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Energy Requirements for Radiative Communication

Consider the scenario of FIGURE A. The energy used to send an electromagnetic message is PT
where P is the radiated power. A receiver at some distance D will capture some fraction of this
power ν(D)P where ν(D) is defined as the energy capture coefficient of the receiver. We assume
square law isotropic propagation loss with transmitting antenna gain

Gmax =
8π2R2

λ2 = 2π2A2 , (1)

for diffraction limited beams from a circular filled aperture of radius R operating at a wavelength
λ [1]. The normalised aperture, A = 2R/λ is the aperture in units of the wavelength. (Our usage
corresponds to that common in astronomy, where ‘aperture’ is the diameter of the antenna.) Equa-
tion (1) is only valid in the far-field, meaning distances at which the wavefronts are essentially
spherical. We then have ν(D) = AG/4πD2 where A is the effective collecting area of the receiver.
We note that AG

4πD2 ≤ 1 by energy conservation.
Assuming additive Gaussian receiver noise, the Shannon capacity [2] in bits per second be-

tween the transmitter and receiver is

C = W log2

(

PAG
4πD2N0W

+1
)

, (2)

where N0 is the background noise spectral intensity and W is the channel bandwidth. If we assume
a transmission interval long enough that the usual information theoretic results for long codes can
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FIGURE A: Delivery timing diagram for written and radiated messages. A message of B bits is sent
over a distance D and received by a time τ. In the case of radiation, the transmission is of duration
T , so the entire message is available at the receiver after a delay of τ = D/c+T . In this way, the
standard measure of communication efficiency, bits per joule, applies to both the electromagnetic
radiation and inscribed matter cases thereby allowing direct comparison.

be applied, the number of bits delivered for a transmission of duration T is B = TC. Notice that
we have set the time required for the arrival of the complete message to τ = D/c+T , identical to
the inscribed matter delivery time shown in FIGURE A.

Since Er = PT , we bound Er from below by assuming a large “time-bandwidth” product TW
to obtain

Er ≥ BN0
4πD2

AG
ln2 . (3)

Equation (3) is a best case scenario with unlimited degrees of communication freedom and sidesteps
the issues of preferred frequencies and bandwidths considered by Cocconi and Morrison [3],
Townes [4, 5] and others. Thus, our energy estimate is conservative since no method of elec-
tromagnetic communication can use less energy than given in equation (3).

Assuming transmit and receive apertures both of size R, using equation (1), setting A = πR2,
and defining D = D/2R as normalised target distance results in

Er ≥
8ln2

π2 BN0

[D
A

]2
. (4)
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Inscribed Matter Messages Can Be Dense

Calculating the energy required to deliver an inscribed matter message requires knowing the mass
information density ρ̃ in bits kg−1. Absolute bounds on mass information density have been de-
scribed in [6]. These limits assume matter in its densest possible state and are far larger than what
can be obtained practically with ordinary matter. In contrast, clear limits on the maximum possible
information storage density for ordinary inscribed matter are unknown.

It is therefore useful to consider current empirical limits on mass information density. For
example, information coded as single stranded RNA (such as the polio virus) has an information
density of two bits per base (four possible bases) which at 330 kDaltons (5.5× 10−19 grams)
per kilobase gives an information density of ρ̃RNA = 3.63× 1024 bits kg−1. This figure makes
singled stranded RNA the medium with the largest mass information density for which we have an
“existence proof.”

If we could build stable alloys of the lightest solid elements (Li, Be) with arbitrary placement
of the atoms (average molecular weight 8), we could achieve ρ̃LiBe = 6.022×1023/8g = 7.5×1025

bits kg−1. A scanning tunneling microscope (STM) can place an equivalent of about 1015 bits per
square inch using individual xenon atoms on a nickel substrate [7]. The per bit dimension is then
0.8 nm on a side. By somewhat arbitrarily assuming a 10 nm nickel buffer between layers and that
the density of nickel (8.9 g cm−3) will predominate owing to the relatively thick layering, we have
ρ̃STM = 1.8×1022 bits kg−1 or about two orders of magnitude smaller than RNA storage. We can
also define a more conservative nickel-based material with exactly 1000 nickel atoms per bit. The
associated mass information density is ρ̃Ni = 6.022×1023/(1000×58.7g)≈ 1022 bits kg−1.

At the lower end of the ρ̃ spectrum, consider that the Voyager spacecraft (comparison suggested
by L. Sage) carry plaques bearing inscribed messages — pictograms, images and audio recordings
— encoded as on a phonograph record and including a stylus with which to play it. If we assume
that the total information content of these messages is under 109 bits, then at a total weight of
approximately one ton (about 909 kg) [8], the mass information density of the Voyager craft is
approximately ρ̃voyager = 1.1×106bits kg−1.

Inscribed Matter Message Assembly Energy Is Small

Message assembly is part of the inscribed matter energy budget, and even if in theory this assembly
energy is zero [9], it is useful to have empirical bounds. At the densest encodings we can envision
of one atom per bit, we can imagine that assembling a message might require its construction from
constituent atoms. The energy required is on the order of 2 eV per bond. Thus, for RNA storage
with an average of about 32 atoms and 36 covalent bonds per base, we have about 36 eV per bit as
an upper bound. For our ρ̃Ni = 1022 bits kg−1 nickel-based material with 1000 atoms per bit, the
maximum construction energy is 2000 eV.

For RNA inscribed matter, metabolic measurements provide another empirical bound on as-
sembly energy. The genome of E.Coli has 4,639,221 bases [10] and a cell takes approximately
20 minutes to divide. Replicating the genetic material consumes 60,000 ATP molecules per sec-
ond [11]. With 8× 10−20 Joules per ATP molecule we infer that message assembly consumes
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6.2×10−19J bit−1 ≈ 3.9eV bit−1. The implication is that actual construction energy can be much
lower than the per-atom upper bound.

Now, assume a launch velocity of v̄ = 42 km sec−1 (solar escape from earth orbit). For RNA
inscribed matter we have launch energy (4.2× 104m sec−1)2/2ρ̃RNA = 2.45× 10−16 or approxi-
mately 1500 eV bit−1. For ρ̃Ni = 1022 bits kg−1 we have 5.5× 105 eV bit−1. Thus, we expect
inscription energy costs to be negligible relative the launch cost at the speeds required for inter-
stellar delivery.

Escape from Gravitational Wells

Suppose ve is the escape velocity from the launch platform. We want the terminal velocity far from
the platform to be αve with α > 1. We then require 1

2 mα2v2
e to accelerate the mass appropriately in

the absence of the potential well. In the presence of the potential well we spend energy 1
2 mα2v2

e +
1
2mv2

e . We then have the ratio
Epotential

Eno potential
= 1+1/α2 , (5)

which represents a gravitational well escape penalty factor. As α gets large, the final velocity is
much greater than the escape velocity, so the energy needed to escape is relatively less significant.
For α = 2, the penalty is 1.25.

Radiated Messages Must Be Repeated

A radiated message is lost if the target is not listening when the message passes by, and over
interstellar distance, it seems unlikely that the sender will know with high probability whether the
target is listening. Therefore, we ask a question: how many electromagnetic message repetitions
are necessary to meet a successful detection probability criterion Φd?

We will assume as a best case that the listener is sure to decode any incoming radiated mes-
sage. That is, sure detection seems a not unreasonable assumption if the signal purposely contains
correlation peaks at a variety of time scales, and we simply ignore the issue of whether the lis-
tener’s antennas are pointed in the right direction. Under these assumptions, the problem for the
sender is to compose a transmission schedule which meets the detection probability criterion Φd

and minimises energy. Although precisely stated, the problem is imprecise mainly because the
underlying random variables associated with listening civilization emergence and decline cannot
be characterised given our empirical sample size of 1.

Nonetheless, we will formally define optimal scheduling problems under two different assump-
tions on the time course for birth and death of listening civilizations. We first assume a civilization
emerges, declines, and does not re-emerge. We then assume a renewal process where civilizations
repeatedly emerge and decline.
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FIGURE B: No-detection regions for single civilization emergence and decline. The arrival sched-
ule is {ti}, i = 1,2, · · · ,N and the shaded regions comprise events (S,L) such that no message in
the schedule arrives while the civilization is listening. We seek to minimise the probability that no
message is received, and therefore to maximise the detection probability Φd .

Single Transient Civilizations

We define the non-negative independent random variables S and L as the times when a civilization
starts listening for messages and the civilization lifetime, respectively. fS(s) and fL(`) are the
probability densities for S and L. Then, given message arrival times of {ti}, i = 1,2, · · · ,N, the
probability of failure (decoding no messages) is

1−Φd =
N

∑
k=1

Z tk

tk−1
fS(s)

Z tk−s

0
fL(`)d`ds =

N

∑
k=1

Z tk

tk−1
fS(s)FL(tk − s)ds , (6)

where FL() is the cumulative distribution function of L and the time reference t0 is zero. The right
side of equation (6) is simply integral of the joint PDF fL(`) fS(s) over the shaded area shown in
FIGURE B. That is, the message is not detected for a schedule {ti}, i = 1,2, · · · ,N when random
variable pairs (S,L) lie in the shaded regions.

As a worst case analysis, we compute the optimal schedule by assuming exponential distri-
butions on S and L with means 1/λ and 1/µ respectively. We choose exponential distributions
since they maximise distribution entropy subject to a constraint on the mean [2] and thus imply
maximum uncertainty about S and L.

With fS(s) = λe−λs and FL(`) = 1− e−µ` equation (6) becomes

Φd =
λ

µ−λ

N

∑
k=1

e−λtk
(

1− e−(µ−λ)(tk−tk−1)
)

. (7)
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Taking partials with respect to tk yields

∂Φd

∂tk
=

λ
µ−λ

[

−λe−λtk +µe−λtk e−(µ−λ)(tk−tk−1)− (µ−λ)e−λtk+1e−(µ−λ)(tk+1−tk)
]

. (8)

Simplifying, defining ∆k = tk − tk−1, and setting to zero to find stationary points yields

µe−(µ−λ)∆k − (µ−λ)e−µ∆k+1 = λ . (9)

Then, defining xk = e−µ∆k we have the second order difference equation

xk+1 =
µ

µ−λ
x

1− λ
µ

k −
λ

µ−λ
, (10)

for stationary points {xk}. Φd can therefore be numerically optimised by choice of ∆1.
Examining equation (10), we note that if xk+1 > xk > 0 then xk will increase monotonically

without bound. Likewise, if xk > xk+1 > 0 then xk will decrease toward zero monotonically. To
determine which is the case, we solve

x =
µ

µ−λ
x1− λ

µ −
λ

µ−λ
, (11)

rewrite it as
x1− λ

µ − (1− λ
µ
)x =

λ
µ

, (12)

and note that x1− λ
µ is concave in x. Thus, x1− λ

µ − (1− λ
µ )x is also concave in x. By the definition

of xk we must have 0 ≤ xk ≤ 1 and the extremum of x1− λ
µ − (1− λ

µ )x occurs at x = 1. So we must
have

xk+1 ≤ xk , (13)
with equality if and only if xk = 1. Then, since 6 ∃ xk other than xk = 1 for which xk+1 = 1, the
sequence xk decreases monotonically toward zero for all initial conditions except x1 = 1. Thus, the
sequence {∆k} must increase without bound unless ∆1 = 0, and a unique stationary sequence {xk}
exists for each ∆1. We can then numerically seek the ∆1 which maximises Φd for a given N.

With mean times of 1/λ = 109 years for civilization start and a mean lifetime of 1/µ = 108

years, iterative numerical calculations show that N = 2× 103 and N = 2× 105 messages are nec-
essary to achieve Φd = 0.99 and Φd = 0.9999, respectively.

Since iterative numerical calculation can be time-consuming, it is also useful to analytically
approximate the required N by assuming uniform interarrival intervals ∆ which are small compared
to the variation in fS(s) and FL(`). We then have

1−Φd ≈
N

∑
k=1

∆
2

( fS(tk−1)FL(∆)+ fS(tk)FL(0))≈
1
2

FL(∆) , (14)

assuming sufficiently large N.
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FIGURE C: Markov model for sequential transient civilizations. Time to civilization emergence is
exponential with mean 1/λ and lifetime is also exponential with mean 1/µ.

We can compare the exact result to the small fixed ∆ approximation by first finding ∆ such that
the criterion is satisfied. Using equation (14) and exponential distributions we have

∆ = −
1
µ

log(1−2Φ f ) , (15)

where Φ f = 1−Φd . We then must choose N∆ large enough so that we are reasonably sure (to
within our criterion level Φd) to have an arrival after the target is listening. To this end we set
FS(N∆) = 1−Φ f /10. Solving for N and rearranging yields

N =
µ
λ

log(Φ f /10)

log(1−2Φ f )
. (16)

We then have N = 3149 and N = 5.7×105 for criteria of Φd = 0.99 and Φd = 0.9999 respectively,
assuming 1/λ = 109 years and 1/µ = 108 years. These N are comparable to the exact results
derived from iterative calculations. The most important feature of equation (16) is that N scales as
the ratio of µ to λ. So smaller mean civilization lifetime in comparison to mean civilization start
time implies larger N for the same criterion level Φd .

Sequential Transient Civilizations

When listening civilizations are sequential, the target civilization is either listening when a message
arrives, or has not yet emerged since the last decline. We simplistically represent this sequence as
a Markov (renewal) process with i.i.d. times to civilization emergence S and lifetime L with means
1
λ and 1

µ respectively.
We can write the probability that a given schedule {ti}, i = 1,2, ...N does not result in detection

as

Φ f = 1−Φd =
N

∏
k=1

Prob(X(tk) = 0|X(tk−1 = 0)) , (17)

where X(t)∈ {0,1} is the civilization state (emerging or listening) at time t according to FIGURE
C.
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Again assuming exponential distributions for S and L results in

1−Φd =
N

∏
k=1

(

µ
λ+µ

+
λ

λ+µ
e−(λ+µ)∆k

)

. (18)

We see that Φd is monotone increasing in ∆k, so ∆k → ∞ maximises Φd for fixed N. So we have
as a bound

Φd ≤ 1−
(

µ
λ+µ

)N

. (19)

For Φd ≤ 0.99 and 0.9999 we have N & 50 and 100 respectively when λ = 10−9 and µ = 10−8

Of course, large interarrival times are impractical and we would more practically imagine a
deadline, Γ for radiated messages attempts. It is easy to show using Lagrange multipliers that the
optimal ∆k should be constant which implies ∆k = ∆ = Γ

N . Thus, we would have

(1−Φd) =

(

µ
λ+µ

+
λ

λ+µ
e−(λ+µ) Γ

N

)N

(20)

With 1/λ = 109, 1/µ = 10−8 and Γ = 1010 (roughly the average time required for ten emer-
gence/decline cycles) we find that Φd = 0.99 requires N ≈ 56 and Φd = 0.9999 requires N ≈ 610.

We conclude that the necessity of repeating radiated messages increases the total radiated en-
ergy necessary to assure reception by an order of magnitude or more. For the same criterion
level Φd , “one shot” civilizations which never re-emerge after decline require significantly more
repetitions than sequential civilizations since reception by any one of the sequential civilizations
constitutes a success.

Speculation on Long Messages

We have shown that the marginal energy per bit is almost always much greater for radiated mes-
sages than for inscribed matter messages. However, owing to practical issues of shielding and
message discovery at the destination, inscribed matter favours long messages. Thus, the thorny
question remains as to exactly why long messages might be preferred for interstellar communica-
tions, and we offer our speculations.

Interstellar distances with c as the speed limit for any communication method implies that
round trip transit times might be very long. The stochastic nature of evolution, the potential
fragility of a competitive technologically sophisticated species, a potential dearth of habitable lo-
cations and the inherent dangers associated with solar systems [12, 13] combined suggest that
the probability of simultaneously communicating civilizations could be low. Such low probability
makes longer messages reasonable if only to provide a synchronization strategy for civilizations at
different levels of technical sophistication – by including detailed instructions about how to reply
[14].

Of course, there is still the issue of motive. Why would a civilization devote significant effort
to any kind of interstellar communication? Again, this question is thorny. However, if civilizations
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at any given stellar location are short-lived owing to various sorts of celestial or self-inflicted
calamity, there could be a survival benefit to “seeding” the cosmos with compelling records of a
civilization in the hopes that it would be eventually adopted by other fledgeling civilizations (or
subsumed by older ones). Perhaps most plausible in this context is literal biological seeding [15]
of likely habitats.

Under such assumptions, communicating civilizations may more likely have been spawned
(or influenced) by older communicating civilizations at other locations while non-communicating
civilizations may more likely disappear. This scenario, played out over galactic time scales, could
support a bias toward long interstellar messages.
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