sequence
Aε(K), which will ensure the asymptotic probability of connectiv-
ity to be arbitrarily large. Yet, we also want to minimize Aε(K) so
that we can pack as many transmission as we can in the same chan-
nel maximizing the upper bound. Putting more access points while
keeping the rT same would increase the probability of connectivity
as seen from (9). Then, we can reduce rT at a smaller pace than the
increase in the number of access points, and at the same time, im-
prove the probability of connectivity. Our next lemma introduces
the sufficiency condition for the existence of the limits in the upper
and lower bound expressions.

LEMMA 4. Let ΓK = [1 − a1Aε(K)]a2K andΓ(x) = [1 −
a1Aε(x)]

a2x. If limx→∞ Γ(x) exists, then

lim
K→∞

ΓK = lim
x→∞

Γ(x) .

PROOF. From the definition of limit, ∀ε, ∃K0 such that if x >
K0 then |Γ(x) − Γ∗| < ε. Substituting K0 with �K0� and x with
K completes the proof.

Since we have established a relation between ΓK and Γ(x), we
are ready to apply lemma-3 to compute the limit of Γ(x). To do
this, we set a(x) = −1/a1Aε(x) and b(x) = a2x. Since con-
ditions of lemma-3 are satisfied, we have the following relations
given that the limit on right hand side of the equation exists in the
set of extended real numbers.

lim
x→∞

[Γ(x) = (1− a1Aε(x))
a2x]

= exp

"
lim

x→∞

 
a2
2x

2

1/a2
1A

2
ε(x)

(−1/a1)
˙A−1
ε (x)

a2ẋ

!#
,

= exp
h
lim

x→∞

“
a1a2x

2Ȧε(x)
”i
. (13)

Equation (13) provides us valuable insights about the necessary and
sufficient conditions for connectivity in the weak sense as stated
below in theorem-2. But, before the theorem, we first provide some
useful properties of Ȧε(x).

PROPERTY 1. Ȧε(x) ≤ 0 for all x.

PROOF. Follows from non-increasing property of Aε(x).
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PROPERTY 2. If there exists aX0 such thatȦε is continuous
for all x ≥ X0, thenlimx→∞ Ȧε(x) = 0.

PROOF. Suppose that limit does not exist or it is not zero. Then
there exists εi > 0 for all Xi ≥ X0 such that |Ȧε(x)| ≥ εi in a
non-zero length interval (xi, xi+1) where xi+1 > xi ≥ Xi. Here,
non-zero length interval is a consequence of continuity. Since this
statement is true for allXi = xi+1, there are infinitely many finite
intervals where Ȧε(x) ≤ −mini εi and in other intervals Ȧε(x) is
at most 0 (using property-1), the integral (hence Aε(x)) diverges to
-∞. This contradicts with the definition of Aε(x).

THEOREM 2. Given thatȦε(x) is continuous, the network is
asymptotically connected in the weak sense with probability ap-
proaching to one if and only if

lim
x→∞

“
x2Ȧε(x)

”
= −∞ .

PROOF. If we show that limx→∞(x2Ȧε(x)) exists in R+ =
R∪{∞,−∞}, then by using relation (13) and lemma-4, we prove
the existence of limits for upper and lower bounds. Clearly, these
limits are equal to 1 if and only if limx→∞(x2Ȧε(x)) = −∞.
Thus, for completing the proof of the lemma, we are bound to
demonstrate the existence of limx→∞(x2Ȧε(x)) in the set of ex-
tended real numbers. We will use the way of contradiction to show
it.

Suppose that there is no limit, then for every real number x∗,
there exists x0 > X0 and ε0 > 0 for allX0 such that,

|x2
0Ȧε(x0)− x∗| ≥ ε0 .

Otherwise, the limit would exist and be equal to x∗. Using our
freedom of choosing any x∗, let us set x∗ = 0. Accordingly,

|x2
0Ȧε(x0)| ≥ ε0 ⇐⇒ |Ȧε(x0)| ≥ ε0/x2

0 ,

for some x0 > X0, ε0 > 0 and any X0. However, we know by
property-2 that limx→∞ Ȧε(x) is 0. Therefore, for all ε1 > 0,
there exists an X1 such that |Ȧε(x)| < ε1 when x > X1. By
setting ε1 = ε0/x

2
0 andX0 = X1 , we have our contradiction.

COROLLARY 1. Given thatȦε(x) is continuous, the network is
asymptotically disconnected in the weak sense with the probability
approaching to one if and only if

lim
x→∞

“
x2Ȧε(x)

”
= 0 .

COROLLARY 2. The network isnot asymptotically connected
in the weak sense with the probability approaching to one if

Aε(K) ≤ c3/K
for any positive finite numberc3.

PROOF. First, observe that if the network is disconnected in the
weak sense for the disk area Aε(K), it is also disconnected for any
other disk area Aε′(K) ≤ Aε(K). Suppose that Aε(K) = c3/K,
then clearly Aε(x) = c3/x satisfies the definition-1 as well as the
hypothesis of theorem-2. Since x2Ȧε(x) = −c3 > −∞, theorem-
2 states that we do not have weak connectivity with arbitrarily high
probability. Thus, it is also true for all Aε′(K) ≤ c3/K.

We can actually prove a more stringent requirement by condi-
tioning connectivity on all nodes, i.e. instead of any node i, all the
ad hoc nodes in the network must be asymptotically connected to
the infrastructure access points with the probability of one.
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Figure 3: Representing non-increasing sequences by differen-
tiable functions with continuous first order derivatives.

THEOREM 3. LetY denote the number of nodes that are con-
nected to at least one access point. Then, the expected value ofY,
i.e. E[Y], becomesΘ(N) for large N if limx→∞(x2Ȧε(x)) < 0.
In addition, if any nodei is connected to at least one access point
with arbitrarily high probability as increasing N (or K), it is also
true that all nodes are asymptotically connected to at least one ac-
cess point with arbitrarily high probability.

PROOF. See appendix.

We may now state the main result of this section by revisiting
the upper bound expression as given in (2). The corollary-2 neces-
sitates that rT > c4/

√
πN , therefore;

λ(N,K) <
16ARW

c24∆
2
, (14)

for any positive finite number c4. In other words, per node through-
put cannot reach to Θ(1) as N → ∞. Hence, we have the follow-
ing theorem.

THEOREM 4. Even under the weak connectivity condition, per
node transport capacity ofΘ(1) cannotbe achieved with the prob-
ability of one.

Now, there remains one subtle point to make the arguments that
we made so far rigorous. We have started from non-increasing se-
quences as an index of the number of nodes, then we have found the
necessary and sufficient conditions in terms of any non-increasing
differentiable functionAε(x) with the following conditions: Aε(x)
(i) has samples at non-negative integer points that are equal to the
sequence of interest, (ii) has a limit 0, and (iii) has a continuous
derivative function.6 Let us define the set of all such functions as
Sε = {Aε(x)}. Our results are general in the sense that we can
pick any function from Sε and yet use the result given in theorem-
2, corollary-1, corollary-2 and theorem-3. The question is whether
we can find at least one such function for every sequence of in-
terest. We pictorially demonstrate below that it is indeed the case.
Thus, the set Sε represents all possible sequences, in which we are
interested.
6Note that, since we are mainly interested in the asymptotic be-
havior, we can modify the statements of definitions, lemmas, and
theorems in this section by requiring continuity and monotonicity
features only for largeK or x values.
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In fig.3, we interpolate any two different valued consecutive se-
quence points with a cosine function with period 2 in the inter-
val [0, pi], where cosine is a monotonically decreasing function.
The amplitude of cosine is shifted in time and amplitude such that
it exactly fits into the corresponding interval. If two consecutive
points are the same, we interpolate between these two points with
a straight horizontal line. Obviously, this piecewise defined func-
tion is differentiable. Moreover, the derivative is equal to zero at
integer points and behaves as a sine function in between preserving
continuity.

The necessary and sufficient conditions as stated in theorem-2
provide us with the mechanisms to check the order of transmis-
sion radius and -consequently- the upper bound, above which per
node transport capacity cannot be achieved with the probability of
one. The question of whether one can find a minimal function on
the order of transmission radius (equivalently the maximum upper
bound) that conforms with these conditions is not addressed in this
paper. Instead, we show that any upper bound conforming with the
necessary and sufficient conditions can indeed be achieved with the
probability of one as N goes to ∞.

6. ACHIEVABILITY OF THE CAPACITY IN
THE CASE OF WEAK CONNECTIVITY

The design steps to show the achievability of any upper bound
that is derived from a transmission area Aε(N), which satisfy the
requirements of the weak sense connectivity with the probability
of one, are exactly the same as the steps in section-4. There are
however two nuances: First, the disk areas covered by Voronoi cells
in the new tessellation are different; and second, we cannot apply
Vapnik-Chervonenkis Theorem for any disk area of interest.

Without loss of generality, let us define Aε(N) as g(N)/N and
suppose that Aε(N) satisfies the hypothesis of theorem-2. Thus,
using equation (2) and assuming rT ≥ p

Aε(N)/π , the upper
bound for per node throughput capacity becomes

λ(N,K) ≤ 16ARW

∆2g(N)
. (15)

To show that the upper bound given in (15) is achievable, we
form the tessellation such that πε2 = ARg(N)/N and rT = 6ε
(see step one in section-4). As before, each Voronoi cell is confined
between two disks of radii ε and 3ε respectively. Hence, we need to
prove that each Voronoi cell includes Θ(g(N)) ad hoc nodes, ac-
cess points, and destination points with arbitrarily high probability
as N → ∞.

Again, let Xi denote the position of node i in the disk domain.
Note that we do not differentiate among node i being a source
node, an access point, or a destination node, because {Xi} are
i.i.d. random variables with uniform distribution across the disk
domain in all cases. Define YL

∆
=
PL

i=1 I(Xi ∈ V), where
V is a particular Voronoi cell. Here, L may be either N or K,
and we have limN→∞(L/N) = Θ(1). Thus, we can compute
the mean and variance of YL as Y = E[Y ] = LP (Xi ∈ V)
and σ2

Y = V ar[Y ] = LP (Xi ∈ V)(1 − P (Xi ∈ V)). Since
P (Xi ∈ V) = Θ(g(N)/N), we can use the well-known Cheby-
shev’s inequality [15] as follows:

P

»
|Y − LΘ(

g(N)

N
)| < γ

–

≥ 1− LΘ(g(N)/N)(1−Θ(g(N)/N))

γ2
.

But, here γ can assume any positive value and setting γ = Θ(g(N))

simplifies the inequality above further as;

P [Y = Θ(g(N))] ≥ 1 +
1

Θ(N)
− 1

Θ(g(N))
.

The results from the previous section require that g(N) cannot be
bounded above with a finite value and g(N)/N must be defined
for all positive integers N . Therefore, limN→∞ g(N) = ∞. In
other words, the number of regular ad hoc nodes, access points, and
destination nodes in any Voronoi cell is asymptotically in the order
of Θ(g(N)) with the probability of one. This means that we can
actually achieve any upper bound that conforms to the condition
given in theorem-2.

This section completes our results on per node throughput capac-
ity of random ad hoc networks with infrastructure support. Illustra-
tive examples that signify the strength of the results presented in
the last two section are given below before we conclude our paper.

EXAMPLE 1. Let g(N) beN1/p wherep > 1 is a constant
number. Then,Aε(N) becomesN1/p/N = N1/p−1. Trivially
choosingAε(x) = x1/p−1 provides us a continuously differen-
tiable and monotonically decreasing function forx > 0. Since

lim
x→∞

x2Ȧε(x) = lim
x→∞

„
1

p
− 1

«
x1/p = −∞ ,

Aε(x) = x1/p−1 satisfies the weak connectivity condition with
probability one. Thus, the corresponding upper boundΘ(1/N1/p)

by selectingAε(N) = Θ(N1/p−1) is achievable.

EXAMPLE 2. Let g(N) behave as a recursive logarithm func-
tion [16] for largeN , i.e. g(N) = ln(m)(N) for N ≥ N0 where
m,N0 are positive finite numbers andln(m)(·) denotes taking nat-
ural logarithm of the argumentm times. Then,Aε(N) becomes
ln(m)(N)/N . Simply substituting the discrete variableN with the
continuous variablex gives us a continuously differentiable func-
tionAε(x), which is also monotonically decreasing for sufficiently
largex. Since

lim
x→∞

x2Ȧε(x) = lim
x→∞

"
1Qm−1

i=1 ln(i)(x)
− ln(m)(x)

#
= −∞,

Aε(N) = ln(m)(N)/N satisfies the weak connectivity constraint
with probability one. Moreover,limN→∞ ln(m)(N) = ∞, there-
fore, per node throughputΘ[1/ ln(m)(N)] is feasible with the prob-
ability of one for any constantm > 0.

7. CONCLUSION
In this paper, we addressed the benefits of using a hybrid network

architecture over pure ad hoc wireless networks with no infrastruc-
ture support in terms of per node throughput capacity. We showed
that adding an infrastructure, which provides access to the ad hoc
users at random locations, improves the per node throughput sig-
nificantly over the infrastructureless operation. Such a hybrid net-
work model is adequate especially when the access points of the
infrastructure network are not placed on regular grid points. Sup-
porting examples can be given from a wide span of scenarios, e.g.
sensor networks formed by scattering the sensors, some of which
have long-range and high bandwidth radio trancievers, over a ter-
rain, cellular/WLAN networks with wireless/mobile routers, ad hoc
networks with airborne communication node (ACN) support, etc.

We have started with a strict connectivity constraint, under which
ad hoc tier must preserve the connectivity with arbitrarily high
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probability for stand-alone functionality. The asymptotic capac-
ity figures are derived under this regimen. Our results reveal that
Θ(
p
N/ log(N)) folds better performance than the pure ad hoc

operations may be obtained despite of the randomness imposed
on the locations of the access points. The gain in performance is
mainly due to the fact that the mean number of hops from source
to destination in the ad hoc tier is effectively reduced to a constant
factor as opposed to the case of pure ad hoc networks, where the
mean number of hops increases as a function ofN .

In the second part of the paper, we relaxed the connectivity con-
straint to fully utilize the infrastructure network. Under this weaker
connectivity constraint, the combined network topology graph is
required to be connected. We devised an analytical tool to find
the necessary and sufficient conditions on the radio transmission
range, which effectively determines the upper bound on the per
node throughput capacity. The consequence of the necessary con-
dition indicates that even under weaker connectivity assumptions,
per node throughput asymptotically goes to zero in contrast to the
constant rates obtained under different problem constructions re-
ported in the literature. Nonetheless, the rate of convergence to
zero can be made remarkably small at the expense of increased
confidence interval for weak connectivity. Although we could not
provide a minimal function on the transmission radius, which ef-
fectively leads us to the maximum upper bound on capacity without
compromising the weak connectivity condition, we proved that this
maximum upper bound can in fact be achieved with the probability
of one.

APPENDIX

A. PROOF OF LEMMA-3
The proof follows from the L’Hospital Rule and properties of the

log function. We can express limx→∞(1 + 1/a(x))b(x) as

exp

„
lim

x→∞
ln(1 + 1/a(x))

1/b(x)

«
.

We have an indeterminate form of 0
0

and conditions (i)-(ii) in the
lemma allow us to apply L’Hospital Rule, which states that the
above limit exists in set of extended real numbers if

exp

„
lim

x→∞
d(ln(1 + 1/a(x)))/dx

d(1/b(x))/dx

«

= exp

„
lim

x→∞
−ȧ(x)/a(x)2
1 + 1/a(x)

(−b(x)2/ḃ(x))
«

= exp

„
lim

x→∞
b(x)2

a(x)2
ȧ(x)

ḃ(x)

«
. (16)

exists and it is equal to the limit in (16). Hence, we proved the
lemma.

B. PROOF OF THEOREM-3
We can express Y as,

Y =
NX

i=1

I(i is connected to an access point) , (17)

where I is the indicator function. Clearly, Y ≤ N , hence;

N ≥ E[Y]

= E

"
NX

i=1

I(i is connected to an access point)

#
,

=
NX

i=1

E[I(i is connected to an access point)] ,

(a)
= N × Prob[i is connected to an access point]
(b)

≥ N ×
"
1−

„
1− Aε(K)

4AR

«K
#
. (18)

Here, step (a) follows from the fact that each node has the same
marginal distribution of being connected to an access point, though
they are not independent. And, step (b) is a direct application of the
lower bound as given by relation (8). Define β(K) = [1 − (1 −
Aε(K)/4AR)K ] and suppose β(K) has a limit β∗ > 0. Then, for
all ε > 0, there exists a real numberK0 such that |β(K)−β∗| < ε
for all N > K ≥ K0. Choose ε = 1/N2, thus we have Nβ >
N(β∗ − ε) = Nβ∗ − 1/N . Or, equivalently,

N ≥ E[Y] > β∗N − γ , ∀N ≥ K0 , γ > 0 ,

where γ is arbitrarily small. Corollary-1 implies the existence of
β∗ > 0 completing the first part of the theorem.

Proving the second statement of the theorem is again a brute-
force application of theorem-2. The weak connectivity of node i
with arbitrarily high probability forces β∗ to be 1 and E[Y] be-
comes arbitrarily close to N . Considering this result along with
the observation E[Y] = N if and only if Prob[all nodes are con-
nected to an access point] = 1 suffices to prove the second part of
the theorem.
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