Writing for Survival, Reading the Signs

Christopher Rose Rutgers University, WINLAB

Communication Theory Workshop June 24, 2013

Physics Envy

1

Communication Engineer/Theorist

Particles Atoms Cells Organisms People Ecologies Economies Universe

Particles Atoms Cells Organisms People **Ecologies Economies** Universe **Comm Theory is central to BIG questions! AND**

Particles Atoms Cells Organisms People **Ecologies Economies** Universe **Comm Theory is central to BIG questions! AND** **Comm Theory built wireless and the Internet!!**

Society Batters Ego

Popular Culture

Tricia Rose

Stephanie Bell-Rose

Most Powerful Women in New York 2007

(Click photo to view next slide)

S. James Gates

National Medal of Science 2011 (awarded 2013)

7

Down the Rabbit Hole

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

- Communication Theory Zeitgeist

A Little Analytic Rigor

A Little Analytic Rigor

A Little Analytic Rigor

Rutgers WINLAB

• Shannon Capacity: $C = B/T = W \log_2 \left(\frac{P}{N_0 W} + 1 \right)$

- Shannon Capacity: $C = B/T = W \log_2 \left(\frac{P}{N_0 W} + 1 \right)$
- Power capture fraction: $\nu(D) = \frac{AG}{4\pi D^2}$

- Shannon Capacity: $C = B/T = W \log_2 \left(\frac{P}{N_0 W} + 1 \right)$
- Power capture fraction: $\nu(D) = \frac{AG}{4\pi D^2}$

•
$$\mathcal{E}_r = PT = BN_0 \frac{4\pi D^2}{AG} \frac{TW}{B} \left[2\frac{B}{TW} - 1 \right]$$

- Shannon Capacity: $C = B/T = W \log_2 \left(\frac{P}{N_0 W} + 1 \right)$
- Power capture fraction: $\nu(D) = \frac{AG}{4\pi D^2}$

•
$$\mathcal{E}_r = PT = BN_0 \frac{4\pi D^2}{AG} \frac{TW}{B} \left[2\frac{B}{TW} - 1 \right]$$

• Large *TW*:

$$\mathcal{E}_r \ge BN_0\left(\frac{4\pi D^2}{AG}\right)\ln 2$$

Writing Energy Requirements (ROCKET SCIENCE!)

 $\mathcal{E}^* = \min_{\text{trajectory}} \max_t \mathcal{E}(t)$

Jensen's Inequality Leads To

Writing Energy Requirements (ROCKET SCIENCE!)

$$\mathcal{E}^* = \min_{\text{trajectory}} \max_t \mathcal{E}(t)$$

Jensen's Inequality Leads To

$$\mathcal{E}^* = \frac{1}{2}m\bar{v}^2$$

Inscribed Matter Energy Requirements

Message size B bits, mass information density $\tilde{\rho}$ bits/kg

$$\mathcal{E}_w = \frac{1}{2} \frac{B}{\tilde{\rho}} \bar{v}^2 = \frac{1}{2} \frac{B}{\tilde{\rho}} \left(\frac{c}{\delta}\right)^2$$

Inscribed Matter Energy Requirements

Message size *B* bits, mass information density $\tilde{\rho}$ bits/kg

$$\mathcal{E}_w = \frac{1}{2} \frac{B}{\tilde{\rho}} \bar{v}^2 = \frac{1}{2} \frac{B}{\tilde{\rho}} \left(\frac{c}{\delta}\right)^2$$

Inscribed Matter Energy Requirements

Message size *B* bits, mass information density $\tilde{\rho}$ bits/kg

$$\mathcal{E}_w = \frac{1}{2} \frac{B}{\tilde{\rho}} \bar{v}^2 = \frac{1}{2} \frac{B}{\tilde{\rho}} \left(\frac{c}{\delta}\right)^2$$

Artillery: adds a factor of 2 to energy Escape: small penalty if $\overline{v} > 2 \times$ escape velocity

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Receiver Noise $\equiv N_0$ Joules/Hz Mass Information Density $\equiv \tilde{\rho}$ bits/kg Velocity Ratio $\equiv \delta = \frac{c}{v}$ Normalized Aperture $\equiv \mathcal{A} = \frac{2R}{\lambda}$ Normalized Distance $\equiv \mathcal{D} = \frac{D}{2R}$

$$\Rightarrow \boxed{\Omega \ge \left[\frac{\tilde{\rho}N_0}{c^2}\right] \left[\frac{8}{\pi^2} \left(\frac{\mathcal{D}}{\mathcal{A}}\right)^2\right] (2\ln 2)\delta^2} \leqslant$$

Equal Receiver/Transmitter Apertures

Empirical Mass Information Densities I

Voyager Spacecraft: 10⁶ bits/kg

Rutgers WINLAB

CTW'13

Empirical Mass Information Densities II

- DVD: 3×10^{12} bits/kg
- Magnetic Storage with FeO₂: 2×10^{17} bits/kg
- Optical Lithography with SiO₂: 3.85×10^{18} bits/kg
- E-beam Lithography with SiO₂: 1.54×10^{21} bits/kg
- STM with Xe on Ni: 1.74×10^{22} bits/kg
- RNA: 3.6×10^{24} bits/kg
- Li + Be: 7.5×10^{25} bits/kg

Write or Radiate?

Radiation vs. Inscribed Matter

Rutgers WINLAB

Voyager Existence Proof

- 10⁹ bit payload
- 900 kg mass
- Catapult launch: about 800 joules/bit

Voyager Existence Proof

- 10⁹ bit payload
- 900 kg mass
- Catapult launch: about 800 joules/bit

Breakeven Distance: ≈ 2000 light years

Voyager Existence Proof

- 10⁹ bit payload
- 900 kg mass
- Catapult launch: about 800 joules/bit

Breakeven Distance: ≈ 2000 light years

- Asides:
 - ETA nearest star: $\approx 100~{\rm kilo-years}$
 - Rocket Launch: distance up $\times 9$.
 - Use 3 DVDs (instead of gold disc): distance down $\times 10$
 - Use 1 gram of "RNA": distance down $\times 10^6$
 - ($\approx 1/4000$ distance to nearest star)

General Interstellar $(\tilde{\rho} = 10^{22}, \delta = 10^3, \text{Temperature } 3K)$

General Interstellar $(\tilde{\rho} = 10^{22}, \delta = 10^3, \text{Temperature } 3K)$

Matter
RadiationShelve a 5 lb sugar bag
24 Megaton blast

Communications Theory Has Spoken

If delay can be tolerated, inscribed matter is *stunningly* more energy-efficient than radiation
Sluggish Data vs. ADSL

Annals of Improbable Research 11(4), 2005

Write or Radiate?

hey, Hey HEY!!!! What About ... ?

21

Write or Radiate?

hey, Hey HEY!!!!! What About ... ?

Radiation Penalty

- Impermanence and Repetition

Matter Penalties

– Broadcast

- Preservation
- Inscription Energy
- Deceleration @Target
- Navigation
- Advertisement

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- $(T = 3^{o}K, \tilde{\rho} = 10^{22}, \delta = \frac{c}{v} = 10^{3})$ spherical galaxy, omnidirectional transmission, Arecibo receiver

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- $(T = 3^{o}K, \tilde{\rho} = 10^{22}, \delta = \frac{c}{v} = 10^{3})$ spherical galaxy, omnidirectional transmission, Arecibo receiver
 - $D = 10^4$ LY: 1.17×10^{11} stars (but $\Omega > 10^{25}$)

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- $(T = 3^{o}K, \tilde{\rho} = 10^{22}, \delta = \frac{c}{v} = 10^{3})$ spherical galaxy, omnidirectional transmission, Arecibo receiver
 - $D = 10^4$ LY: 1.17×10^{11} stars (but $\Omega > 10^{25}$)
 - $D = 10^6$ LY: 1.17×10^{17} stars (but $\Omega > 10^{29}$)

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- $(T = 3^{o}K, \tilde{\rho} = 10^{22}, \delta = \frac{c}{v} = 10^{3})$ spherical galaxy, omnidirectional transmission, Arecibo receiver
 - $D = 10^4$ LY: 1.17×10^{11} stars (but $\Omega > 10^{25}$)
 - $D = 10^{6}$ LY: 1.17×10^{17} stars (but $\Omega > 10^{29}$)
 - $D = 10^{10}$ LY: 1.17×10^{29} stars (but $\Omega > 10^{37}$)

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- $(T = 3^{o}K, \tilde{\rho} = 10^{22}, \delta = \frac{c}{v} = 10^{3})$ spherical galaxy, omnidirectional transmission, Arecibo receiver
 - $D = 10^4$ LY: 1.17×10^{11} stars (but $\Omega > 10^{25}$)
 - $D = 10^{6}$ LY: 1.17×10^{17} stars (but $\Omega > 10^{29}$)
 - $D = 10^{10}$ LY: 1.17×10^{29} stars (but $\Omega > 10^{37}$)

Visible Universe: $D = 1.37 \times 10^{10}$ LY

Semaphored and Summarized In ...

Nature 431, pp.47–49, September 2, 2004 (C. Rose & G. Wright) **Web Site:** http://www.winlab.rutgers.edu/~crose/cgi-bin/cosmicP.html

Nature Perqs

Really Chill Perqs!

Really Chill Perqs!

- NPR & BBC radio interviews
- NY Times article by Overbye!
- **NY Times** Editorial!!
- Cocktail party banter!!!

Nature Perqs

Not So Chill Perqs

25

Not So Chill Perqs

Counsel: Dr. Rose, what term of address would you prefer? **Rose:** "Chris" is fine.

Counsel: These are formal proceedings, so I'll use "Dr. Rose," okay? **Rose:** OK.

Counsel: Are you a professor of E&CE at Rutgers University? **Rose:** Yes.

Counsel: Did you receive all your degrees from M.I.T.?

Rose: Yes.

Counsel: Are you an expert in wireless communications?

Rose: For this trial's subject matter, yes.

Not So Chill Perqs

Counsel: Dr. Rose, what term of address would you prefer? **Rose:** "Chris" is fine.

Counsel: These are formal proceedings, so I'll use "Dr. Rose," okay? **Rose:** OK.

Counsel: Are you a professor of E&CE at Rutgers University? **Rose:** Yes.

Counsel: Did you receive all your degrees from M.I.T.?

Rose: Yes.

Counsel: Are you an expert in wireless communications? **Rose:** For this trial's subject matter, yes.

Counsel: Dr. Rose, do you talk to space aliens? Rose: (WTH?!?!?!)....

More Reasonable Questions

More Reasonable Questions

Do I READ alien letters?

More Reasonable Questions

Do I READ alien letters?

Why communicate AT ALL?

Howdy Neighbor!

Alien Psychology 101

27

Howdy Neighbor!

Alien Psychology 101

Sociability?

Rutgers WINLAB

Howdy Neighbor!

Hello Exoplanet-ling!

IF U CN C THS, join the party! Turn left at Alpha Centauri ...

Let Us Help You!

Bring technology!

Bring technology! (but, please don't eat us)

Universal (well, galactic) Truth

Universal (well, galactic) Truth

Survival?

Rutgers WINLAB

(sorry, I couldn't resist)

RAPTURE!

Writing to Survive

Interstellar "Evolution"

Interstellar "Evolution"

SURVIVORS: Those Who Write

Interstellar "Evolution"

SURVIVORS: Those Who Write

GAME OVER: Those Who Don't

Interstellar "Evolution"

SURVIVORS: Those Who Write

GAME OVER: Those Who Don't

Is Biological Info Transmission SOP?

Incursion HOWTO

Seeded Comet?

Micro Ark?

Are we THERE YET!?!?

Incursion HOWTO

Sorry, (your) Game Over!

Detection

Pipe Dream? (50+ Years of SETI)

Pipe Dream? (50+ Years of SETI)

Could be, but ... let's play anyway

Incursion or Evolution?

Incursion or Evolution?

Cambrian explosion – which?

Killjoy Biologists

"It's all one show" -Gerald Joyce

Killjoy Biologists

"It's all one show" -Gerald Joyce

"X → Y? Evolution!" -Biological Dogma

Can We Detect Ancient Biological Incursions?

Can We Detect Ancient Biological Incursions?

I DO NOT KNOW!

I might never know!

(Plenary talk sales final – Absolutely No Refunds!)

Can We Detect Future Biological Incursions?

Can We Detect Future Biological Incursions?

ET!

or EGAD!

(A:) How many packages?

(A:) How many packages?

(B:) What's here today?

(A:) How many packages?

(B:) What's here today?

(C:) How easily/quickly from $X \rightarrow Y$?

 $N_p = P f_e f_\ell f_i f_c \lambda_p au_p$ (After Drake – Fermilicious and equally fake)

 $N_p = P f_e f_\ell f_i f_c \lambda_p au_p$ (After Drake – Fermilicious and equally fake)

- N_p : number of parcels floating around f_e : fraction potential life-supporting planets f_i : fraction with"intelligent" life λ_p : parcels/year
 - *P*: number of planets
 - f_ℓ : fraction that come to life
 - f_c : fraction with loquacious intelligent life
 - au_p : years parcel survival

 $N_{p}=Pf_{e}f_{\ell}f_{i}f_{c}\lambda_{p} au_{p}$ (After Drake – Fermilicious and equally fake)

- N_p : number of parcels floating around P: number of planets f_e : fraction potential life-supporting planets f_i : fraction with "intelligent" life λ_p : parcels/year

 - f_{ℓ} : fraction that come to life
 - f_c : fraction with loquacious intelligent life

 τ_p : years parcel survival

 $P \approx 10^{11}$ (John Johnson, CalTech, now Harvard) $au_p = 10^8$ ("geologic" design, galaxy-spanning @ c/1000) $\lambda_p f_e f_\ell f_i f_c \approx 1$ (loquacity balancing pessimism)

 $N_p = P f_e f_\ell f_i f_c \lambda_p au_p$ (After Drake – Fermilicious and equally fake)

- N_p : number of parcels floating around P: number of planets f_e : fraction potential life-supporting planets f_i : fraction with "intelligent" life λ_p : parcels/year

 - f_{ℓ} : fraction that come to life
 - f_c : fraction with loquacious intelligent life

 τ_p : years parcel survival

 $P \approx 10^{11}$ (John Johnson, CalTech, now Harvard) $\tau_p = 10^8$ ("geologic" design, galaxy-spanning @ c/1000) $\lambda_p f_e f_\ell f_i f_c pprox 1$ (loquacity balancing pessimism)

Parcels per star: 3.33×10^7

(B): Biome Survey/Monitor

(B): Biome Survey/Monitor

- Aviation: 2% yearly global CO₂
- Aircraft: 111 kg CO₂/km
- Yearly global CO₂: 35.6×10^{12} kg

(B): Biome Survey/Monitor

- Aviation: 2% yearly global CO₂
- Aircraft: 111 kg CO₂/km
- Yearly global CO₂: 35.6×10^{12} kg
- Planes Travel: 6.4×10^9 km/year

(B): Biome Survey/Monitor

- Aviation: 2% yearly global CO₂
- Aircraft: 111 kg CO₂/km
- Yearly global CO₂: 35.6×10^{12} kg
- Planes Travel: 6.4×10^9 km/year

Search Area: (1m scoop): 6.4×10^{6} km²/year Earth surface: 5.1×10^{8} km²

(B): Biome Survey/Monitor

- Aviation: 2% yearly global CO₂
- Aircraft: 111 kg CO₂/km
- Yearly global CO₂: 35.6×10^{12} kg
- Planes Travel: 6.4×10^9 km/year

Search Area: (1m scoop): 6.4×10^{6} km²/year Earth surface: 5.1×10^{8} km²

Not a (too) ridiculous detection problem

(C): Quantitative Evolution

(C): Quantitative Evolution

Setup:

- String ("gene") set $\mathcal{G} = \{\mathbf{g}_n\}$, $n = 1, \cdots, N$
- $\mathbf{g}_n = [b_{n_1}, \cdots, b_{n_K}], b_i \in \{A, T, G, C\}$
- Target string T
- Evolution (mutation/crossover) operators $\{\mathcal{M}_q\}$

(C): Quantitative Evolution

Setup:

- String ("gene") set $\mathcal{G} = \{\mathbf{g}_n\}$, $n = 1, \cdots, N$
- $\mathbf{g}_n = [b_{n_1}, \cdots, b_{n_K}], b_i \in \{A, T, G, C\}$
- Target string T
- Evolution (mutation/crossover) operators $\{\mathcal{M}_q\}$

Questions:

• Coverage: \exists sequence $\{\mathcal{M}_1, \mathcal{M}_2, \cdots \mathcal{M}_Q\}$ s.t. $\mathbf{T} \in \mathcal{M}_Q \cdots \mathcal{M}_1[\mathcal{G}]$?

(C): Quantitative Evolution

Setup:

- String ("gene") set $\mathcal{G} = \{\mathbf{g}_n\}$, $n = 1, \cdots, N$
- $\mathbf{g}_n = [b_{n_1}, \cdots, b_{n_K}], b_i \in \{A, T, G, C\}$
- Target string T
- Evolution (mutation/crossover) operators $\{\mathcal{M}_q\}$

Questions:

- Coverage: \exists sequence $\{\mathcal{M}_1, \mathcal{M}_2, \cdots \mathcal{M}_Q\}$ s.t. $\mathbf{T} \in \mathcal{M}_Q \cdots \mathcal{M}_1[\mathcal{G}]$?
- Likelihood: what $\mathcal{G} \to \mathbf{T}$ paths are preferred? How long/short?

Information Delivery and Control

Information Delivery and Control

Genome Measurment: Sampling/Detection

Information Delivery and Control

Genome Measurment: Sampling/Detection

Genome Representation: "Signal" Space

Information Delivery and Control

Genome Measurment: Sampling/Detection

Genome Representation: "Signal" Space

Mutation/Mating Trellis: hey, it's a TRELLIS!

Communication Theorists

PWN the BIG questions!