Communicating with Identical Tokens: lower bounds

Christopher Rose¹ I. Saira Mian²

¹Rutgers University, WINLAB ²Lawrence Berkeley National Labs

International Symposium on Information Theory July 2013, Istanbul

The Heroic Picture

What can a cell(s) tell the world?

1

Use IT *bounds* to avoid modeling morass

What Can a Cell Tell the World: abstraction

What Can a Cell Tell the World: abstraction

$\mathbf{S} = \mathbf{T} + \mathbf{D}$ $\mathbf{S} = \mathsf{Sort}[\mathbf{S}]$

Simplistic but fundamental model

Mutual Information

$$I(\mathbf{S}; \mathbf{T}) = h(\mathbf{S}) - h(\mathbf{S}|\mathbf{T})$$

= $h(\mathbf{S}) - h(\mathbf{D})$
= $M(h(S) - h(D))$, (i.i.d. D)

Easy, right?

Mutual Information

$$I(\mathbf{S}; \mathbf{T}) = h(\mathbf{S}) - h(\mathbf{S}|\mathbf{T})$$

= $h(\mathbf{S}) - h(\mathbf{D})$
= $M(h(S) - h(D))$, (i.i.d. D)

Easy, right? $I(\vec{\mathbf{S}};\mathbf{T}) = h(\vec{\mathbf{S}}) - h(\vec{\mathbf{S}}|\mathbf{T}) = ?$

EGAD!!! (Chris FEARS Order Distributions)

Details

Hypersymmetries

4

Hypersymmetries

 $\exists M! \mathbf{S} \to \vec{\mathbf{S}}$

Hypersymmetries

 $\exists M! \mathbf{S} \to \vec{\mathbf{S}}$

Whatever the I()-maximizing $f_{\mathbf{T}}()$ is, we can balance it:

$$f_{\mathbf{T}}(\mathbf{T}) = f_{\mathbf{T}}(P_{\Omega}(\mathbf{T}))$$

(permutation operator $P_{\Omega}()$, index Ω)

Hypersymmetries

 $\exists M! \mathbf{S} \to \vec{\mathbf{S}}$

Whatever the I()-maximizing $f_{\mathbf{T}}()$ is, we can balance it:

$$f_{\mathbf{T}}(\mathbf{T}) = f_{\mathbf{T}}(P_{\Omega}(\mathbf{T}))$$

(permutation operator $P_{\Omega}()$, index Ω)

Consider Only Hypersymmetric ${\bf T}$

$$\max_{f_{\mathbf{T}}} I(\vec{\mathbf{S}}, \mathbf{T})$$

More Symmetry

 $f_{\mathbf{T}}()$ hypersymmetry $\rightarrow f_{\mathbf{S}}()$ hypersymmetry $f_{D}()$ non-singular $\rightarrow \mathbf{S}$ continuous "Edges and Corners" of $f_{\mathbf{S}}()$ have **zero measure** M! identical (permuted) patches of $f_{\mathbf{S}}()$

More Symmetry

 $f_{\mathbf{T}}()$ hypersymmetry $\rightarrow f_{\mathbf{S}}()$ hypersymmetry $f_{D}()$ non-singular $\rightarrow \mathbf{S}$ continuous "Edges and Corners" of $f_{\mathbf{S}}()$ have **zero measure** M! identical (permuted) patches of $f_{\mathbf{S}}()$

$$h(ec{\mathrm{S}}) = h(\mathrm{S}) - \log M!$$

Channel Redux

A Useful (but uncomfortable) Equivalence

A Useful (but uncomfortable) Equivalence

 $\{\vec{\mathbf{S}},\Omega\}\leftrightarrow \mathbf{S}$

Rutgers WINLAB

7

A Useful (but uncomfortable) Equivalence $\{\vec{\mathbf{S}}, \Omega\} \leftrightarrow \mathbf{S}$ $h(\mathbf{S}|\mathbf{T}) = h(\vec{\mathbf{S}}, \Omega|\mathbf{T}))$ $= h(\vec{\mathbf{S}}|\mathbf{T}) + H(\Omega|\vec{\mathbf{S}}, \mathbf{T})$

A Useful (but uncomfortable) Equivalence

$$\{\vec{\mathbf{S}}, \Omega\} \leftrightarrow \mathbf{S}$$

$$h(\mathbf{S}|\mathbf{T}) = h(\vec{\mathbf{S}}, \Omega|\mathbf{T}))$$

$$= h(\vec{\mathbf{S}}|\mathbf{T}) + H(\Omega|\vec{\mathbf{S}}, \mathbf{T})$$

$$I(\vec{\mathbf{S}}; \mathbf{T}) = I(\mathbf{S}; \mathbf{T}) - \left(\log M! - H(\Omega|\vec{\mathbf{S}}, \mathbf{T})\right)$$

$$I(\vec{\mathbf{S}};\mathbf{T}) = \underbrace{h(\mathbf{S}) + H(\Omega|\vec{\mathbf{S}},\mathbf{T})}_{\text{The Money!}} - \underbrace{(\log M! + h(\mathbf{D}))}_{\text{constant}}$$

TENSION!

Entropy maximized by independent ${\bf T}$

 $h(\mathbf{S}) \le \sum h(S_m)$

m

TENSION!

Entropy maximized by independent ${\bf T}$

$$h(\mathbf{S}) \le \sum_m h(S_m)$$

$H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$ maximized by correlated \mathbf{T} $H(\Omega | \vec{\mathbf{S}}, \mathbf{T}) \le \log M!$

(i.e., identical launch times $T_1 = T_2 = \cdots = T_M$)

ISIT 2013

My Personal Struggle

\bigcirc \exists closed form results for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

(exponential D)

My Personal Struggle

\bigcirc \exists closed form results for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

(exponential \mathbf{D})

$$\bigotimes \arg \max_{f_{\mathbf{T}}(\mathbf{i})} h(\mathbf{S}) + H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$$

My Personal Struggle

\bigcirc \exists closed form results for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

(exponential \mathbf{D})

(obvious data processing aside)

Cosmic Wimp-Out

$$I(\vec{\mathbf{S}};\mathbf{T}) = I(\mathbf{S};\mathbf{T}) - \left(\log M! - H(\Omega|\vec{\mathbf{S}},\mathbf{T})\right)$$
$$\geq$$

Cosmic Wimp-Out

$$egin{aligned} I(ec{\mathbf{s}};\mathbf{T}) &= I(\mathbf{s};\mathbf{T}) - \left(\log M! - H(\Omega|ec{\mathbf{s}},\mathbf{T})
ight) \ &\geq \ &I(\mathbf{S};\mathbf{T}) - \log M! \end{aligned}$$

(throw out $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$)

Details

• Signaling Molecule (token): protein

- Signaling Molecule (token): protein
- **Construction:** 4 ATP/unit (amino acid)

- Signaling Molecule (token): protein
- **Construction:** 4 ATP/unit (amino acid)
- **Token Energy:** 400 ATP (typical length)

- Signaling Molecule (token): protein
- **Construction:** 4 ATP/unit (amino acid)
- **Token Energy:** 400 ATP (typical length)
- **E.Coli Metabolism:** 6×10^4 ATP/s (during replication)

- Signaling Molecule (token): protein
- **Construction:** 4 ATP/unit (amino acid)
- **Token Energy:** 400 ATP (typical length)
- **E.Coli Metabolism:** 6×10^4 ATP/s (during replication)

Energy _	Tokens	- M - a
Time	Launch Epoch	$-\frac{1}{\tau(M)} - \rho$

Details

Channel Use Formalities

Power Constraint:

$$\rho = \lim_{\epsilon \to 0} \lim_{M \to \infty} \frac{M}{\tau(M) + \gamma(M, \epsilon)}$$

Details

Limiting Details

13

Set: $\gamma(M, \epsilon) = \epsilon \tau(M)$ (convenience)

Set: $\gamma(M, \epsilon) = \epsilon \tau(M)$ (convenience)

Require: $\lim_{M\to\infty} \operatorname{Prob}\{\vec{\mathbf{S}}_M \leq \tau(M)(1+\epsilon)\} = 1$

Set: $\gamma(M, \epsilon) = \epsilon \tau(M)$ (convenience)

Require:
$$\lim_{M\to\infty} \mathsf{Prob}\{\vec{\mathbf{S}}_M \leq \tau(M)(1+\epsilon)\} = 1$$

Worst case: all tokens launched at time $\tau(M)$

Set: $\gamma(M, \epsilon) = \epsilon \tau(M)$ (convenience)

Require: $\lim_{M\to\infty} \operatorname{Prob}\{\vec{\mathbf{S}}_M \leq \tau(M)(1+\epsilon)\} = 1$

Worst case: all tokens launched at time $\tau(M)$

PUNCHLINE: all ok if E[D] exists

Capacity Per Token

Assume:

 $E[D] = 1/\mu$

Capacity Per Token

Assume:

$$E[D] = 1/\mu$$

Define:

$$C_q(M) = \frac{1}{M} \max_{f_{\mathbf{T}}(I)} I(\vec{\mathbf{S}}; \mathbf{T})$$

Capacity Per Token

Assume:

$$E[D] = 1/\mu$$

Define: $C_q(M) = \frac{1}{M} \max_{f_{\mathbf{T}}(I)} I(\vec{\mathbf{S}}; \mathbf{T})$

Then:

$$C_q = \lim_{M \to \infty} C_q(M)$$

Details

But Max $I(\vec{\mathbf{S}}; \mathbf{T})$ Unknown!

But Max $I(\vec{\mathbf{S}}; \mathbf{T})$ Unknown!

Min/Max Bound $I(\vec{\mathbf{S}}; \mathbf{T})$ ala Sergio $\max_{f_{\mathbf{T}}()} I(\mathbf{S}; \mathbf{T}) \ge \min_{f_{\mathbf{D}}()} \max_{f_{\mathbf{T}}()} I(\mathbf{S}; \mathbf{T}) = M \log \left(1 + \frac{\mu \tau(M)}{e}\right)$

But Max $I(\vec{\mathbf{S}}; \mathbf{T})$ Unknown!

$$\begin{array}{l} \operatorname{\mathsf{Min}}/\operatorname{\mathsf{Max}} \operatorname{\mathsf{Bound}} I(\vec{\mathbf{S}};\mathbf{T}) \ \text{ala Sergio} \\ \max_{f_{\mathbf{T}}()} I(\mathbf{S};\mathbf{T}) \geq \min_{f_{\mathbf{D}}()} \max_{f_{\mathbf{T}}()} I(\mathbf{S};\mathbf{T}) = M \log \left(1 + \frac{\mu \tau(M)}{e}\right) \\ C_q(M) \geq \log \left(1 + \frac{\mu \tau(M)}{e}\right) - \frac{\log(M!)}{M} \end{array}$$

Facts: $\tau(M) = \rho M$ and Stirling Define: $\chi = \frac{\mu}{\rho}$

Facts: $\tau(M) = \rho M$ and Stirling Define: $\chi = \frac{\mu}{\rho}$ $C_q(\chi) \ge \log \chi$

Facts: $\tau(M) = \rho M$ and Stirling Define: $\chi = \frac{\mu}{\rho}$ $C_q(\chi) \ge \log \chi$

And it turns out:

$$C_t =
ho C_q = rac{\mu}{\chi} C_q$$

Facts: $\tau(M) = \rho M$ and Stirling Define: $\chi = \frac{\mu}{\rho}$ $C_q(\chi) \ge \log \chi$

And it turns out:

$$C_t =
ho C_q = rac{\mu}{\chi} C_q$$

Completely General

Plot and Comparison with Exponential Special Case

YATCCR (yet another timing channel capacity result)

- Increasing capacity per token with χ

- Increasing capacity per token with χ
- Intriguing "bump" in C_t/μ

- Increasing capacity per token with χ
- Intriguing "bump" in C_t/μ
 - Eerie Similarity: "burst concentration channel" (Fekri)

- Increasing capacity per token with χ
- Intriguing "bump" in C_t/μ
 - Eerie Similarity: "burst concentration channel" (Fekri)
- What happens with networks of cells?

- Increasing capacity per token with χ
- Intriguing "bump" in C_t/μ
 - Eerie Similarity: "burst concentration channel" (Fekri)
- What happens with networks of cells?

